Adaptively Promoting Diversity in a Novel Ensemble Method for Imbalanced Credit-Risk Evaluation
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Shorouq Fathi Eletter & Saad Ghaleb Yaseen & Ghaleb Awad Elrefae, 2010. "Neuro-Based Artificial Intelligence Model for Loan Decisions," American Journal of Economics and Business Administration, Science Publications, vol. 2(1), pages 27-34, March.
- Shen, Feng & Zhao, Xingchao & Li, Zhiyong & Li, Ke & Meng, Zhiyi, 2019. "A novel ensemble classification model based on neural networks and a classifier optimisation technique for imbalanced credit risk evaluation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 526(C).
- Koutanaei, Fatemeh Nemati & Sajedi, Hedieh & Khanbabaei, Mohammad, 2015. "A hybrid data mining model of feature selection algorithms and ensemble learning classifiers for credit scoring," Journal of Retailing and Consumer Services, Elsevier, vol. 27(C), pages 11-23.
- Lessmann, Stefan & Baesens, Bart & Seow, Hsin-Vonn & Thomas, Lyn C., 2015. "Benchmarking state-of-the-art classification algorithms for credit scoring: An update of research," European Journal of Operational Research, Elsevier, vol. 247(1), pages 124-136.
- Jinyan Li & Lian-sheng Liu & Simon Fong & Raymond K Wong & Sabah Mohammed & Jinan Fiaidhi & Yunsick Sung & Kelvin K L Wong, 2017. "Adaptive Swarm Balancing Algorithms for rare-event prediction in imbalanced healthcare data," PLOS ONE, Public Library of Science, vol. 12(7), pages 1-25, July.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Wanying Song & Jian Min & Jianbo Yang, 2023. "Credit Risk Assessment of Heavy-Polluting Enterprises: A Wide- ℓ p Penalty and Deep Learning Approach," Mathematics, MDPI, vol. 11(16), pages 1-19, August.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Lkhagvadorj Munkhdalai & Tsendsuren Munkhdalai & Oyun-Erdene Namsrai & Jong Yun Lee & Keun Ho Ryu, 2019. "An Empirical Comparison of Machine-Learning Methods on Bank Client Credit Assessments," Sustainability, MDPI, vol. 11(3), pages 1-23, January.
- Oguz Koc & Omur Ugur & A. Sevtap Kestel, 2023. "The Impact of Feature Selection and Transformation on Machine Learning Methods in Determining the Credit Scoring," Papers 2303.05427, arXiv.org.
- Samami, Maryam & Akbari, Ebrahim & Abdar, Moloud & Plawiak, Pawel & Nematzadeh, Hossein & Basiri, Mohammad Ehsan & Makarenkov, Vladimir, 2020. "A mixed solution-based high agreement filtering method for class noise detection in binary classification," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 553(C).
- Weidong Guo & Zach Zhizhong Zhou, 2022. "A comparative study of combining tree‐based feature selection methods and classifiers in personal loan default prediction," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(6), pages 1248-1313, September.
- Dangxing Chen & Weicheng Ye & Jiahui Ye, 2022. "Interpretable Selective Learning in Credit Risk," Papers 2209.10127, arXiv.org.
- Davidescu Adriana AnaMaria & Agafiței Marina-Diana & Strat Vasile Alecsandru & Dima Alina Mihaela, 2024. "Mapping the Landscape: A Bibliometric Analysis of Rating Agencies in the Era of Artificial Intelligence and Machine Learning," Proceedings of the International Conference on Business Excellence, Sciendo, vol. 18(1), pages 67-85.
- He, Ni & Yongqiao, Wang & Tao, Jiang & Zhaoyu, Chen, 2022. "Self-Adaptive bagging approach to credit rating," Technological Forecasting and Social Change, Elsevier, vol. 175(C).
- Li, Yibei & Wang, Ximei & Djehiche, Boualem & Hu, Xiaoming, 2020.
"Credit scoring by incorporating dynamic networked information,"
European Journal of Operational Research, Elsevier, vol. 286(3), pages 1103-1112.
- Yibei Li & Ximei Wang & Boualem Djehiche & Xiaoming Hu, 2019. "Credit Scoring by Incorporating Dynamic Networked Information," Papers 1905.11795, arXiv.org, revised Oct 2019.
- Davide Nicola Continanza & Andrea del Monaco & Marco di Lucido & Daniele Figoli & Pasquale Maddaloni & Filippo Quarta & Giuseppe Turturiello, 2023.
"Stacking machine learning models for anomaly detection: comparing AnaCredit to other banking data sets,"
IFC Bulletins chapters, in: Bank for International Settlements (ed.), Data science in central banking: applications and tools, volume 59,
Bank for International Settlements.
- Pasquale Maddaloni & Davide Nicola Continanza & Andrea del Monaco & Daniele Figoli & Marco di Lucido & Filippo Quarta & Giuseppe Turturiello, 2022. "Stacking machine-learning models for anomaly detection: comparing AnaCredit to other banking datasets," Questioni di Economia e Finanza (Occasional Papers) 689, Bank of Italy, Economic Research and International Relations Area.
- Lismont, Jasmien & Vanthienen, Jan & Baesens, Bart & Lemahieu, Wilfried, 2017. "Defining analytics maturity indicators: A survey approach," International Journal of Information Management, Elsevier, vol. 37(3), pages 114-124.
- Doumpos, Michalis & Zopounidis, Constantin & Gounopoulos, Dimitrios & Platanakis, Emmanouil & Zhang, Wenke, 2023. "Operational research and artificial intelligence methods in banking," European Journal of Operational Research, Elsevier, vol. 306(1), pages 1-16.
- Gunnarsson, Björn Rafn & vanden Broucke, Seppe & Baesens, Bart & Óskarsdóttir, María & Lemahieu, Wilfried, 2021. "Deep learning for credit scoring: Do or don’t?," European Journal of Operational Research, Elsevier, vol. 295(1), pages 292-305.
- Barboza, Flavio & Altman, Edward, 2024. "Predicting financial distress in Latin American companies: A comparative analysis of logistic regression and random forest models," The North American Journal of Economics and Finance, Elsevier, vol. 72(C).
- Rasa Kanapickiene & Renatas Spicas, 2019. "Credit Risk Assessment Model for Small and Micro-Enterprises: The Case of Lithuania," Risks, MDPI, vol. 7(2), pages 1-23, June.
- Zhou, Jing & Li, Wei & Wang, Jiaxin & Ding, Shuai & Xia, Chengyi, 2019. "Default prediction in P2P lending from high-dimensional data based on machine learning," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
- Hu'e Sullivan & Hurlin Christophe & P'erignon Christophe & Saurin S'ebastien, 2022. "Measuring the Driving Forces of Predictive Performance: Application to Credit Scoring," Papers 2212.05866, arXiv.org, revised Jun 2023.
- De Caigny, Arno & Coussement, Kristof & De Bock, Koen W., 2018. "A new hybrid classification algorithm for customer churn prediction based on logistic regression and decision trees," European Journal of Operational Research, Elsevier, vol. 269(2), pages 760-772.
- Topuz, Kazim & Urban, Timothy L. & Yildirim, Mehmet B., 2024. "A Markovian score model for evaluating provider performance for continuity of care—An explainable analytics approach," European Journal of Operational Research, Elsevier, vol. 317(2), pages 341-351.
- Shiqi Fang & Zexun Chen & Jake Ansell, 2024. "Peer-induced Fairness: A Causal Approach for Algorithmic Fairness Auditing," Papers 2408.02558, arXiv.org, revised Sep 2024.
- Cao Son Tran & Dan Nicolau & Richi Nayak & Peter Verhoeven, 2021. "Modeling Credit Risk: A Category Theory Perspective," JRFM, MDPI, vol. 14(7), pages 1-21, July.
More about this item
Keywords
credit-risk evaluation; ensemble learning; imbalanced classification; diversity promotion; self-adaptive optimization; fuzzy sampling method;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:11:p:1790-:d:822544. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.