IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v534y2019ics0378437119313652.html
   My bibliography  Save this article

Default prediction in P2P lending from high-dimensional data based on machine learning

Author

Listed:
  • Zhou, Jing
  • Li, Wei
  • Wang, Jiaxin
  • Ding, Shuai
  • Xia, Chengyi

Abstract

In recent years, a new Internet-based unsecured credit model, peer-to-peer (P2P) lending, is flourishing and has become a successful complement to the traditional credit business. However, credit risk remains inevitable. A key challenge is creating a default prediction model that can effectively and accurately predict the default probability of each loan for a P2P lending platform. Due to the characteristics of P2P lending credit data, such as high dimension and class imbalance, conventional statistical models and machine learning algorithms cannot effectively and accurately predict default probability. To address this issue, a decision tree model-based heterogeneous ensemble default prediction model is proposed in this paper for accurate prediction of customer default in P2P lending. Gradient boosting decision trees (GBDT), extreme gradient boosting (XGBoost) and light gradient boosting machine (LightGBM) are employed as individual classifiers to create a heterogeneous ensemble learning-based default prediction model. Learning model-based feature ranking is applied to P2P lending credit data, and individual classifiers undergo hyperparameter optimization. Finally, comparison with benchmark models shows that the prediction model can achieve desirable prediction results and thus effectively solve the challenge of predictions based on high-dimensional and imbalanced data.

Suggested Citation

  • Zhou, Jing & Li, Wei & Wang, Jiaxin & Ding, Shuai & Xia, Chengyi, 2019. "Default prediction in P2P lending from high-dimensional data based on machine learning," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
  • Handle: RePEc:eee:phsmap:v:534:y:2019:i:c:s0378437119313652
    DOI: 10.1016/j.physa.2019.122370
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437119313652
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2019.122370?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Xiao & Huang, Bihong & Ye, Dezhu, 2018. "The role of punctuation in P2P lending: Evidence from China," Economic Modelling, Elsevier, vol. 68(C), pages 634-643.
    2. Friedman, Jerome H., 2002. "Stochastic gradient boosting," Computational Statistics & Data Analysis, Elsevier, vol. 38(4), pages 367-378, February.
    3. Lessmann, Stefan & Baesens, Bart & Seow, Hsin-Vonn & Thomas, Lyn C., 2015. "Benchmarking state-of-the-art classification algorithms for credit scoring: An update of research," European Journal of Operational Research, Elsevier, vol. 247(1), pages 124-136.
    4. Wang, Juan & Li, Chao & Xia, Chengyi, 2018. "Improved centrality indicators to characterize the nodal spreading capability in complex networks," Applied Mathematics and Computation, Elsevier, vol. 334(C), pages 388-400.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Yi & Yang, Menglong & Wang, Yudong & Li, Yongshan & Xiong, Tiancheng & Li, Anzhe, 2022. "Applying machine learning algorithms to predict default probability in the online credit market: Evidence from China," International Review of Financial Analysis, Elsevier, vol. 79(C).
    2. Ramezani, Zahra & Pourdarvish, Ahmad, 2021. "Transfer learning using Tsallis entropy: An application to Gravity Spy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 561(C).
    3. Ho, Kung-Cheng & Gu, Yan & Yan, Cheng & Gozgor, Giray, 2024. "Peer effects in the online peer-to-peer lending market: Ex-ante selection and ex-post learning," International Review of Financial Analysis, Elsevier, vol. 92(C).
    4. Sarmah, Manash Jyoti & Goswami, Himangshu Prabal, 2023. "Learning coherences from nonequilibrium fluctuations in a quantum heat engine," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 627(C).
    5. Liu, Wanan & Fan, Hong & Xia, Meng, 2023. "Tree-based heterogeneous cascade ensemble model for credit scoring," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1593-1614.
    6. Gero Friedrich Bone-Winkel & Felix Reichenbach, 2024. "Improving credit risk assessment in P2P lending with explainable machine learning survival analysis," Digital Finance, Springer, vol. 6(3), pages 501-542, September.
    7. João A. Bastos, 2022. "Predicting Credit Scores with Boosted Decision Trees," Forecasting, MDPI, vol. 4(4), pages 1-11, November.
    8. Štefan Lyócsa & Petra Vašaničová & Branka Hadji Misheva & Marko Dávid Vateha, 2022. "Default or profit scoring credit systems? Evidence from European and US peer-to-peer lending markets," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-21, December.
    9. Pang, Professor Sulin & Hou, Xianyan & Xia, Lianhu, 2021. "Borrowers’ credit quality scoring model and applications, with default discriminant analysis based on the extreme learning machine," Technological Forecasting and Social Change, Elsevier, vol. 165(C).
    10. Liu, Yiting & Baals, Lennart John & Osterrieder, Jörg & Hadji-Misheva, Branka, 2024. "Network centrality and credit risk: A comprehensive analysis of peer-to-peer lending dynamics," Finance Research Letters, Elsevier, vol. 63(C).
    11. Xiwen Cui & Shaojun E & Dongxiao Niu & Bosong Chen & Jiaqi Feng, 2021. "Forecasting of Carbon Emission in China Based on Gradient Boosting Decision Tree Optimized by Modified Whale Optimization Algorithm," Sustainability, MDPI, vol. 13(21), pages 1-18, November.
    12. Hülya Yürekli & Öyküm Esra Yiğit & Okan Bulut & Min Lu & Ersoy Öz, 2022. "Exploring Factors That Affected Student Well-Being during the COVID-19 Pandemic: A Comparison of Data-Mining Approaches," IJERPH, MDPI, vol. 19(18), pages 1-16, September.
    13. Shen, Feng & Zhang, Xin & Wang, Run & Lan, Dao & Zhou, Wei, 2022. "Sequential optimization three-way decision model with information gain for credit default risk evaluation," International Journal of Forecasting, Elsevier, vol. 38(3), pages 1116-1128.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Matthias Bogaert & Lex Delaere, 2023. "Ensemble Methods in Customer Churn Prediction: A Comparative Analysis of the State-of-the-Art," Mathematics, MDPI, vol. 11(5), pages 1-28, February.
    2. Kriebel, Johannes & Stitz, Lennart, 2022. "Credit default prediction from user-generated text in peer-to-peer lending using deep learning," European Journal of Operational Research, Elsevier, vol. 302(1), pages 309-323.
    3. Fitzpatrick, Trevor & Mues, Christophe, 2016. "An empirical comparison of classification algorithms for mortgage default prediction: evidence from a distressed mortgage market," European Journal of Operational Research, Elsevier, vol. 249(2), pages 427-439.
    4. Liu, Yi & Yang, Menglong & Wang, Yudong & Li, Yongshan & Xiong, Tiancheng & Li, Anzhe, 2022. "Applying machine learning algorithms to predict default probability in the online credit market: Evidence from China," International Review of Financial Analysis, Elsevier, vol. 79(C).
    5. Tomasz Pisula, 2020. "An Ensemble Classifier-Based Scoring Model for Predicting Bankruptcy of Polish Companies in the Podkarpackie Voivodeship," JRFM, MDPI, vol. 13(2), pages 1-35, February.
    6. De Bock, Koen W. & Coussement, Kristof & Lessmann, Stefan, 2020. "Cost-sensitive business failure prediction when misclassification costs are uncertain: A heterogeneous ensemble selection approach," European Journal of Operational Research, Elsevier, vol. 285(2), pages 612-630.
    7. Koen W. de Bock & Kristof Coussement & Stefan Lessmann, 2020. "Cost-sensitive business failure prediction when misclassification costs are uncertain: A heterogeneous ensemble selection approach," Post-Print hal-02863245, HAL.
    8. Mansoor, Umer & Jamal, Arshad & Su, Junbiao & Sze, N.N. & Chen, Anthony, 2023. "Investigating the risk factors of motorcycle crash injury severity in Pakistan: Insights and policy recommendations," Transport Policy, Elsevier, vol. 139(C), pages 21-38.
    9. Dangxing Chen & Weicheng Ye & Jiahui Ye, 2022. "Interpretable Selective Learning in Credit Risk," Papers 2209.10127, arXiv.org.
    10. Davidescu Adriana AnaMaria & Agafiței Marina-Diana & Strat Vasile Alecsandru & Dima Alina Mihaela, 2024. "Mapping the Landscape: A Bibliometric Analysis of Rating Agencies in the Era of Artificial Intelligence and Machine Learning," Proceedings of the International Conference on Business Excellence, Sciendo, vol. 18(1), pages 67-85.
    11. Bissan Ghaddar & Ignacio Gómez-Casares & Julio González-Díaz & Brais González-Rodríguez & Beatriz Pateiro-López & Sofía Rodríguez-Ballesteros, 2023. "Learning for Spatial Branching: An Algorithm Selection Approach," INFORMS Journal on Computing, INFORMS, vol. 35(5), pages 1024-1043, September.
    12. Akash Malhotra, 2018. "A hybrid econometric-machine learning approach for relative importance analysis: Prioritizing food policy," Papers 1806.04517, arXiv.org, revised Aug 2020.
    13. He, Ni & Yongqiao, Wang & Tao, Jiang & Zhaoyu, Chen, 2022. "Self-Adaptive bagging approach to credit rating," Technological Forecasting and Social Change, Elsevier, vol. 175(C).
    14. Nahushananda Chakravarthy H G & Karthik M Seenappa & Sujay Raghavendra Naganna & Dayananda Pruthviraja, 2023. "Machine Learning Models for the Prediction of the Compressive Strength of Self-Compacting Concrete Incorporating Incinerated Bio-Medical Waste Ash," Sustainability, MDPI, vol. 15(18), pages 1-22, September.
    15. Tim Voigt & Martin Kohlhase & Oliver Nelles, 2021. "Incremental DoE and Modeling Methodology with Gaussian Process Regression: An Industrially Applicable Approach to Incorporate Expert Knowledge," Mathematics, MDPI, vol. 9(19), pages 1-26, October.
    16. Li, Yibei & Wang, Ximei & Djehiche, Boualem & Hu, Xiaoming, 2020. "Credit scoring by incorporating dynamic networked information," European Journal of Operational Research, Elsevier, vol. 286(3), pages 1103-1112.
    17. Davide Nicola Continanza & Andrea del Monaco & Marco di Lucido & Daniele Figoli & Pasquale Maddaloni & Filippo Quarta & Giuseppe Turturiello, 2023. "Stacking machine learning models for anomaly detection: comparing AnaCredit to other banking data sets," IFC Bulletins chapters, in: Bank for International Settlements (ed.), Data science in central banking: applications and tools, volume 59, Bank for International Settlements.
    18. Wen, Shaoting & Buyukada, Musa & Evrendilek, Fatih & Liu, Jingyong, 2020. "Uncertainty and sensitivity analyses of co-combustion/pyrolysis of textile dyeing sludge and incense sticks: Regression and machine-learning models," Renewable Energy, Elsevier, vol. 151(C), pages 463-474.
    19. Zhu, Haibin & Bai, Lu & He, Lidan & Liu, Zhi, 2023. "Forecasting realized volatility with machine learning: Panel data perspective," Journal of Empirical Finance, Elsevier, vol. 73(C), pages 251-271.
    20. Spiliotis, Evangelos & Makridakis, Spyros & Kaltsounis, Anastasios & Assimakopoulos, Vassilios, 2021. "Product sales probabilistic forecasting: An empirical evaluation using the M5 competition data," International Journal of Production Economics, Elsevier, vol. 240(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:534:y:2019:i:c:s0378437119313652. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.