IDEAS home Printed from https://ideas.repec.org/a/eee/jebusi/v125-126y2023is014861952300019x.html
   My bibliography  Save this article

Explainable FinTech lending

Author

Listed:
  • Babaei, Golnoosh
  • Giudici, Paolo
  • Raffinetti, Emanuela

Abstract

Lending activities, especially for small and medium enterprises (SMEs), are increasingly based on financial technologies, facilitated by the availability of advanced machine learning (ML) methods that can accurately predict the financial performance of a company from the available data sources. However, despite their high predictive accuracy, ML models may not give users sufficient interpretation of the results. Therefore, it may not be adequate for informed decision-making, as stated, for example, in the recently proposed artificial intelligence (AI) regulations. To fill the gap, we employed Shapley values in the context of model selection. Thus, we propose a model selection method based on predictive accuracy that can be employed for all types of ML models, those with a probabilistic background, as in the current state-of-the-art. We applied our proposal to a credit-scoring database with more than 100,000 SMEs. The empirical findings indicate that the risk of investing in a specific SME can be predicted and interpreted well using a machine-learning model which is both predictively accurate and explainable.

Suggested Citation

  • Babaei, Golnoosh & Giudici, Paolo & Raffinetti, Emanuela, 2023. "Explainable FinTech lending," Journal of Economics and Business, Elsevier, vol. 125.
  • Handle: RePEc:eee:jebusi:v:125-126:y:2023:i::s014861952300019x
    DOI: 10.1016/j.jeconbus.2023.106126
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S014861952300019X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jeconbus.2023.106126?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Guo, Yanhong & Zhou, Wenjun & Luo, Chunyu & Liu, Chuanren & Xiong, Hui, 2016. "Instance-based credit risk assessment for investment decisions in P2P lending," European Journal of Operational Research, Elsevier, vol. 249(2), pages 417-426.
    2. Berger, Allen N. & Udell, Gregory F., 2006. "A more complete conceptual framework for SME finance," Journal of Banking & Finance, Elsevier, vol. 30(11), pages 2945-2966, November.
    3. Niklas Bussmann & Paolo Giudici & Dimitri Marinelli & Jochen Papenbrock, 2021. "Explainable Machine Learning in Credit Risk Management," Computational Economics, Springer;Society for Computational Economics, vol. 57(1), pages 203-216, January.
    4. Yiheng Li & Weidong Chen, 2020. "A Comparative Performance Assessment of Ensemble Learning for Credit Scoring," Mathematics, MDPI, vol. 8(10), pages 1-19, October.
    5. Juan Laborda & Seyong Ryoo, 2021. "Feature Selection in a Credit Scoring Model," Mathematics, MDPI, vol. 9(7), pages 1-22, March.
    6. Srinivasan, Venkat & Kim, Yong H, 1987. "Credit Granting: A Comparative Analysis of Classification Procedures," Journal of Finance, American Finance Association, vol. 42(3), pages 665-681, July.
    7. David J. Hand & Heikki Mannila & Padhraic Smyth, 2001. "Principles of Data Mining," MIT Press Books, The MIT Press, edition 1, volume 1, number 026208290x, April.
    8. Fasano, Francesco & Cappa, Francesco, 2022. "How do banking fintech services affect SME debt?," Journal of Economics and Business, Elsevier, vol. 121(C).
    9. Bracke, Philippe & Datta, Anupam & Jung, Carsten & Sen, Shayak, 2019. "Machine learning explainability in finance: an application to default risk analysis," Bank of England working papers 816, Bank of England.
    10. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    11. Michael Bücker & Gero Szepannek & Alicja Gosiewska & Przemyslaw Biecek, 2022. "Transparency, auditability, and explainability of machine learning models in credit scoring," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 73(1), pages 70-90, January.
    12. Mukund Sundararajan & Amir Najmi, 2019. "The many Shapley values for model explanation," Papers 1908.08474, arXiv.org, revised Feb 2020.
    13. Inna Romānova & Marina Kudinska, 2016. "Banking and Fintech: A Challenge or Opportunity?," Contemporary Studies in Economic and Financial Analysis, in: Contemporary Issues in Finance: Current Challenges from Across Europe, volume 98, pages 21-35, Emerald Group Publishing Limited.
    14. Trivedi, Shrawan Kumar, 2020. "A study on credit scoring modeling with different feature selection and machine learning approaches," Technology in Society, Elsevier, vol. 63(C).
    15. Finlay, Steven, 2011. "Multiple classifier architectures and their application to credit risk assessment," European Journal of Operational Research, Elsevier, vol. 210(2), pages 368-378, April.
    16. Lessmann, Stefan & Baesens, Bart & Seow, Hsin-Vonn & Thomas, Lyn C., 2015. "Benchmarking state-of-the-art classification algorithms for credit scoring: An update of research," European Journal of Operational Research, Elsevier, vol. 247(1), pages 124-136.
    17. Correia, Filipe & Martins, António & Waikel, Anthony, 2022. "Online financing without FinTech: Evidence from online informal loans," Journal of Economics and Business, Elsevier, vol. 121(C).
    18. Bernard Dushimimana & Yvonne Wambui & Timothy Lubega & Patrick E. McSharry, 2020. "Use of Machine Learning Techniques to Create a Credit Score Model for Airtime Loans," JRFM, MDPI, vol. 13(8), pages 1-11, August.
    19. Milne, Alistair & Parboteeah, Paul, 2016. "The Business Models and Economics of Peer-to-Peer Lending," ECRI Papers 11594, Centre for European Policy Studies.
    20. Anjali Chopra & Priyanka Bhilare, 2018. "Application of Ensemble Models in Credit Scoring Models," Business Perspectives and Research, , vol. 6(2), pages 129-141, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Leite, Rodrigo & Mendes, Layla & Camelo, Emmanuel, 2024. "Innovating microcredit: how fintechs change the field," Journal of Economics and Business, Elsevier, vol. 128(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dumitrescu, Elena & Hué, Sullivan & Hurlin, Christophe & Tokpavi, Sessi, 2022. "Machine learning for credit scoring: Improving logistic regression with non-linear decision-tree effects," European Journal of Operational Research, Elsevier, vol. 297(3), pages 1178-1192.
    2. Elena Ivona DUMITRESCU & Sullivan HUE & Christophe HURLIN & Sessi TOKPAVI, 2020. "Machine Learning or Econometrics for Credit Scoring: Let’s Get the Best of Both Worlds," LEO Working Papers / DR LEO 2839, Orleans Economics Laboratory / Laboratoire d'Economie d'Orleans (LEO), University of Orleans.
    3. Chen, Dangxing & Ye, Jiahui & Ye, Weicheng, 2023. "Interpretable selective learning in credit risk," Research in International Business and Finance, Elsevier, vol. 65(C).
    4. Chen, Yujia & Calabrese, Raffaella & Martin-Barragan, Belen, 2024. "Interpretable machine learning for imbalanced credit scoring datasets," European Journal of Operational Research, Elsevier, vol. 312(1), pages 357-372.
    5. Dangxing Chen & Weicheng Ye & Jiahui Ye, 2022. "Interpretable Selective Learning in Credit Risk," Papers 2209.10127, arXiv.org.
    6. Giudici, Paolo & Raffinetti, Emanuela, 2023. "SAFE Artificial Intelligence in finance," Finance Research Letters, Elsevier, vol. 56(C).
    7. Dimitris Andriosopoulos & Michalis Doumpos & Panos M. Pardalos & Constantin Zopounidis, 2019. "Computational approaches and data analytics in financial services: A literature review," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 70(10), pages 1581-1599, October.
    8. Sullivan Hué, 2022. "GAM(L)A: An econometric model for interpretable machine learning," French Stata Users' Group Meetings 2022 19, Stata Users Group.
    9. Jiang, Cuiqing & Wang, Zhao & Zhao, Huimin, 2019. "A prediction-driven mixture cure model and its application in credit scoring," European Journal of Operational Research, Elsevier, vol. 277(1), pages 20-31.
    10. Weidong Guo & Zach Zhizhong Zhou, 2022. "A comparative study of combining tree‐based feature selection methods and classifiers in personal loan default prediction," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(6), pages 1248-1313, September.
    11. Emmanuel Flachaire & Gilles Hacheme & Sullivan Hu'e & S'ebastien Laurent, 2022. "GAM(L)A: An econometric model for interpretable Machine Learning," Papers 2203.11691, arXiv.org.
    12. Cao Son Tran & Dan Nicolau & Richi Nayak & Peter Verhoeven, 2021. "Modeling Credit Risk: A Category Theory Perspective," JRFM, MDPI, vol. 14(7), pages 1-21, July.
    13. Doumpos, Michalis & Andriosopoulos, Kostas & Galariotis, Emilios & Makridou, Georgia & Zopounidis, Constantin, 2017. "Corporate failure prediction in the European energy sector: A multicriteria approach and the effect of country characteristics," European Journal of Operational Research, Elsevier, vol. 262(1), pages 347-360.
    14. Zhao Wang & Cuiqing Jiang & Huimin Zhao, 2022. "Know Where to Invest: Platform Risk Evaluation in Online Lending," Information Systems Research, INFORMS, vol. 33(3), pages 765-783, September.
    15. Yufei Xia & Lingyun He & Yinguo Li & Nana Liu & Yanlin Ding, 2020. "Predicting loan default in peer‐to‐peer lending using narrative data," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(2), pages 260-280, March.
    16. Juan Laborda & Seyong Ryoo, 2021. "Feature Selection in a Credit Scoring Model," Mathematics, MDPI, vol. 9(7), pages 1-22, March.
    17. Yang Liu & Fei Huang & Lili Ma & Qingguo Zeng & Jiale Shi, 2024. "Credit scoring prediction leveraging interpretable ensemble learning," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(2), pages 286-308, March.
    18. Kumar, Rishabh & Koshiyama, Adriano & da Costa, Kleyton & Kingsman, Nigel & Tewarrie, Marvin & Kazim, Emre & Roy, Arunita & Treleaven, Philip & Lovell, Zac, 2023. "Deep learning model fragility and implications for financial stability and regulation," Bank of England working papers 1038, Bank of England.
    19. Kim Long Tran & Hoang Anh Le & Thanh Hien Nguyen & Duc Trung Nguyen, 2022. "Explainable Machine Learning for Financial Distress Prediction: Evidence from Vietnam," Data, MDPI, vol. 7(11), pages 1-12, November.
    20. Giudici, Paolo & Gramegna, Alex & Raffinetti, Emanuela, 2023. "Machine Learning Classification Model Comparison," Socio-Economic Planning Sciences, Elsevier, vol. 87(PB).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jebusi:v:125-126:y:2023:i::s014861952300019x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/journal-of-economics-and-business .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.