IDEAS home Printed from https://ideas.repec.org/p/ies/wpaper/e202415.html
   My bibliography  Save this paper

A Pairwise-frontier-based Classification Method for Two-Group Classification

Author

Listed:
  • Qianying Jin

    (College of Economics and Management, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China.)

  • Kristiaan Kerstens

    (Univ. Lille, CNRS, IESEG School of Management, UMR 9221 - LEM - Lille Économie Management, F-59000, Lille, France)

  • Ignace Van de Woestyne

    (KULeuven, Research Centre for Operations Research and Statistics (ORSTAT), Brussels Campus, Warmoesberg 26, B-1000 Brussels, Belgium)

  • Zhongbao Zhou

    (School of Business Administration, Hunan University, Changsha, 410082, China.)

Abstract

Mathematical programming-based methods are widely used to generate separating boundaries in two-group classification problems. Nonlinear separating boundaries may have better classification performance than linear separating boundaries, but these require a pre-specification of a nonlinear functional form. This contribution proposes a novel pairwise-frontier-based classification (PFC) method to approximate nonlinear separating boundaries, without predetermining a nonlinear functional form. It consists of two steps that explicitly consider and focus on overlap. The first step is to identify the overlap. Importantly, this contribution proposes to construct frontiers based on background knowledge of classification, thus ensuring that their intersection (i.e., overlap) is not increased by blindly applying commonly used axioms. Depending on the axioms applied, pairwise frontiers can be either convex or nonconvex. The second step minimizes identified overlaps by allowing training observations to be misclassified, but all training observations that have been correctly classified must remain correctly classified. The PFC method with hard frontiers is then extended to the one with soft frontiers. The applicability of the proposed PFC methods is illustrated by simulation studies and real-life data sets. The results show that the proposed method is competitive with some well-established classifiers in the literature and even performs better with unbalanced data sets.

Suggested Citation

  • Qianying Jin & Kristiaan Kerstens & Ignace Van de Woestyne & Zhongbao Zhou, 2024. "A Pairwise-frontier-based Classification Method for Two-Group Classification," Working Papers 2024-EQM-05, IESEG School of Management.
  • Handle: RePEc:ies:wpaper:e202415
    as

    Download full text from publisher

    File URL: https://www.ieseg.fr/wp-content/uploads/2024/07/2024-EQM-05.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mehdi Toloo & Reza Farzipoor Saen & Majid Azadi, 2015. "Obviating some of the theoretical barriers of data envelopment analysis-discriminant analysis: an application in predicting cluster membership of customers," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 66(4), pages 674-683, April.
    2. Lessmann, Stefan & Baesens, Bart & Seow, Hsin-Vonn & Thomas, Lyn C., 2015. "Benchmarking state-of-the-art classification algorithms for credit scoring: An update of research," European Journal of Operational Research, Elsevier, vol. 247(1), pages 124-136.
    3. Farbmacher, Helmut & Löw, Leander & Spindler, Martin, 2022. "An explainable attention network for fraud detection in claims management," Journal of Econometrics, Elsevier, vol. 228(2), pages 244-258.
    4. Pendharkar, Parag C., 2002. "A potential use of data envelopment analysis for the inverse classification problem," Omega, Elsevier, vol. 30(3), pages 243-248, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dangxing Chen & Weicheng Ye & Jiahui Ye, 2022. "Interpretable Selective Learning in Credit Risk," Papers 2209.10127, arXiv.org.
    2. Davidescu Adriana AnaMaria & Agafiței Marina-Diana & Strat Vasile Alecsandru & Dima Alina Mihaela, 2024. "Mapping the Landscape: A Bibliometric Analysis of Rating Agencies in the Era of Artificial Intelligence and Machine Learning," Proceedings of the International Conference on Business Excellence, Sciendo, vol. 18(1), pages 67-85.
    3. He, Ni & Yongqiao, Wang & Tao, Jiang & Zhaoyu, Chen, 2022. "Self-Adaptive bagging approach to credit rating," Technological Forecasting and Social Change, Elsevier, vol. 175(C).
    4. Li, Yibei & Wang, Ximei & Djehiche, Boualem & Hu, Xiaoming, 2020. "Credit scoring by incorporating dynamic networked information," European Journal of Operational Research, Elsevier, vol. 286(3), pages 1103-1112.
    5. Davide Nicola Continanza & Andrea del Monaco & Marco di Lucido & Daniele Figoli & Pasquale Maddaloni & Filippo Quarta & Giuseppe Turturiello, 2023. "Stacking machine learning models for anomaly detection: comparing AnaCredit to other banking data sets," IFC Bulletins chapters, in: Bank for International Settlements (ed.), Data science in central banking: applications and tools, volume 59, Bank for International Settlements.
    6. Lismont, Jasmien & Vanthienen, Jan & Baesens, Bart & Lemahieu, Wilfried, 2017. "Defining analytics maturity indicators: A survey approach," International Journal of Information Management, Elsevier, vol. 37(3), pages 114-124.
    7. Doumpos, Michalis & Zopounidis, Constantin & Gounopoulos, Dimitrios & Platanakis, Emmanouil & Zhang, Wenke, 2023. "Operational research and artificial intelligence methods in banking," European Journal of Operational Research, Elsevier, vol. 306(1), pages 1-16.
    8. Gunnarsson, Björn Rafn & vanden Broucke, Seppe & Baesens, Bart & Óskarsdóttir, María & Lemahieu, Wilfried, 2021. "Deep learning for credit scoring: Do or don’t?," European Journal of Operational Research, Elsevier, vol. 295(1), pages 292-305.
    9. Rasa Kanapickiene & Renatas Spicas, 2019. "Credit Risk Assessment Model for Small and Micro-Enterprises: The Case of Lithuania," Risks, MDPI, vol. 7(2), pages 1-23, June.
    10. Zhou, Jing & Li, Wei & Wang, Jiaxin & Ding, Shuai & Xia, Chengyi, 2019. "Default prediction in P2P lending from high-dimensional data based on machine learning," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
    11. Hu'e Sullivan & Hurlin Christophe & P'erignon Christophe & Saurin S'ebastien, 2022. "Measuring the Driving Forces of Predictive Performance: Application to Credit Scoring," Papers 2212.05866, arXiv.org, revised Jan 2025.
    12. De Caigny, Arno & Coussement, Kristof & De Bock, Koen W., 2018. "A new hybrid classification algorithm for customer churn prediction based on logistic regression and decision trees," European Journal of Operational Research, Elsevier, vol. 269(2), pages 760-772.
    13. Topuz, Kazim & Urban, Timothy L. & Yildirim, Mehmet B., 2024. "A Markovian score model for evaluating provider performance for continuity of care—An explainable analytics approach," European Journal of Operational Research, Elsevier, vol. 317(2), pages 341-351.
    14. Shiqi Fang & Zexun Chen & Jake Ansell, 2024. "Peer-induced Fairness: A Causal Approach for Algorithmic Fairness Auditing," Papers 2408.02558, arXiv.org, revised Sep 2024.
    15. Cao Son Tran & Dan Nicolau & Richi Nayak & Peter Verhoeven, 2021. "Modeling Credit Risk: A Category Theory Perspective," JRFM, MDPI, vol. 14(7), pages 1-21, July.
    16. Sigrist, Fabio & Leuenberger, Nicola, 2023. "Machine learning for corporate default risk: Multi-period prediction, frailty correlation, loan portfolios, and tail probabilities," European Journal of Operational Research, Elsevier, vol. 305(3), pages 1390-1406.
    17. Ivan Tikshaev & Roman Kulshin & Gennadii Volokitin & Pavel Senchenko & Anatoly Sidorov, 2022. "The Possibilities of Using Scoring to Determine the Relevance of Software Development Tenders," Mathematics, MDPI, vol. 10(24), pages 1-13, December.
    18. Matthias Bogaert & Lex Delaere, 2023. "Ensemble Methods in Customer Churn Prediction: A Comparative Analysis of the State-of-the-Art," Mathematics, MDPI, vol. 11(5), pages 1-28, February.
    19. Aggarwal, Nidhi & Singh, Manish K. & Thomas, Susan, 2023. "Do decreases in Distance-to-Default predict rating downgrades?," Economic Modelling, Elsevier, vol. 129(C).
    20. Lessmann, Stefan & Voß, Stefan, 2017. "Car resale price forecasting: The impact of regression method, private information, and heterogeneity on forecast accuracy," International Journal of Forecasting, Elsevier, vol. 33(4), pages 864-877.

    More about this item

    Keywords

    Data Envelopment Analysis; Frontier; Nonconvex; Convex; Two-group Classification;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ies:wpaper:e202415. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Lies BOUTEN (email available below). General contact details of provider: https://edirc.repec.org/data/iesegfr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.