IDEAS home Printed from https://ideas.repec.org/f/c/ple989.html
   My authors  Follow this author

Jongsu Lee

Citations

Many of the citations below have been collected in an experimental project, CitEc, where a more detailed citation analysis can be found. These are citations from works listed in RePEc that could be analyzed mechanically. So far, only a minority of all works could be analyzed. See under "Corrections" how you can help improve the citation analysis.

Working papers

  1. Khayyat, Nabaz T. & Lee, Jongsu & Lee, Jeong-Dong, 2014. "How ICT Investment Influences Energy Demand in South Korea and Japan?," MPRA Paper 55454, University Library of Munich, Germany.

    Cited by:

    1. Sakiru Adebola Solarin & Muhammad Shahbaz & Habib Nawaz Khan & Radzuan Bin Razali, 2021. "ICT, Financial Development, Economic Growth and Electricity Consumption: New Evidence from Malaysia," Global Business Review, International Management Institute, vol. 22(4), pages 941-962, August.
    2. Tilman Santarius & Johanna Pohl & Steffen Lange, 2020. "Digitalization and the Decoupling Debate: Can ICT Help to Reduce Environmental Impacts While the Economy Keeps Growing?," Sustainability, MDPI, vol. 12(18), pages 1-20, September.

  2. Tai-Yoo Kim & Seunghyun Kim & Jongsu Lee, 2010. "The Gene of an Accelerating Industrial Society: Expansive Reproduction," TEMEP Discussion Papers 201050, Seoul National University; Technology Management, Economics, and Policy Program (TEMEP), revised Jan 2010.

    Cited by:

    1. Tai-Yoo Kim & Jihyoun Park & Eungdo Kim & Junseok Hwang, 2011. "The Faster-Accelerating Digital Economy," TEMEP Discussion Papers 201173, Seoul National University; Technology Management, Economics, and Policy Program (TEMEP), revised Apr 2011.
    2. Russ, Meir, 2016. "The probable foundations of sustainabilism: Information, energy and entropy based definition of capital, Homo Sustainabiliticus and the need for a “new gold”," Ecological Economics, Elsevier, vol. 130(C), pages 328-338.

  3. Yuri Park & Hyunnam Kim & Jongsu Lee, 2009. "Model for Studying Commodity Bundling with a Focus on Consumer Preference," TEMEP Discussion Papers 200935, Seoul National University; Technology Management, Economics, and Policy Program (TEMEP), revised Nov 2009.

    Cited by:

    1. Castro, Marisol & Bhat, Chandra R. & Pendyala, Ram M. & Jara-Díaz, Sergio R., 2012. "Accommodating multiple constraints in the multiple discrete–continuous extreme value (MDCEV) choice model," Transportation Research Part B: Methodological, Elsevier, vol. 46(6), pages 729-743.

  4. Chang Seob Kim & Yoonmo Koo & Ie-jung Choi & Junhee Hong & Jongsu Lee, 2009. "Consumer Preferences for Automobile Energy Efficiency Grades," TEMEP Discussion Papers 200932, Seoul National University; Technology Management, Economics, and Policy Program (TEMEP), revised Nov 2009.

    Cited by:

    1. Michelsen, Carl Christian & Madlener, Reinhard, 2016. "Switching from fossil fuel to renewables in residential heating systems: An empirical study of homeowners' decisions in Germany," Energy Policy, Elsevier, vol. 89(C), pages 95-105.
    2. Acharya, Bikram & Marhold, Klaus, 2019. "Determinants of household energy use and fuel switching behavior in Nepal," Energy, Elsevier, vol. 169(C), pages 1132-1138.
    3. Givord, Pauline & Grislain-Letrémy, Céline & Naegele, Helene, 2018. "How do fuel taxes impact new car purchases? An evaluation using French consumer-level data," Energy Economics, Elsevier, vol. 74(C), pages 76-96.
    4. Acharya, Bikram & Lee, Jongsu & Moon, HyungBin, 2022. "Preference heterogeneity of local government for implementing ICT infrastructure and services through public-private partnership mechanism," Socio-Economic Planning Sciences, Elsevier, vol. 79(C).
    5. Acharya, Bikram & Adhikari, Santosh, 2021. "Household energy consumption and adaptation behavior during crisis: Evidence from Indian economic blockade on Nepal," Energy Policy, Elsevier, vol. 148(PB).
    6. Kim, Kyungah & Lee, Jongsu & Kim, Junghun, 2021. "Can liquefied petroleum gas vehicles join the fleet of alternative fuel vehicles? Implications of transportation policy based on market forecast and environmental impact," Energy Policy, Elsevier, vol. 154(C).
    7. Park, Yuri & Koo, Yoonmo, 2016. "An empirical analysis of switching cost in the smartphone market in South Korea," Telecommunications Policy, Elsevier, vol. 40(4), pages 307-318.
    8. Voltes-Dorta, Augusto & Perdiguero, Jordi & Jiménez, Juan Luis, 2013. "Are car manufacturers on the way to reduce CO2 emissions?: A DEA approach," Energy Economics, Elsevier, vol. 38(C), pages 77-86.
    9. HyungBin Moon & Hyunhong Choi & Jongsu Lee & Ki Soo Lee, 2017. "Attitudes in Korea toward Introducing Smart Policing Technologies: Differences between the General Public and Police Officers," Sustainability, MDPI, vol. 9(10), pages 1-17, October.

  5. Lee, J. & Sabourian, H., 2004. "Complexity and Efficiency in Repeated Games and Negotiation," Cambridge Working Papers in Economics 0419, Faculty of Economics, University of Cambridge.

    Cited by:

    1. Lee, Jihong & Sabourian, Hamid, 2007. "Coase theorem, complexity and transaction costs," Journal of Economic Theory, Elsevier, vol. 135(1), pages 214-235, July.
    2. Jihong Lee & Hamid Sabourian, 2005. "Efficiency in Negotiation: Complexity and Costly Bargaining," Birkbeck Working Papers in Economics and Finance 0505, Birkbeck, Department of Economics, Mathematics & Statistics.

Articles

  1. Sesil Lim & JongRoul Woo & Jongsu Lee & Sung†Yoon Huh, 2018. "Consumer valuation of personal information in the age of big data," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 69(1), pages 60-71, January.

    Cited by:

    1. Kirsten Hillebrand & Lars Hornuf, 2021. "The Social Dilemma of Big Data: Donating Personal Data to Promote Social Welfare," CESifo Working Paper Series 8926, CESifo.

  2. Kim, Junghun & Park, Stephen Youngjun & Lee, Jongsu, 2018. "Do people really want renewable energy? Who wants renewable energy?: Discrete choice model of reference-dependent preference in South Korea," Energy Policy, Elsevier, vol. 120(C), pages 761-770.

    Cited by:

    1. Lim, Juin Yau & Safder, Usman & How, Bing Shen & Ifaei, Pouya & Yoo, Chang Kyoo, 2021. "Nationwide sustainable renewable energy and Power-to-X deployment planning in South Korea assisted with forecasting model," Applied Energy, Elsevier, vol. 283(C).
    2. Park, Subin & Lee, Jongsu & Kim, Junghun, 2024. "Exploring the fittest choice model for consumer preference analysis on over-the-top service," Technology in Society, Elsevier, vol. 76(C).
    3. Kim, Junghun & Lee, Hyunjoo & Lee, Jongsu, 2020. "Smartphone preferences and brand loyalty: A discrete choice model reflecting the reference point and peer effect," Journal of Retailing and Consumer Services, Elsevier, vol. 52(C).
    4. Kim, Kyungah & Choi, Jihye & Lee, Jihee & Lee, Jongsu & Kim, Junghun, 2023. "Public preferences and increasing acceptance of time-varying electricity pricing for demand side management in South Korea," Energy Economics, Elsevier, vol. 119(C).
    5. Kim, Kyungah & Kim, Junghun, 2024. "The study of brand loyalty and switching cost on OTT bundled service choice: Focusing on reference-dependent preferences in the saturated market," Journal of Retailing and Consumer Services, Elsevier, vol. 77(C).
    6. Kim, Junghun & Seung, Hyunchan & Lee, Jongsu & Ahn, Joongha, 2020. "Asymmetric preference and loss aversion for electric vehicles: The reference-dependent choice model capturing different preference directions," Energy Economics, Elsevier, vol. 86(C).
    7. Motz, Alessandra, 2021. "Consumer acceptance of the energy transition in Switzerland: The role of attitudes explained through a hybrid discrete choice model," Energy Policy, Elsevier, vol. 151(C).
    8. Park, Minsun & Barrett, Mark & Gallo Cassarino, Tiziano, 2019. "Assessment of future renewable energy scenarios in South Korea based on costs, emissions and weather-driven hourly simulation," Renewable Energy, Elsevier, vol. 143(C), pages 1388-1396.
    9. Guillermo Valencia Ochoa & Jose Nunez Alvarez & Carlos Acevedo, 2019. "Research Evolution on Renewable Energies Resources from 2007 to 2017: A Comparative Study on Solar, Geothermal, Wind and Biomass Energy," International Journal of Energy Economics and Policy, Econjournals, vol. 9(6), pages 242-253.
    10. Serena Y. Kim & Koushik Ganesan & Princess Dickens & Soumya Panda, 2021. "Public Sentiment toward Solar Energy—Opinion Mining of Twitter Using a Transformer-Based Language Model," Sustainability, MDPI, vol. 13(5), pages 1-19, March.
    11. Ephraim Bonah Agyekum & Ernest Baba Ali & Nallapaneni Manoj Kumar, 2021. "Clean Energies for Ghana—An Empirical Study on the Level of Social Acceptance of Renewable Energy Development and Utilization," Sustainability, MDPI, vol. 13(6), pages 1-14, March.
    12. Shugang Li & Qian Dou & Hui Chen & Zhaoxu Yu, 2023. "The Impact of Consumer’s Adaptation to the Creative Culture of Theme Parks on Review Usefulness," Sustainability, MDPI, vol. 15(17), pages 1-26, August.
    13. Rahel Renata Tanujaya & Chul-Yong Lee & JongRoul Woo & Sung-Yoon Huh & Min-Kyu Lee, 2020. "Quantifying Public Preferences for Community-Based Renewable Energy Projects in South Korea," Energies, MDPI, vol. 13(9), pages 1-13, May.
    14. Ifaei, Pouya & Tayerani Charmchi, Amir Saman & Loy-Benitez, Jorge & Yang, Rebecca Jing & Yoo, ChangKyoo, 2022. "A data-driven analytical roadmap to a sustainable 2030 in South Korea based on optimal renewable microgrids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    15. Kim, Hyunggeun & Park, Sangkyu & Lee, Jongsu, 2021. "Is renewable energy acceptable with power grid expansion? A quantitative study of South Korea's renewable energy acceptance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    16. Inha Oh & Wang-Jin Yoo & Kihwan Kim, 2020. "Economic Effects of Renewable Energy Expansion Policy: Computable General Equilibrium Analysis for Korea," IJERPH, MDPI, vol. 17(13), pages 1-21, July.
    17. Rahman, Arief & Richards, Russell & Dargusch, Paul & Wadley, David, 2023. "Pathways to reduce Indonesia’s dependence on oil and achieve longer-term decarbonization," Renewable Energy, Elsevier, vol. 202(C), pages 1305-1323.
    18. Moon, Sungho & Kim, Kyungah & Seung, Hyunchan & Kim, Junghun, 2022. "Strategic analysis on effects of technologies, government policies, and consumer perceptions on diffusion of hydrogen fuel cell vehicles," Energy Economics, Elsevier, vol. 115(C).
    19. Teresa Pakulska, 2021. "Green Energy in Central and Eastern European (CEE) Countries: New Challenges on the Path to Sustainable Development," Energies, MDPI, vol. 14(4), pages 1-19, February.
    20. Saerom Kim & Seungjin Lee & Joong Yull Park, 2019. "Thermo-Fluid Dynamic Effects of the Radial Location of the Baffle Installed in a Solar Updraft Tower," Energies, MDPI, vol. 12(7), pages 1-14, April.
    21. Kim, Kyungah & Moon, Sungho & Kim, Junghun, 2023. "How far is it from your home? Strategic policy and management to overcome barriers of introducing fuel-cell power generation facilities," Energy Policy, Elsevier, vol. 182(C).
    22. Contu, Davide & Strazzera, Elisabetta, 2022. "Testing for saliency-led choice behavior in discrete choice modeling: An application in the context of preferences towards nuclear energy in Italy," Journal of choice modelling, Elsevier, vol. 44(C).
    23. Pastor, Rafael & Tobarra, Llanos & Robles-Gómez, Antonio & Cano, Jesús & Hammad, Bashar & Al-Zoubi, Abdullah & Hernández, Roberto & Castro, Manuel, 2020. "Renewable energy remote online laboratories in Jordan universities: Tools for training students in Jordan," Renewable Energy, Elsevier, vol. 149(C), pages 749-759.
    24. Jin-Li Hu & Po-Sheng Yang, 2024. "Interactive Cycles between Energy Education and Energy Preferences: A Literature Review on Empirical Evidence," Energies, MDPI, vol. 17(20), pages 1-31, October.
    25. Šedlbauer, Josef & Slavík, Martin & Hejsková, Pavlína & Činčera, Jan, 2024. "Externalities still underrated in energy education," Renewable Energy, Elsevier, vol. 224(C).
    26. Job Taminiau & John Byrne & Jongkyu Kim & Min‐whi Kim & Jeongseok Seo, 2021. "Infrastructure‐scale sustainable energy planning in the cityscape: Transforming urban energy metabolism in East Asia," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 10(5), September.
    27. Moon, Sungho & Kim, Youngwoo & Kim, Minsang & Lee, Jongsu, 2023. "Policy designs to increase public and local acceptance for energy transition in South Korea," Energy Policy, Elsevier, vol. 182(C).
    28. Kim, Imjung & Kim, Junghun & Lee, Jongsu, 2020. "Dynamic analysis of well-to-wheel electric and hydrogen vehicles greenhouse gas emissions: Focusing on consumer preferences and power mix changes in South Korea," Applied Energy, Elsevier, vol. 260(C).
    29. Kim, Kyungah & Lee, Jongsu & Kim, Junghun, 2021. "Can liquefied petroleum gas vehicles join the fleet of alternative fuel vehicles? Implications of transportation policy based on market forecast and environmental impact," Energy Policy, Elsevier, vol. 154(C).
    30. Martínez-Cruz, Adán L. & Núñez, Héctor M., 2021. "Tension in Mexico's energy transition: Are urban residential consumers in Aguascalientes willing to pay for renewable energy and green jobs?," Energy Policy, Elsevier, vol. 150(C).

  3. HyungBin Moon & Hyunhong Choi & Jongsu Lee & Ki Soo Lee, 2017. "Attitudes in Korea toward Introducing Smart Policing Technologies: Differences between the General Public and Police Officers," Sustainability, MDPI, vol. 9(10), pages 1-17, October.

    Cited by:

    1. Choi, Siwon & Kwak, Kyuil & Yang, Soyoung & Lim, Sesil & Woo, JongRoul, 2022. "Effects of policy instruments on electric scooter adoption in Jakarta, Indonesia: A discrete choice experiment approach," Economic Analysis and Policy, Elsevier, vol. 76(C), pages 373-384.
    2. Kwan Byum Maeng & Jiyeon Jung & Yoonmo Koo, 2019. "Quantitative Analysis of Consumer Preferences of Windows Set in South Korea: The Role of Energy Efficiency Levels," Energies, MDPI, vol. 12(9), pages 1-12, May.
    3. Choi, Hyunhong & Koo, Yoonmo, 2023. "New technology product introduction strategy with considerations for consumer-targeted policy intervention and new market entrant," Technological Forecasting and Social Change, Elsevier, vol. 186(PA).
    4. Woo, JongRoul & Moon, Sungho & Choi, Hyunhong, 2022. "Economic value and acceptability of advanced solar power systems for multi-unit residential buildings: The case of South Korea," Applied Energy, Elsevier, vol. 324(C).
    5. Moon, Sungho & Kim, Youngwoo & Kim, Minsang & Lee, Jongsu, 2023. "Policy designs to increase public and local acceptance for energy transition in South Korea," Energy Policy, Elsevier, vol. 182(C).
    6. Choi, Hyunhong & Shin, Jungwoo & Woo, JongRoul, 2018. "Effect of electricity generation mix on battery electric vehicle adoption and its environmental impact," Energy Policy, Elsevier, vol. 121(C), pages 13-24.

  4. JongRoul Woo & HyungBin Moon & Jongsu Lee & Jinyong Jang, 2017. "Public attitudes toward the construction of new power plants in South Korea," Energy & Environment, , vol. 28(4), pages 499-517, June.

    Cited by:

    1. Park, Seong-Ju & Kim, Ju-Hee & Yoo, Seung-Hoon, 2023. "Utilization of early retiring coal-fired power plants as a cold reserve in South Korea: A public perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    2. Jobin, Marilou & Siegrist, Michael, 2018. "We choose what we like – Affect as a driver of electricity portfolio choice," Energy Policy, Elsevier, vol. 122(C), pages 736-747.
    3. Satomi Kohyama & Ryo Kohsaka, 2024. "Wind farms in contested landscapes: Procedural and scale gaps of wind power facility constructions in Japan," Energy & Environment, , vol. 35(3), pages 1396-1415, May.
    4. Jihee Lee & HyungBin Moon & Jongsu Lee, 2021. "Consumers’ heterogeneous preferences toward the renewable portfolio standard policy: An evaluation of Korea’s energy transition policy," Energy & Environment, , vol. 32(4), pages 648-667, June.
    5. Woo, JongRoul & Chung, Sungsam & Lee, Chul-Yong & Huh, Sung-Yoon, 2019. "Willingness to participate in community-based renewable energy projects: A contingent valuation study in South Korea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 643-652.
    6. Dongnyok Shim & Seung Wan Kim & Jörn Altmann, 2018. "Strategic management of residential electric services in the competitive market: Demand-oriented perspective," Energy & Environment, , vol. 29(1), pages 49-66, February.
    7. Choi, Hyunhong & Shim, Dongnyok & Kim, Seung Wan, 2024. "Heterogeneous public preferences for undergrounding high-voltage power transmission lines: The case of Seoul metropolitan area in South Korea," Energy Economics, Elsevier, vol. 132(C).
    8. Choi, Hyunhong & Shin, Jungwoo & Woo, JongRoul, 2018. "Effect of electricity generation mix on battery electric vehicle adoption and its environmental impact," Energy Policy, Elsevier, vol. 121(C), pages 13-24.

  5. Ahn, Joongha & Woo, JongRoul & Lee, Jongsu, 2015. "Optimal allocation of energy sources for sustainable development in South Korea: Focus on the electric power generation industry," Energy Policy, Elsevier, vol. 78(C), pages 78-90.

    Cited by:

    1. Otsuki, Takashi, 2017. "Costs and benefits of large-scale deployment of wind turbines and solar PV in Mongolia for international power exports," Renewable Energy, Elsevier, vol. 108(C), pages 321-335.
    2. Zong Woo Geem & Jin-Hong Kim, 2016. "Optimal Energy Mix with Renewable Portfolio Standards in Korea," Sustainability, MDPI, vol. 8(5), pages 1-14, May.
    3. Ishizaka, Alessio & Siraj, Sajid & Nemery, Philippe, 2016. "Which energy mix for the UK (United Kingdom)? An evolutive descriptive mapping with the integrated GAIA (graphical analysis for interactive aid)–AHP (analytic hierarchy process) visualization tool," Energy, Elsevier, vol. 95(C), pages 602-611.
    4. Zhang, Tiantian & Nakagawa, Kei & Matsumoto, Ken'ichi, 2023. "Evaluating solar photovoltaic power efficiency based on economic dimensions for 26 countries using a three-stage data envelopment analysis," Applied Energy, Elsevier, vol. 335(C).
    5. Kim, Eun-Hwan & Park, Yong-Gi & Roh, Jae Hyung, 2019. "Competitiveness of open-cycle gas turbine and its potential in the future Korean electricity market with high renewable energy mix," Energy Policy, Elsevier, vol. 129(C), pages 1056-1069.
    6. Wang, Tiantian & Wang, Yanhua & Wang, Ke & Fu, Sha & Ding, Li, 2024. "Five-dimensional assessment of China's centralized and distributed photovoltaic potential: From solar irradiation to CO2 mitigation," Applied Energy, Elsevier, vol. 356(C).
    7. Li, Xin & Chen, Hsing Hung & Tao, Xiangnan, 2016. "Pricing and capacity allocation in renewable energy," Applied Energy, Elsevier, vol. 179(C), pages 1097-1105.
    8. Henao, Felipe & Dyner, Isaac, 2020. "Renewables in the optimal expansion of colombian power considering the Hidroituango crisis," Renewable Energy, Elsevier, vol. 158(C), pages 612-627.
    9. Moon, Hee Seung & Song, Yong Hyun & Lee, Ji Woo & Hong, Sanghyun & Kim, Eunsung & Kim, Seung Wan, 2024. "Implementation cost of net zero electricity system: Analysis based on Korean national target," Energy Policy, Elsevier, vol. 188(C).
    10. Zhang, Shuang & Zhao, Tao & Xie, Bai-Chen, 2018. "What is the optimal power generation mix of China? An empirical analysis using portfolio theory," Applied Energy, Elsevier, vol. 229(C), pages 522-536.
    11. Herie Park & Sungwoo Bae, 2021. "Quantitative Assessment of Energy Supply Security: Korea Case Study," Sustainability, MDPI, vol. 13(4), pages 1-15, February.
    12. Henao, Felipe & Rodriguez, Yeny & Viteri, Juan Pablo & Dyner, Isaac, 2019. "Optimising the insertion of renewables in the Colombian power sector," Renewable Energy, Elsevier, vol. 132(C), pages 81-92.
    13. Eunil Park & Taeil Han & Taehyeong Kim & Sang Jib Kwon & Angel P. Del Pobil, 2016. "Economic and Environmental Benefits of Optimized Hybrid Renewable Energy Generation Systems at Jeju National University, South Korea," Sustainability, MDPI, vol. 8(9), pages 1-12, September.
    14. Byun, Hyunsuk & Lee, Chul-Yong, 2017. "Analyzing Korean consumers’ latent preferences for electricity generation sources with a hierarchical Bayesian logit model in a discrete choice experiment," Energy Policy, Elsevier, vol. 105(C), pages 294-302.
    15. Sung-Yoon Huh & Chul-Yong Lee, 2017. "A Demand-Side Perspective on Developing a Future Electricity Generation Mix: Identifying Heterogeneity in Social Preferences," Energies, MDPI, vol. 10(8), pages 1-19, August.
    16. Ioannou, Anastasia & Fuzuli, Gulistiani & Brennan, Feargal & Yudha, Satya Widya & Angus, Andrew, 2019. "Multi-stage stochastic optimization framework for power generation system planning integrating hybrid uncertainty modelling," Energy Economics, Elsevier, vol. 80(C), pages 760-776.
    17. Kudełko, Mariusz, 2021. "Modeling of Polish energy sector – tool specification and results," Energy, Elsevier, vol. 215(PA).
    18. JongRoul Woo & HyungBin Moon & Jongsu Lee & Jinyong Jang, 2017. "Public attitudes toward the construction of new power plants in South Korea," Energy & Environment, , vol. 28(4), pages 499-517, June.
    19. Park, Sang Yong & Yun, Bo-Yeong & Yun, Chang Yeol & Lee, Duk Hee & Choi, Dong Gu, 2016. "An analysis of the optimum renewable energy portfolio using the bottom–up model: Focusing on the electricity generation sector in South Korea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 319-329.
    20. Kyuho Maeng & Sungmin Ko & Jungwoo Shin & Youngsang Cho, 2020. "How Much Electricity Sharing Will Electric Vehicle Owners Allow from Their Battery? Incorporating Vehicle-to-Grid Technology and Electricity Generation Mix," Energies, MDPI, vol. 13(16), pages 1-25, August.
    21. Ioannou, Anastasia & Angus, Andrew & Brennan, Feargal, 2017. "Risk-based methods for sustainable energy system planning: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 602-615.
    22. Pingkuo, Liu & Huan, Peng & Zhiwei, Wang, 2020. "Orderly-synergistic development of power generation industry: A China’s case study based on evolutionary game model," Energy, Elsevier, vol. 211(C).
    23. Eunil Park & Ki Joon Kim & Sang Jib Kwon & Taeil Han & Wongi S. Na & Angel P. Del Pobil, 2017. "Economic Feasibility of Renewable Electricity Generation Systems for Local Government Office: Evaluation of the Jeju Special Self-Governing Province in South Korea," Sustainability, MDPI, vol. 9(1), pages 1-13, January.
    24. Kim, Imjung & Kim, Junghun & Lee, Jongsu, 2020. "Dynamic analysis of well-to-wheel electric and hydrogen vehicles greenhouse gas emissions: Focusing on consumer preferences and power mix changes in South Korea," Applied Energy, Elsevier, vol. 260(C).
    25. Jin-peng Liu & Yu Tian & Hao Zheng & Tao Yi, 2019. "Research on Dynamic Evolution Simulation and Sustainability Evaluation Model of China’s Power Supply and Demand System," Energies, MDPI, vol. 12(10), pages 1-23, May.
    26. Neha Gupta & Mohini Agarwal & Pratibha Garg & Manoj Bansal, 2021. "Revenue optimization modeling for renewable energy resource mix for sustainable development," Journal of Revenue and Pricing Management, Palgrave Macmillan, vol. 20(2), pages 108-115, April.
    27. Dongmin Son & Joonrak Kim & Bongju Jeong, 2019. "Optimal Operational Strategy for Power Producers in Korea Considering Renewable Portfolio Standards and Emissions Trading Schemes," Energies, MDPI, vol. 12(9), pages 1-24, May.

  6. Huh, Sung-Yoon & Lee, Jongsu & Shin, Jungwoo, 2015. "The economic value of South Korea׳s renewable energy policies (RPS, RFS, and RHO): A contingent valuation study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 64-72.

    Cited by:

    1. Tiwari, Aviral Kumar & Albulescu, Claudiu Tiberiu, 2016. "Renewable-to-total electricity consumption ratio: Estimating the permanent or transitory fluctuations based on flexible Fourier stationarity and unit root tests," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1409-1427.
    2. Cai, Mengting & Huang, Guohe & Chen, Jiapei & Li, Yunhuan & Fan, Yurui, 2018. "A generalized fuzzy chance-constrained energy systems planning model for Guangzhou, China," Energy, Elsevier, vol. 165(PA), pages 191-204.
    3. Seul-Ye Lim & Seung-Hoon Yoo, 2019. "Will South Korean Residential Consumers Accept the Renewable Heat Incentive Scheme? A Stated Preference Approach," Energies, MDPI, vol. 12(10), pages 1-9, May.
    4. Park, Eunil, 2017. "Potentiality of renewable resources: Economic feasibility perspectives in South Korea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 61-70.
    5. Jae-Hyun Park & Young-Chan Choi & Young-Joo Lee & Hyung-Taek Kim, 2020. "Characteristics of Miscanthus Fuel by Wet Torrefaction on Fuel Upgrading and Gas Emission Behavior," Energies, MDPI, vol. 13(10), pages 1-10, May.
    6. Chaikumbung, Mayula, 2021. "Institutions and consumer preferences for renewable energy: A meta-regression analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    7. JongRoul Woo & Sesil Lim & Yong-Gil Lee & Sung-Yoon Huh, 2018. "Financial Feasibility and Social Acceptance for Reducing Nuclear Power Plants: A Contingent Valuation Study," Sustainability, MDPI, vol. 10(11), pages 1-16, October.
    8. Kwon, Gihoon & Tsang, Daniel C.W. & Oh, Jeong-Ik & Kwon, Eilhann E. & Song, Hocheol, 2019. "Pyrolysis of aquatic carbohydrates using CO2 as reactive gas medium: A case study of chitin," Energy, Elsevier, vol. 177(C), pages 136-143.
    9. Kim, Ju-Hee & Lim, Seul-Ye & Yoo, Seung-Hoon, 2021. "Public preferences for introducing a power-to-heat system in South Korea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    10. Prince Waqas Khan & Yung-Cheol Byun & Sang-Joon Lee & Namje Park, 2020. "Machine Learning Based Hybrid System for Imputation and Efficient Energy Demand Forecasting," Energies, MDPI, vol. 13(11), pages 1-23, May.
    11. Lee, Dong-Jun & Jung, Sungyup & Jeong, Kwang-Hwa & Lee, Dong-Hyun & Lee, Sung-Hyoun & Park, Young-Kwon & Kwon, Eilhann E., 2020. "Catalytic pyrolysis of cow manure over a Ni/SiO2 catalyst using CO2 as a reaction medium," Energy, Elsevier, vol. 195(C).
    12. Kim, Hyunggeun & Park, Sangkyu & Lee, Jongsu, 2021. "Is renewable energy acceptable with power grid expansion? A quantitative study of South Korea's renewable energy acceptance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    13. Choi, Gobong & Huh, Sung-Yoon & Heo, Eunnyeong & Lee, Chul-Yong, 2018. "Prices versus quantities: Comparing economic efficiency of feed-in tariff and renewable portfolio standard in promoting renewable electricity generation," Energy Policy, Elsevier, vol. 113(C), pages 239-248.
    14. Lee, Chul-Yong & Huh, Sung-Yoon, 2017. "Forecasting the diffusion of renewable electricity considering the impact of policy and oil prices: The case of South Korea," Applied Energy, Elsevier, vol. 197(C), pages 29-39.
    15. Nie, S. & Huang, Charley Z. & Huang, G.H. & Li, Y.P. & Chen, J.P. & Fan, Y.R. & Cheng, G.H., 2016. "Planning renewable energy in electric power system for sustainable development under uncertainty – A case study of Beijing," Applied Energy, Elsevier, vol. 162(C), pages 772-786.
    16. Xie, Bai-Chen & Zhao, Wei, 2018. "Willingness to pay for green electricity in Tianjin, China: Based on the contingent valuation method," Energy Policy, Elsevier, vol. 114(C), pages 98-107.
    17. Woo, JongRoul & Chung, Sungsam & Lee, Chul-Yong & Huh, Sung-Yoon, 2019. "Willingness to participate in community-based renewable energy projects: A contingent valuation study in South Korea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 643-652.
    18. Youhyun Lee & Bomi Kim & Heeju Hwang, 2020. "Which Institutional Conditions Lead to a Successful Local Energy Transition? Applying Fuzzy-Set Qualitative Comparative Analysis to Solar PV Cases in South Korea," Energies, MDPI, vol. 13(14), pages 1-19, July.
    19. Kim, Hyo-Jin & Lim, Seul-Ye & Yoo, Seung-Hoon, 2017. "The Korean public's willingness to pay for expanding the use of solid refuse fuel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 821-827.
    20. Jung, Sungyup & Jung, Jong-Min & Tsang, Yiu Fai & Bhatnagar, Amit & Chen, Wei-Hsin & Lin, Kun-Yi Andrew & Kwon, Eilhann E., 2022. "Biodiesel production from black soldier fly larvae derived from food waste by non-catalytic transesterification," Energy, Elsevier, vol. 238(PA).
    21. Lee, Chul-Yong & Huh, Sung-Yoon, 2017. "Forecasting new and renewable energy supply through a bottom-up approach: The case of South Korea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 207-217.
    22. Mamadzhanov, Alisher & McCluskey, Jill J. & Li, Tongzhe, 2019. "Willingness to pay for a second-generation bioethanol: A case study of Korea," Energy Policy, Elsevier, vol. 127(C), pages 464-474.
    23. Kim, Junghun & Park, Stephen Youngjun & Lee, Jongsu, 2018. "Do people really want renewable energy? Who wants renewable energy?: Discrete choice model of reference-dependent preference in South Korea," Energy Policy, Elsevier, vol. 120(C), pages 761-770.
    24. Kim, Sehyun & Lee, Hyunjae & Kim, Heejin & Jang, Dong-Hwan & Kim, Hyun-Jin & Hur, Jin & Cho, Yoon-Sung & Hur, Kyeon, 2018. "Improvement in policy and proactive interconnection procedure for renewable energy expansion in South Korea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 150-162.

  7. Jang, Jinyong & Lee, Jongsu & Yoo, Seung-Hoon, 2014. "The public׳s willingness to pay for securing a reliable natural gas supply in Korea," Energy Policy, Elsevier, vol. 69(C), pages 3-13.

    Cited by:

    1. Kim, Jihyo & Kim, Jinsoo & Kim, Yoon Kyung, 2016. "Korean public's preference for supply security of oil and gas and the impact of protest bidders," Energy Policy, Elsevier, vol. 89(C), pages 202-213.
    2. Ju-Hee Kim & Kyung-Kyu Lim & Seung-Hoon Yoo, 2019. "Evaluating Residential Consumers’ Willingness to Pay to Avoid Power Outages in South Korea," Sustainability, MDPI, vol. 11(5), pages 1-12, February.
    3. Papagiannis, A. & Roussos, D. & Menegaki, M. & Damigos, D., 2014. "Externalities from lignite mining-related dust emissions," Energy Policy, Elsevier, vol. 74(C), pages 414-424.
    4. Park, Seong-Ju & Kim, Ju-Hee & Yoo, Seung-Hoon, 2023. "Utilization of early retiring coal-fired power plants as a cold reserve in South Korea: A public perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    5. Lim, Seul-Ye & Kim, Hyo-Jin & Yoo, Seung-Hoon, 2018. "Household willingness to pay for expanding fuel cell power generation in Korea: A view from CO2 emissions reduction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 242-249.
    6. Gyeong-Sam Kim & Hyo-Jin Kim & Seung-Hoon Yoo, 2019. "Optimal Share of Natural Gas in the Electric Power Generation of South Korea: A Note," Sustainability, MDPI, vol. 11(13), pages 1-6, July.
    7. Ju-Hee Kim & Younggew Kim & Seung-Hoon Yoo, 2021. "Using a choice experiment to explore the public willingness to pay for the impacts of improving energy efficiency of an apartment," Quality & Quantity: International Journal of Methodology, Springer, vol. 55(5), pages 1775-1793, October.
    8. Yun-Ju Chen & Sheng Ming Hsu & Shu-Yi Liao & Tsung-Chi Chen & Wei-Chun Tseng, 2019. "Natural Gas or Algal Reef: Survey-Based Valuations of Pro-Gas and Pro-Reef Groups Specifically for Policy Advising," Energies, MDPI, vol. 12(24), pages 1-18, December.
    9. Lee, Juyong & Cho, Youngsang, 2018. "Inconvenience cost of mobile communication failure: The case of South Korea," Telecommunications Policy, Elsevier, vol. 42(3), pages 241-252.
    10. Hyung-Seok Jeong & Ju-Hee Kim & Seung-Hoon Yoo, 2021. "South Korean Public Acceptance of the Fuel Transition from Coal to Natural Gas in Power Generation," Sustainability, MDPI, vol. 13(19), pages 1-17, September.
    11. Lee, Gunwoo & Kim, Soo-Yeob & Lee, Min-Kyu, 2015. "Economic evaluation of vessel traffic service (VTS): A contingent valuation study," Marine Policy, Elsevier, vol. 61(C), pages 149-154.
    12. Li, Lanlan & Luo, Xuan & Zhou, Kaile & Xu, Tingting, 2018. "Evaluation of increasing block pricing for households' natural gas: A case study of Beijing, China," Energy, Elsevier, vol. 157(C), pages 162-172.
    13. Seong-Jae Seo & Ju-Hee Kim & Seung-Hoon Yoo, 2020. "Public Preference for Increasing Natural Gas Generation for Reducing CO 2 Emissions in South Korea," Sustainability, MDPI, vol. 12(7), pages 1-14, March.
    14. Ju-Hee Kim & Byoung-Soh Hwang & Seung-Hoon Yoo, 2022. "Estimating the Demand Function for Residential City Gas in South Korea: Findings from a Price Sensitivity Measurement Experiment," Sustainability, MDPI, vol. 14(12), pages 1-13, June.
    15. Kim, Jinsoo & Kim, Jihyo, 2015. "Korean public’s perceptions on supply security of fossil fuels: A contingent valuation analysis," Applied Energy, Elsevier, vol. 137(C), pages 301-309.
    16. Ju-Hee Kim & Hyo-Jin Kim & Seung-Hoon Yoo, 2019. "Willingness to Pay Price Premium for Smartphones Produced Using Renewable Energy," Sustainability, MDPI, vol. 11(6), pages 1-11, March.
    17. J. Magnier, Hamza & Jrad, Asmaa, 2019. "A minimal simplified model for assessing and devising global LNG equilibrium trade portfolios while maximizing energy security," Energy, Elsevier, vol. 173(C), pages 1221-1233.
    18. Song, Tae-Ho & Lim, Kyoung-Min & Yoo, Seung-Hoon, 2015. "Estimating the public’s value of implementing the CO2 emissions trading scheme in Korea," Energy Policy, Elsevier, vol. 83(C), pages 82-86.
    19. Hyo-Jin Kim & Sung-Min Kim & Seung-Hoon Yoo, 2019. "Economic Value of Improving Natural Gas Supply Reliability for Residential Consumers in South Korea," Sustainability, MDPI, vol. 11(2), pages 1-10, January.
    20. Kim, Hyo-Jin & Lim, Seul-Ye & Yoo, Seung-Hoon, 2017. "The Korean public's willingness to pay for expanding the use of solid refuse fuel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 821-827.

  8. Woo, JongRoul & Choi, Jae Young & Shin, Jungwoo & Lee, Jongsu, 2014. "The effect of new media on consumer media usage: An empirical study in South Korea," Technological Forecasting and Social Change, Elsevier, vol. 89(C), pages 3-11.

    Cited by:

    1. Esteban-Bravo, Mercedes & Vidal-Sanz, Jose M. & Yildirim, Gökhan, 2015. "Historical impact of technological change on the US mass media advertising expenditure," Technological Forecasting and Social Change, Elsevier, vol. 100(C), pages 306-316.
    2. Acharya, Bikram & Marhold, Klaus, 2019. "Determinants of household energy use and fuel switching behavior in Nepal," Energy, Elsevier, vol. 169(C), pages 1132-1138.
    3. Rodrigo J. Tapia & Gerard Jong & Ana M. Larranaga & Helena B. Bettella Cybis, 2021. "Exploring Multiple‐discreteness in Freight Transport. A Multiple Discrete Extreme Value Model Application for Grain Consolidators in Argentina," Networks and Spatial Economics, Springer, vol. 21(3), pages 581-608, September.
    4. Shin, Jungwoo & Hwang, Won-Sik & Choi, Hyundo, 2019. "Can hydrogen fuel vehicles be a sustainable alternative on vehicle market?: Comparison of electric and hydrogen fuel cell vehicles," Technological Forecasting and Social Change, Elsevier, vol. 143(C), pages 239-248.
    5. Kim, Ju-Hee & Yoo, Seung-Hoon, 2020. "Public perspective on the environmental impacts of sea sand mining: Evidence from a choice experiment in South Korea," Resources Policy, Elsevier, vol. 69(C).
    6. Guoqiang Wu & Jinhyun Hong & Piyushimita Thakuriah, 2022. "Investigating the temporal changes in the relationships between time spent on the internet and non-mandatory activity-travel time use," Transportation, Springer, vol. 49(1), pages 213-235, February.
    7. Shin, Jungwoo & Park, Yuri & Lee, Daeho, 2016. "Strategic management of over-the-top services: Focusing on Korean consumer adoption behavior," Technological Forecasting and Social Change, Elsevier, vol. 112(C), pages 329-337.

  9. Shin, Jungwoo & Woo, JongRoul & Huh, Sung-Yoon & Lee, Jongsu & Jeong, Gicheol, 2014. "Analyzing public preferences and increasing acceptability for the Renewable Portfolio Standard in Korea," Energy Economics, Elsevier, vol. 42(C), pages 17-26.

    Cited by:

    1. Choi, Siwon & Kwak, Kyuil & Yang, Soyoung & Lim, Sesil & Woo, JongRoul, 2022. "Effects of policy instruments on electric scooter adoption in Jakarta, Indonesia: A discrete choice experiment approach," Economic Analysis and Policy, Elsevier, vol. 76(C), pages 373-384.
    2. Rhodes, Ekaterina & Scott, William A. & Jaccard, Mark, 2021. "Designing flexible regulations to mitigate climate change: A cross-country comparative policy analysis," Energy Policy, Elsevier, vol. 156(C).
    3. Faber, Isaac & Lane, William & Pak, Wayne & Prakel, Mary & Rocha, Cheyne & Farr, John V., 2014. "Micro-energy markets: The role of a consumer preference pricing strategy on microgrid energy investment," Energy, Elsevier, vol. 74(C), pages 567-575.
    4. Eunil Park & Sang Jib Kwon & Angel P. Del Pobil, 2016. "For a Green Stadium: Economic Feasibility of Sustainable Renewable Electricity Generation at the Jeju World Cup Venue," Sustainability, MDPI, vol. 8(10), pages 1-11, September.
    5. Elke D. Groh & Andreas Ziegler, 2017. "On self-interested preferences for burden sharing rules: An econometric analysis for the costs of energy policy measures," MAGKS Papers on Economics 201754, Philipps-Universität Marburg, Faculty of Business Administration and Economics, Department of Economics (Volkswirtschaftliche Abteilung).
    6. Xu, Jiuping & Yang, Guocan & Wang, Fengjuan & Shu, Kejing, 2022. "A provincial renewable portfolio standards-based distribution strategy for both power plant and user: A case study from Guangdong, China," Energy Policy, Elsevier, vol. 165(C).
    7. Eunil Park & Taeil Han & Taehyeong Kim & Sang Jib Kwon & Angel P. Del Pobil, 2016. "Economic and Environmental Benefits of Optimized Hybrid Renewable Energy Generation Systems at Jeju National University, South Korea," Sustainability, MDPI, vol. 8(9), pages 1-12, September.
    8. Heshmati, Almas & Kumbhakar, Subal C. & Sun, Kai, 2013. "Estimation of Productivity in Korean Electric Power Plants: A Semiparametric Smooth Coefficient Model," IZA Discussion Papers 7277, Institute of Labor Economics (IZA).
    9. Sung-Yoon Huh & Chul-Yong Lee, 2017. "A Demand-Side Perspective on Developing a Future Electricity Generation Mix: Identifying Heterogeneity in Social Preferences," Energies, MDPI, vol. 10(8), pages 1-19, August.
    10. Stamatios Ntanos & Grigorios Kyriakopoulos & Miltiadis Chalikias & Garyfallos Arabatzis & Michalis Skordoulis, 2018. "Public Perceptions and Willingness to Pay for Renewable Energy: A Case Study from Greece," Sustainability, MDPI, vol. 10(3), pages 1-16, March.
    11. Abbas, Shahbaz & Techato, Kuaanan & Chiang Hsieh, Lin-Han & Sadeq, Abdellatif M., 2024. "Integrating relational values in social acceptance of photovoltaic energy storage systems: A consumers' perspective assessment using structural equation modeling," Energy, Elsevier, vol. 304(C).
    12. Kyeongsik Yoo & Eunil Park & Heetae Kim & Jay Y. Ohm & Taeyong Yang & Ki Joon Kim & Hyun Joon Chang & Angel P. Del Pobil, 2014. "Optimized Renewable and Sustainable Electricity Generation Systems for Ulleungdo Island in South Korea," Sustainability, MDPI, vol. 6(11), pages 1-11, November.
    13. Kim, Hyunggeun & Park, Sangkyu & Lee, Jongsu, 2021. "Is renewable energy acceptable with power grid expansion? A quantitative study of South Korea's renewable energy acceptance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    14. Park, Sang Yong & Yun, Bo-Yeong & Yun, Chang Yeol & Lee, Duk Hee & Choi, Dong Gu, 2016. "An analysis of the optimum renewable energy portfolio using the bottom–up model: Focusing on the electricity generation sector in South Korea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 319-329.
    15. Lim, Sesil & Huh, Sung-Yoon & Shin, Jungwoo & Lee, Jongsu & Lee, Yong-Gil, 2019. "Enhancing public acceptance of renewable heat obligation policies in South Korea: Consumer preferences and policy implications," Energy Economics, Elsevier, vol. 81(C), pages 1167-1177.
    16. Xie, Bai-Chen & Zhao, Wei, 2018. "Willingness to pay for green electricity in Tianjin, China: Based on the contingent valuation method," Energy Policy, Elsevier, vol. 114(C), pages 98-107.
    17. Ho Seoung Na & Junseok Hwang & Hongbum Kim, 2023. "Which Attributes Should be Considered in Regulating the Internet of Things? Evidence From Conjoint Analysis," SAGE Open, , vol. 13(4), pages 21582440231, November.
    18. Ziegler, Andreas, 2019. "The Relevance of Attitudinal Factors for the Acceptance of Energy Policy Measures: A Micro-econometric Analysis," Ecological Economics, Elsevier, vol. 157(C), pages 129-140.
    19. Kim, Kyungah & Moon, Sungho & Kim, Junghun, 2023. "How far is it from your home? Strategic policy and management to overcome barriers of introducing fuel-cell power generation facilities," Energy Policy, Elsevier, vol. 182(C).
    20. Soyeong Park & Solji Nam & Myoungjin Oh & Ie-jung Choi & Jungwoo Shin, 2020. "Preference Structure on the Design of Hydrogen Refueling Stations to Activate Energy Transition," Energies, MDPI, vol. 13(15), pages 1-13, August.
    21. Acharya, Bikram & Lee, Jongsu & Moon, HyungBin, 2022. "Preference heterogeneity of local government for implementing ICT infrastructure and services through public-private partnership mechanism," Socio-Economic Planning Sciences, Elsevier, vol. 79(C).
    22. Ahn, Joongha & Woo, JongRoul & Lee, Jongsu, 2015. "Optimal allocation of energy sources for sustainable development in South Korea: Focus on the electric power generation industry," Energy Policy, Elsevier, vol. 78(C), pages 78-90.
    23. Dongnyok Shim & Seung Wan Kim & Jörn Altmann, 2018. "Strategic management of residential electric services in the competitive market: Demand-oriented perspective," Energy & Environment, , vol. 29(1), pages 49-66, February.
    24. Taylan G. Topcu & Konstantinos Triantis, 2022. "An ex-ante DEA method for representing contextual uncertainties and stakeholder risk preferences," Annals of Operations Research, Springer, vol. 309(1), pages 395-423, February.
    25. Shao, Jing & Chen, Huanhuan & Li, Jinke & Liu, Guy, 2022. "An evaluation of the consumer-funded renewable obligation scheme in the UK for wind power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    26. Andreas Ziegler, 2017. "Economic calculus or personal and social values? A micro-econometric analysis of the acceptance of climate and energy policy measures," MAGKS Papers on Economics 201716, Philipps-Universität Marburg, Faculty of Business Administration and Economics, Department of Economics (Volkswirtschaftliche Abteilung).
    27. Moon, Sungho & Kim, Youngwoo & Kim, Minsang & Lee, Jongsu, 2023. "Policy designs to increase public and local acceptance for energy transition in South Korea," Energy Policy, Elsevier, vol. 182(C).
    28. Huh, Sung-Yoon & Woo, JongRoul & Lim, Sesil & Lee, Yong-Gil & Kim, Chang Seob, 2015. "What do customers want from improved residential electricity services? Evidence from a choice experiment," Energy Policy, Elsevier, vol. 85(C), pages 410-420.
    29. van Rijnsoever, Frank J. & van Mossel, Allard & Broecks, Kevin P.F., 2015. "Public acceptance of energy technologies: The effects of labeling, time, and heterogeneity in a discrete choice experiment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 817-829.
    30. Groh, Elke D. & Ziegler, Andreas, 2018. "On self-interested preferences for burden sharing rules: An econometric analysis for the costs of energy policy measures," Energy Economics, Elsevier, vol. 74(C), pages 417-426.
    31. Choi, Hyunhong & Shin, Jungwoo & Woo, JongRoul, 2018. "Effect of electricity generation mix on battery electric vehicle adoption and its environmental impact," Energy Policy, Elsevier, vol. 121(C), pages 13-24.
    32. Bernadeta Gołębiowska, 2020. "Preferences for demand side management—a review of choice experiment studies," Working Papers 2020-05, Faculty of Economic Sciences, University of Warsaw.
    33. Wang, H. & Zhou, P. & Wang, Qunwei, 2016. "Constructing slacks-based composite indicator of sustainable energy development for China: A meta-frontier nonparametric approach," Energy, Elsevier, vol. 101(C), pages 218-228.

  10. Koo, Yoonmo & Kim, Chang Seob & Hong, Junhee & Choi, Ie-Jung & Lee, Jongsu, 2012. "Consumer preferences for automobile energy-efficiency grades," Energy Economics, Elsevier, vol. 34(2), pages 446-451.
    See citations under working paper version above.
  11. Hong, Junhee & Koo, Yoonmo & Jeong, Gicheol & Lee, Jongsu, 2012. "Ex-ante evaluation of profitability and government's subsidy policy on vehicle-to-grid system," Energy Policy, Elsevier, vol. 42(C), pages 95-104.

    Cited by:

    1. Dongnyok Shim & Seung Wan Kim & Jörn Altmann & Yong Tae Yoon & Jin Gyo Kim, 2018. "Key Features of Electric Vehicle Diffusion and Its Impact on the Korean Power Market," Sustainability, MDPI, vol. 10(6), pages 1-18, June.
    2. Kwan Byum Maeng & Jiyeon Jung & Yoonmo Koo, 2019. "Quantitative Analysis of Consumer Preferences of Windows Set in South Korea: The Role of Energy Efficiency Levels," Energies, MDPI, vol. 12(9), pages 1-12, May.
    3. Jiyeon Jung & Yoonmo Koo, 2018. "Analyzing the Effects of Car Sharing Services on the Reduction of Greenhouse Gas (GHG) Emissions," Sustainability, MDPI, vol. 10(2), pages 1-17, February.
    4. Kim, Junghun & Seung, Hyunchan & Lee, Jongsu & Ahn, Joongha, 2020. "Asymmetric preference and loss aversion for electric vehicles: The reference-dependent choice model capturing different preference directions," Energy Economics, Elsevier, vol. 86(C).
    5. Zhishuang Zhu & Hua Liao, 2019. "Do subsidies improve the financial performance of renewable energy companies? Evidence from China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 95(1), pages 241-256, January.
    6. Charle Augusto Londoño Henao, 2020. "Cost-Efficiency Index of the Development Plan of Medellín, 2015," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 152(1), pages 335-367, November.
    7. Byun, Hyunsuk & Shin, Jungwoo & Lee, Chul-Yong, 2018. "Using a discrete choice experiment to predict the penetration possibility of environmentally friendly vehicles," Energy, Elsevier, vol. 144(C), pages 312-321.
    8. Sovacool, Benjamin K. & Kester, Johannes & Noel, Lance & Zarazua de Rubens, Gerardo, 2020. "Actors, business models, and innovation activity systems for vehicle-to-grid (V2G) technology: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    9. Noel, Lance & Sovacool, Benjamin K., 2016. "Why Did Better Place Fail?: Range anxiety, interpretive flexibility, and electric vehicle promotion in Denmark and Israel," Energy Policy, Elsevier, vol. 94(C), pages 377-386.
    10. Shafiei, Ehsan & Davidsdottir, Brynhildur & Fazeli, Reza & Leaver, Jonathan & Stefansson, Hlynur & Asgeirsson, Eyjolfur Ingi, 2018. "Macroeconomic effects of fiscal incentives to promote electric vehicles in Iceland: Implications for government and consumer costs," Energy Policy, Elsevier, vol. 114(C), pages 431-443.
    11. Shin, Jungwoo & Hwang, Won-Sik & Choi, Hyundo, 2019. "Can hydrogen fuel vehicles be a sustainable alternative on vehicle market?: Comparison of electric and hydrogen fuel cell vehicles," Technological Forecasting and Social Change, Elsevier, vol. 143(C), pages 239-248.
    12. Kyuho Maeng & Sungmin Ko & Jungwoo Shin & Youngsang Cho, 2020. "How Much Electricity Sharing Will Electric Vehicle Owners Allow from Their Battery? Incorporating Vehicle-to-Grid Technology and Electricity Generation Mix," Energies, MDPI, vol. 13(16), pages 1-25, August.
    13. Zulkarnain & Pekka Leviäkangas & Tuomo Kinnunen & Pekka Kess, 2014. "The Electric Vehicles Ecosystem Model: Construct, Analysis and Identification of Key Challenges," Managing Global Transitions, University of Primorska, Faculty of Management Koper, vol. 12(3 (Fall)), pages 253-277.
    14. Nur Ayeesha Qisteena Muzir & Md. Rayid Hasan Mojumder & Md. Hasanuzzaman & Jeyraj Selvaraj, 2022. "Challenges of Electric Vehicles and Their Prospects in Malaysia: A Comprehensive Review," Sustainability, MDPI, vol. 14(14), pages 1-40, July.
    15. Sánchez-Braza, Antonio & Cansino, José M. & Lerma, Enrique, 2014. "Main drivers for local tax incentives to promote electric vehicles: The Spanish case," Transport Policy, Elsevier, vol. 36(C), pages 1-9.
    16. Xi, Xuan & Zhang, Jixiang, 2020. "Complexity analysis of a decision-making game concerning governments and heterogeneous agricultural enterprises with bounded rationality," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    17. Cansino, José M. & Román, Rocío & Colinet, María J., 2018. "Two smart energy management models for the Spanish electricity system," Utilities Policy, Elsevier, vol. 50(C), pages 60-72.
    18. Kim, Imjung & Kim, Junghun & Lee, Jongsu, 2020. "Dynamic analysis of well-to-wheel electric and hydrogen vehicles greenhouse gas emissions: Focusing on consumer preferences and power mix changes in South Korea," Applied Energy, Elsevier, vol. 260(C).
    19. Kim, Kyungah & Lee, Jongsu & Kim, Junghun, 2021. "Can liquefied petroleum gas vehicles join the fleet of alternative fuel vehicles? Implications of transportation policy based on market forecast and environmental impact," Energy Policy, Elsevier, vol. 154(C).
    20. Park, Yuri & Koo, Yoonmo, 2016. "An empirical analysis of switching cost in the smartphone market in South Korea," Telecommunications Policy, Elsevier, vol. 40(4), pages 307-318.
    21. HyungBin Moon & Hyunhong Choi & Jongsu Lee & Ki Soo Lee, 2017. "Attitudes in Korea toward Introducing Smart Policing Technologies: Differences between the General Public and Police Officers," Sustainability, MDPI, vol. 9(10), pages 1-17, October.

  12. Lee, Jongsu & Lee, Chul-Yong & Lee, Kichun Sky, 2012. "Forecasting demand for a newly introduced product using reservation price data and Bayesian updating," Technological Forecasting and Social Change, Elsevier, vol. 79(7), pages 1280-1291.

    Cited by:

    1. Weihua Liu & Xinran Shen & Di Wang, 2020. "The impacts of dual overconfidence behavior and demand updating on the decisions of port service supply chain: a real case study from China," Annals of Operations Research, Springer, vol. 291(1), pages 565-604, August.
    2. Li, Shuying & Garces, Edwin & Daim, Tugrul, 2019. "Technology forecasting by analogy-based on social network analysis: The case of autonomous vehicles," Technological Forecasting and Social Change, Elsevier, vol. 148(C).
    3. Jun, Seung-Pyo & Sung, Tae-Eung & Park, Hyun-Woo, 2017. "Forecasting by analogy using the web search traffic," Technological Forecasting and Social Change, Elsevier, vol. 115(C), pages 37-51.
    4. Jiří Šindelář, 2019. "Sales forecasting in financial distribution: a comparison of quantitative forecasting methods," Journal of Financial Services Marketing, Palgrave Macmillan, vol. 24(3), pages 69-80, December.
    5. Lee, Hakyeon & Kim, Sang Gook & Park, Hyun-woo & Kang, Pilsung, 2014. "Pre-launch new product demand forecasting using the Bass model: A statistical and machine learning-based approach," Technological Forecasting and Social Change, Elsevier, vol. 86(C), pages 49-64.
    6. Wu, Xiang & (Yale) Gong, Yeming & Xu, Haoxuan & Chu, Chengbin & Zhang, Jinlong, 2017. "Dynamic lot-sizing models with pricing for new products," European Journal of Operational Research, Elsevier, vol. 260(1), pages 81-92.

  13. Jeong, Jaehoon & Seob Kim, Chang & Lee, Jongsu, 2011. "Household electricity and gas consumption for heating homes," Energy Policy, Elsevier, vol. 39(5), pages 2679-2687, May.

    Cited by:

    1. Namazkhan, Maliheh & Albers, Casper & Steg, Linda, 2020. "A decision tree method for explaining household gas consumption: The role of building characteristics, socio-demographic variables, psychological factors and household behaviour," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    2. Chen, Qiu, 2021. "District or distributed space heating in rural residential sector? Empirical evidence from a discrete choice experiment in South China," Energy Policy, Elsevier, vol. 148(PA).
    3. Gobong Choi & Eunnyeong Heo & Chul-Yong Lee, 2018. "Dynamic Economic Analysis of Subsidies for New and Renewable Energy in South Korea," Sustainability, MDPI, vol. 10(6), pages 1-19, June.
    4. Liu, Chang & Zhu, Bei & Ni, Jinlan & Wei, Chu, 2021. "Residential coal-switch policy in China: Development, achievement, and challenge," Energy Policy, Elsevier, vol. 151(C).
    5. Acharya, Bikram & Marhold, Klaus, 2019. "Determinants of household energy use and fuel switching behavior in Nepal," Energy, Elsevier, vol. 169(C), pages 1132-1138.
    6. Castro, Marisol & Bhat, Chandra R. & Pendyala, Ram M. & Jara-Díaz, Sergio R., 2012. "Accommodating multiple constraints in the multiple discrete–continuous extreme value (MDCEV) choice model," Transportation Research Part B: Methodological, Elsevier, vol. 46(6), pages 729-743.
    7. Marius Claudy and Claus Michelsen, 2016. "Housing Market Fundamentals, Housing Quality and Energy Consumption: Evidence from Germany," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4).
    8. Hanemann, Michael & Labandeira, Xavier & Labeaga, José M. & Vásquez-Lavín, Felipe, 2024. "Discrete-continuous models of residential energy demand: A comprehensive review," Resource and Energy Economics, Elsevier, vol. 77(C).
    9. Palma, David & Hess, Stephane, 2022. "Extending the Multiple Discrete Continuous (MDC) modelling framework to consider complementarity, substitution, and an unobserved budget," Transportation Research Part B: Methodological, Elsevier, vol. 161(C), pages 13-35.
    10. Tovar, Miguel A., 2012. "The structure of energy efficiency investment in the UK households and its average monetary and environmental savings," Energy Policy, Elsevier, vol. 50(C), pages 723-735.
    11. Enam, Annesha & Konduri, Karthik C. & Pinjari, Abdul R. & Eluru, Naveen, 2018. "An integrated choice and latent variable model for multiple discrete continuous choice kernels: Application exploring the association between day level moods and discretionary activity engagement choi," Journal of choice modelling, Elsevier, vol. 26(C), pages 80-100.
    12. Frontuto, Vito, 2019. "Forecasting household consumption of fuels: A multiple discrete-continuous approach," Applied Energy, Elsevier, vol. 240(C), pages 205-214.

  14. Gicheol Jeong & Jongsu Lee, 2010. "Estimating consumer preferences for online music services," Applied Economics, Taylor & Francis Journals, vol. 42(30), pages 3885-3893.

    Cited by:

    1. Christian Handke, 2013. "Empirical evidence on copyright," Chapters, in: Ruth Towse & Christian Handke (ed.), Handbook on the Digital Creative Economy, chapter 22, pages 249-261, Edward Elgar Publishing.
    2. Dongnyok Shim & Seung Wan Kim & Jörn Altmann & Yong Tae Yoon & Jin Gyo Kim, 2018. "Key Features of Electric Vehicle Diffusion and Its Impact on the Korean Power Market," Sustainability, MDPI, vol. 10(6), pages 1-18, June.
    3. Sylvain Dejean & Thierry Pénard & Raphaël Suire, 2010. "La gratuité est-elle une fatalité sur les marchés numériques ? Une étude sur le consentement à payer pour des offres de contenus audiovisuels sur internet," Economie & Prévision, La Documentation Française, vol. 0(3), pages 15-32.

  15. Lee, Jongsu & Cho, Youngsang, 2009. "Demand forecasting of diesel passenger car considering consumer preference and government regulation in South Korea," Transportation Research Part A: Policy and Practice, Elsevier, vol. 43(4), pages 420-429, May.

    Cited by:

    1. Maeng, Kyuho & Jeon, Seung Ryong & Park, Taeho & Cho, Youngsang, 2021. "Network effects of connected and autonomous vehicles in South Korea: A consumer preference approach," Research in Transportation Economics, Elsevier, vol. 90(C).
    2. Truschkin, Eugen & Elbert, Ralf, 2013. "Horizontal transshipment technologies as enablers of combined transport: Impact of transport policies on the modal split," Transportation Research Part A: Policy and Practice, Elsevier, vol. 49(C), pages 91-109.
    3. Ericka Costa & Dario Montemurro & Diego Giuliani, 2019. "Consumers’ willingness to pay for green cars: a discrete choice analysis in Italy," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 21(5), pages 2425-2442, October.
    4. Rasti-Barzoki, Morteza & Moon, Ilkyeong, 2021. "A game theoretic approach for analyzing electric and gasoline-based vehicles’ competition in a supply chain under government sustainable strategies: A case study of South Korea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    5. Al-Alawi, Baha M. & Bradley, Thomas H., 2013. "Review of hybrid, plug-in hybrid, and electric vehicle market modeling Studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 190-203.
    6. Byun, Hyunsuk & Shin, Jungwoo & Lee, Chul-Yong, 2018. "Using a discrete choice experiment to predict the penetration possibility of environmentally friendly vehicles," Energy, Elsevier, vol. 144(C), pages 312-321.
    7. Xu, Chen (Sarah) & Cheng, Liang-Chieh (Victor), 2016. "Adoption of Natural Gas Vehicles – Estimates for the U.S. and the State of Texas," Journal of the Transportation Research Forum, Transportation Research Forum, vol. 55(2), August.
    8. Rasti-Barzoki, Morteza & Moon, Ilkyeong, 2020. "A game theoretic approach for car pricing and its energy efficiency level versus governmental sustainability goals by considering rebound effect: A case study of South Korea," Applied Energy, Elsevier, vol. 271(C).
    9. Kyuho Maeng & Sungmin Ko & Jungwoo Shin & Youngsang Cho, 2020. "How Much Electricity Sharing Will Electric Vehicle Owners Allow from Their Battery? Incorporating Vehicle-to-Grid Technology and Electricity Generation Mix," Energies, MDPI, vol. 13(16), pages 1-25, August.
    10. Ralf Elbert & Lowis Seikowsky, 2017. "The influences of behavioral biases, barriers and facilitators on the willingness of forwarders’ decision makers to modal shift from unimodal road freight transport to intermodal road–rail freight tra," Journal of Business Economics, Springer, vol. 87(8), pages 1083-1123, November.
    11. Al-Ghandoor, Ahmed & Jaber, Jamal & Al-Hinti, Ismael & Abdallat, Yousef, 2013. "Statistical assessment and analyses of the determinants of transportation sector gasoline demand in Jordan," Transportation Research Part A: Policy and Practice, Elsevier, vol. 50(C), pages 129-138.
    12. Tovar, Miguel A., 2011. "An integral evaluation of dieselisation policies for households' cars," Energy Policy, Elsevier, vol. 39(9), pages 5228-5242, September.
    13. Bliemer, Michiel C.J. & Rose, John M., 2011. "Experimental design influences on stated choice outputs: An empirical study in air travel choice," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(1), pages 63-79, January.
    14. Shim, Changsub, 2017. "Policy Measures for Mitigating Fine Particle Pollution in Korea and Suggestions for Expediting International Dialogue in East Asia," Working Papers 150, JICA Research Institute.
    15. Konstantakis, Konstantinos N. & Milioti, Christina & Michaelides, Panayotis G., 2017. "Modeling the dynamic response of automobile sales in troubled times: A real-time Vector Autoregressive analysis with causality testing for Greece," Transport Policy, Elsevier, vol. 59(C), pages 75-81.
    16. Homolka, Lubor & Ngo, Vu Minh & Pavelková, Drahomíra & Le, Bach Tuan & Dehning, Bruce, 2020. "Short- and medium-term car registration forecasting based on selected macro and socio-economic indicators in European countries," Research in Transportation Economics, Elsevier, vol. 80(C).

  16. Jongsu Lee & Minkyu Lee, 2009. "Analysis on the growth of telecommunication services: a global comparison of diffusion patterns," Applied Economics, Taylor & Francis Journals, vol. 41(24), pages 3143-3150.

    Cited by:

    1. Bi-Huei Tsai & Yiming Li, 2011. "Modelling competition in global LCD TV industry," Applied Economics, Taylor & Francis Journals, vol. 43(22), pages 2969-2981.
    2. Shin, Hyungsup & Jung, Jiyeon & Koo, Yoonmo, 2020. "Forecasting the video data traffic of 5 G services in south korea," Technological Forecasting and Social Change, Elsevier, vol. 153(C).

  17. Cho, Youngsang & Lee, Jongsu & Kim, Tai-Yoo, 2007. "The impact of ICT investment and energy price on industrial electricity demand: Dynamic growth model approach," Energy Policy, Elsevier, vol. 35(9), pages 4730-4738, September.

    Cited by:

    1. Ge, Yihan & Yuan, Rong, 2024. "Exploring decoupling relationship between ICT investments and energy consumption in China's provinces: Factors and policy implications," Energy, Elsevier, vol. 286(C).
    2. Liton Chandra Voumik & Md. Azharul Islam & Abidur Rahaman & Md. Maznur Rahman, 2022. "Emissions of carbon dioxide from electricity production in ASEAN countries: GMM and quantile regression analysis," SN Business & Economics, Springer, vol. 2(9), pages 1-20, September.
    3. Lee, Seungtaek & Chong, Wai Oswald, 2016. "Causal relationships of energy consumption, price, and CO2 emissions in the U.S. building sector," Resources, Conservation & Recycling, Elsevier, vol. 107(C), pages 220-226.
    4. Cédric Gossart, 2015. "Rebound effects and ICT : a review of the literature," Post-Print hal-01258112, HAL.
    5. Magazzino, Cosimo & Mele, Marco & Morelli, Giovanna & Schneider, Nicolas, 2021. "The nexus between information technology and environmental pollution: Application of a new machine learning algorithm to OECD countries," Utilities Policy, Elsevier, vol. 72(C).
    6. Patrick Schulte & Heinz Welsch & Sascha Rexhäuser, 2016. "ICT and the Demand for Energy: Evidence from OECD Countries," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 63(1), pages 119-146, January.
    7. Bright A. Gyamfi & Asiedu B. Ampomah & Festus V. Bekun & Simplice A. Asongu, 2022. "Can Information and Communication Technology and Institutional Quality help mitigate climate change in E7 economies? An Environmental Kuznets Curve extension," Working Papers of the African Governance and Development Institute. 22/052, African Governance and Development Institute..
    8. Kühn, Katharina Isabella, 2021. "Is Visiting the ESB Website Deteriorating the Air Quality of our Countries? A Statistical Analysis of the Relationship Between Air Pollution Levels and Information & Communication Technologies," Junior Management Science (JUMS), Junior Management Science e. V., vol. 6(4), pages 839-851.
    9. Aiman Sana & Farzana Naheed Khan & Umaima Arif, 2022. "ICT diffusion and climate change: The role of economic growth, financial development and trade openness," Netnomics, Springer, vol. 22(2), pages 179-194, October.
    10. Zafar, Muhammad Wasif & Zaidi, Syed Anees Haider & Mansoor, Sadia & Sinha, Avik & Qin, Quande, 2022. "ICT and education as determinants of environmental quality: The role of financial development in selected Asian countries," Technological Forecasting and Social Change, Elsevier, vol. 177(C).
    11. To, W.M. & Lai, T.M. & Chung, W.L., 2011. "Fuel life cycle emissions for electricity consumption in the world’s gaming center–Macao SAR, China," Energy, Elsevier, vol. 36(8), pages 5162-5168.
    12. Sakiru Adebola Solarin & Muhammad Shahbaz & Habib Nawaz Khan & Radzuan Bin Razali, 2021. "ICT, Financial Development, Economic Growth and Electricity Consumption: New Evidence from Malaysia," Global Business Review, International Management Institute, vol. 22(4), pages 941-962, August.
    13. Melike E. Bildirici & Rui Alexandre Castanho & Fazıl Kayıkçı & Sema Yılmaz Genç, 2022. "ICT, Energy Intensity, and CO 2 Emission Nexus," Energies, MDPI, vol. 15(13), pages 1-15, June.
    14. Zhong Ren & Jie Zhang, 2023. "Digital Economy, Clean Energy Consumption, and High-Quality Economic Development: The Case of China," Sustainability, MDPI, vol. 15(18), pages 1-24, September.
    15. Wang, Lei & Chen, Yangyang & Ramsey, Thomas Stephen & Hewings, Geoffrey J.D., 2021. "Will researching digital technology really empower green development?," Technology in Society, Elsevier, vol. 66(C).
    16. Aslı Özpolat, 2022. "How does internet use affect ecological footprint?: An empirical analysis for G7 countries," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(11), pages 12833-12849, November.
    17. Aiman Sana & Farzana Naheed Khan & Umaima Arif, 2021. "ICT diffusion and climate change: The role of economic growth, financial development and trade openness," Netnomics, Springer, vol. 22(2), pages 179-194, December.
    18. Taha Zaghdoudi, 2017. "Internet usage, renewable energy, electricity consumption and economic growth : Evidence from developed countries," Economics Bulletin, AccessEcon, vol. 37(3), pages 1612-1619.
    19. Usman, Ahmed & Ozturk, Ilhan & Ullah, Sana & Hassan, Ali, 2021. "Does ICT have symmetric or asymmetric effects on CO2 emissions? Evidence from selected Asian economies," Technology in Society, Elsevier, vol. 67(C).
    20. Bernstein, Ronald & Madlener, Reinhard, 2008. "The Impact of Disaggregated ICT Capital on Electricity Intensity of Production: Econometric Analysis of Major European Industries," FCN Working Papers 4/2008, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN).
    21. Emad Kazemzadeh & José Alberto Fuinhas & Narges Salehnia & Fariba Osmani, 2023. "The effect of economic complexity, fertility rate, and information and communication technology on ecological footprint in the emerging economies: a two-step stirpat model and panel quantile regressio," Quality & Quantity: International Journal of Methodology, Springer, vol. 57(1), pages 737-763, February.
    22. Luo, Shunjun & Chishti, Muhammad Zubair & Beata, Szetela & Xie, Peijun, 2024. "Digital sparks for a greener future: Unleashing the potential of information and communication technologies in green energy transition," Renewable Energy, Elsevier, vol. 221(C).
    23. Khayyat, Nabaz T. & Lee, Jongsu & Lee, Jeong-Dong, 2014. "How ICT Investment Influences Energy Demand in South Korea and Japan?," MPRA Paper 55454, University Library of Munich, Germany.
    24. Kwon, Sanguk & Cho, Seong-Hoon & Roberts, Roland Keith & Kim, Taeyoung & Yu, T. Edward, 2015. "Effects of changes in electricity price on electricity demand and resulting effects on manufacturing output," 2015 Annual Meeting, January 31-February 3, 2015, Atlanta, Georgia 196850, Southern Agricultural Economics Association.
    25. Chao Bi & Minna Jia & Jingjing Zeng, 2019. "Nonlinear Effect of Public Infrastructure on Energy Intensity in China: A Panel Smooth Transition Regression Approach," Sustainability, MDPI, vol. 11(3), pages 1-21, January.
    26. Abbas, Khizar & Butt, Khalid Manzoor & Xu, Deyi & Baz, Khan & Sheraz, Muhammad & Kharl, Sanwal Hussain, 2023. "Dynamic prognostic interaction between social development and energy consumption optimization: Evidence from european union member countries," Energy, Elsevier, vol. 278(C).
    27. Dehghan Shabani, Zahra & Shahnazi, Rouhollah, 2019. "Energy consumption, carbon dioxide emissions, information and communications technology, and gross domestic product in Iranian economic sectors: A panel causality analysis," Energy, Elsevier, vol. 169(C), pages 1064-1078.
    28. Taneja, Shivani & Mandys, Filip, 2022. "The effect of disaggregated information and communication technologies on industrial energy demand," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    29. Khurram Shehzad & Umer Zaman & Ana Ercília José & Emrah Koçak & Paulo Ferreira, 2021. "An Officious Impact of Financial Innovations and ICT on Economic Evolution in China: Revealing the Substantial Role of BRI," Sustainability, MDPI, vol. 13(16), pages 1-17, August.
    30. Zheming Yan & Rui Shi & Zhiming Yang, 2018. "ICT Development and Sustainable Energy Consumption: A Perspective of Energy Productivity," Sustainability, MDPI, vol. 10(7), pages 1-15, July.
    31. Muhammad Shahbaz & Ijaz Ur Rehman & Rashid Sbia & Helmi Hamdi, 2016. "The Role of Information Communication Technology and Economic Growth in Recent Electricity Demand: Fresh Evidence from Combine Cointegration Approach in UAE," Post-Print halshs-01902760, HAL.
    32. Liton Chandra Voumik & Md. Azharul Islam & Samrat Ray & Nora Yusma Mohamed Yusop & Abdul Rahim Ridzuan, 2023. "CO 2 Emissions from Renewable and Non-Renewable Electricity Generation Sources in the G7 Countries: Static and Dynamic Panel Assessment," Energies, MDPI, vol. 16(3), pages 1-14, January.
    33. Sadorsky, Perry, 2012. "Information communication technology and electricity consumption in emerging economies," Energy Policy, Elsevier, vol. 48(C), pages 130-136.
    34. Wang, Jianda & Jiang, Qingzhe & Dong, Xiucheng & Dong, Kangyin, 2021. "Decoupling and decomposition analysis of investments and CO2 emissions in information and communication technology sector," Applied Energy, Elsevier, vol. 302(C).
    35. Tri Wahyu Adi & Eri Prabowo & Oetami Prasadjaningsih, 2022. "Influence of Electricity Consumption of Industrial and Business, Electricity Price, Inflation and Interest Rate on GDP and Investments in Indonesia," International Journal of Energy Economics and Policy, Econjournals, vol. 12(3), pages 331-340, May.
    36. Marzieh Rahimi & Abbas Alavi Rad, 2017. "Internet Usage, Electricity Consumption and Economic Growth: Evidence from a Panel of Developing-8 Countries," International Journal of Energy Economics and Policy, Econjournals, vol. 7(3), pages 152-156.
    37. Kouton, Jeffrey, 2019. "Information Communication Technology development and energy demand in African countries," Energy, Elsevier, vol. 189(C).
    38. Munshi Naser Ibne Afzal & Munshi Naser Ibne Afzal & Jeff Gow & Jeff Gow, 2016. "Electricity Consumption and Information and Communication Technology in the Next Eleven Emerging Economies," International Journal of Energy Economics and Policy, Econjournals, vol. 6(3), pages 381-388.
    39. Bakry, Walid & Nghiem, Xuan-Hoa & Farouk, Sherine & Vo, Xuan Vinh, 2023. "Does it hurt or help? Revisiting the effects of ICT on economic growth and energy consumption: A nonlinear panel ARDL approach," Economic Analysis and Policy, Elsevier, vol. 78(C), pages 597-617.
    40. Ganepola, Chanaka N. & Shubita, Moade & Lee, Lillian, 2023. "The electric shock: Causes and consequences of electricity prices in the United Kingdom," Energy Economics, Elsevier, vol. 126(C).
    41. Zhang, Cheng & Fang, Jiming & Ge, Shilong & Sun, Guanglin, 2024. "Research on the impact of enterprise digital transformation on carbon emissions in the manufacturing industry," International Review of Economics & Finance, Elsevier, vol. 92(C), pages 211-227.
    42. Wei Li & Yongqin Xi & Jiayang Lu & Feimei Wu & Pengfei Wu, 2019. "Interactive relationships between industrial, urban, agricultural, information, and green development," Energy & Environment, , vol. 30(6), pages 991-1009, September.
    43. Salahuddin, Mohammad & Alam, Khorshed & Ozturk, Ilhan, 2016. "The effects of Internet usage and economic growth on CO2 emissions in OECD countries: A panel investigation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 1226-1235.
    44. Wen-Cheng Lu, 2018. "The impacts of information and communication technology, energy consumption, financial development, and economic growth on carbon dioxide emissions in 12 Asian countries," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 23(8), pages 1351-1365, December.
    45. Botang Han & Dong Wang & Weina Ding & Lei Han, 2016. "Effect of information and communication technology on energy consumption in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(1), pages 297-315, November.
    46. Bester Chimbo, 2020. "Information and Communication Technology and Electricity Consumption in Transitional Economies," International Journal of Energy Economics and Policy, Econjournals, vol. 10(3), pages 296-302.
    47. Oseghale Baryl Ihayere & Philip Olasupo Alege & Obindah Gershon & Jeremiah Ogaga Ejemeyovwi & Praise Daramola, 2021. "Information Communication Technology Access and Use towards Energy Consumption in Selected Sub Saharan Africa," International Journal of Energy Economics and Policy, Econjournals, vol. 11(1), pages 471-477.
    48. Yu Hao & Haitao Wu, 2021. "The Role of Internet Development on Energy Intensity in China - Evidence From a Spatial Econometric Analysis," Asian Economics Letters, Asia-Pacific Applied Economics Association, vol. 1(1), pages 1-6.
    49. Cédric Gossart, 2015. "Rebound effects and ICT : a review of the literature," Grenoble Ecole de Management (Post-Print) hal-01258112, HAL.
    50. Kais Saidi & Hassen Toumi & Saida Zaidi, 2017. "Impact of Information Communication Technology and Economic Growth on the Electricity Consumption: Empirical Evidence from 67 Countries," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 8(3), pages 789-803, September.
    51. Oluwarotimi Ayokunnu Owolabi & Asa-Ruth Oboku Oku & Abidemi Alejo & Toun Ogunbiyi & Jeremiah Ifeanyi Ubah, 2021. "Access to Electricity, Information and Communications Technology (ICT), and Financial Development: Evidence From West Africa," International Journal of Energy Economics and Policy, Econjournals, vol. 11(2), pages 247-259.
    52. Davide Quaglione & Dario D’Ingiullo & Linda Meleo, 2023. "Fixed and mobile broadband penetration and CO2 emissions: evidence from OECD countries," Economia Politica: Journal of Analytical and Institutional Economics, Springer;Fondazione Edison, vol. 40(3), pages 795-816, October.
    53. Max Freidin & Dmitry Burakov, 2018. "Economic Growth, Electricity Consumption and Internet Usage Nexus: Evidence from a Panel of Commonwealth of Independent States," International Journal of Energy Economics and Policy, Econjournals, vol. 8(5), pages 267-272.
    54. Zhu, Yuke & Lan, Mudan, 2023. "Digital economy and carbon rebound effect: Evidence from Chinese cities," Energy Economics, Elsevier, vol. 126(C).
    55. Tang, Chang & Xue, Yan & Wu, Haitao & Irfan, Muhammad & Hao, Yu, 2022. "How does telecommunications infrastructure affect eco-efficiency? Evidence from a quasi-natural experiment in China," Technology in Society, Elsevier, vol. 69(C).
    56. Kwon, Sanguk & Cho, Seong-Hoon & Roberts, Roland K. & Kim, Hyun Jae & Park, Kihyun & Edward Yu, T., 2016. "Effects of electricity-price policy on electricity demand and manufacturing output," Energy, Elsevier, vol. 102(C), pages 324-334.
    57. Haein Kim & Minsang Kim & Hyunggeun Kim & Sangkyu Park, 2020. "Decomposition Analysis of CO 2 Emission from Electricity Generation: Comparison of OECD Countries before and after the Financial Crisis," Energies, MDPI, vol. 13(14), pages 1-16, July.
    58. Auguste K. Kouakou & Nibontenin Soro, 2023. "Drivers of Energy Efficiency in West African Countries," Journal of Sustainable Development, Canadian Center of Science and Education, vol. 15(5), pages 1-39, May.
    59. Mahmood Mahmoodzadeh & Somaye Sadeghi & Soraya Sadeghi & Saleh Ghavidel, 2015. "Innovation Investments and Energy Efficiency in Iranian Industries," Proceedings of International Academic Conferences 2804578, International Institute of Social and Economic Sciences.
    60. Anser, Muhammad Khalid & Yousaf, Zahid & Nassani, Abdelmohsen A. & Vo, Xuan Vinh & Zaman, Khalid, 2020. "Evaluating ‘natural resource curse’ hypothesis under sustainable information technologies: A case study of Saudi Arabia," Resources Policy, Elsevier, vol. 68(C).
    61. Amal Dabbous, 2018. "The Impact of Information and Communication Technology and Financial Development on Energy Consumption: A Dynamic Heterogeneous Panel Analysis for MENA Countries," International Journal of Energy Economics and Policy, Econjournals, vol. 8(4), pages 70-76.
    62. He, Ruifang & Zhong, Meirui & Huang, Jianbai, 2021. "Technological progress and metal resource consumption in the electricity industry—A cross-country panel threshold data analysis," Energy, Elsevier, vol. 231(C).
    63. Zhou, Xiaoyong & Zhou, Dequn & Wang, Qunwei, 2018. "How does information and communication technology affect China's energy intensity? A three-tier structural decomposition analysis," Energy, Elsevier, vol. 151(C), pages 748-759.

  18. Mueller, Milton L. & Park, Yuri & Lee, Jongsu & Kim, Tai-Yoo, 2006. "Digital identity: How users value the attributes of online identifiers," Information Economics and Policy, Elsevier, vol. 18(4), pages 405-422, November.

    Cited by:

    1. Tai-Yoo Kim & Mi-Ae Jung & Eungdo Kim & Eunnyeong Heo, 2011. "The Faster-Accelerating Growth of the Knowledge-Based Society," TEMEP Discussion Papers 201181, Seoul National University; Technology Management, Economics, and Policy Program (TEMEP), revised Nov 2011.
    2. Tai-Yoo Kim & Jihyoun Park & Eungdo Kim & Junseok Hwang, 2011. "The Faster-Accelerating Digital Economy," TEMEP Discussion Papers 201173, Seoul National University; Technology Management, Economics, and Policy Program (TEMEP), revised Apr 2011.

  19. Yeonbae Kim & Yuri Park & Jeong-Dong Lee & Jongsu Lee, 2006. "Using stated-preference data to measure the inconvenience cost of spam among Korean E-mail users," Applied Economics Letters, Taylor & Francis Journals, vol. 13(12), pages 795-800.

    Cited by:

    1. Shin, Jungwoo & Hwang, Won-Sik, 2017. "Consumer preference and willingness to pay for a renewable fuel standard (RFS) policy: Focusing on ex-ante market analysis and segmentation," Energy Policy, Elsevier, vol. 106(C), pages 32-40.
    2. Maeng, Kyuho & Jeon, Seung Ryong & Park, Taeho & Cho, Youngsang, 2021. "Network effects of connected and autonomous vehicles in South Korea: A consumer preference approach," Research in Transportation Economics, Elsevier, vol. 90(C).
    3. Hyo-Jin Kim & Seul-Ye Lim & Seung-Hoon Yoo, 2017. "Are Korean Households Willing to Pay a Premium for Induction Cooktops over Gas Stoves?," Sustainability, MDPI, vol. 9(9), pages 1-10, August.
    4. Huh, Sung-Yoon & Jo, Manseok & Shin, Jungwoo & Yoo, Seung-Hoon, 2019. "Impact of rebate program for energy-efficient household appliances on consumer purchasing decisions: The case of electric rice cookers in South Korea," Energy Policy, Elsevier, vol. 129(C), pages 1394-1403.
    5. Jongsu Lee & Jae Young Choi & Youngsang Cho, 2009. "A Forecast Simulation Analysis of the Next-Generation DVD Market Based on Consumer Preference Data," TEMEP Discussion Papers 200933, Seoul National University; Technology Management, Economics, and Policy Program (TEMEP), revised Nov 2009.
    6. Hyo-Jin Kim & Seul-Ye Lim & Seung-Hoon Yoo, 2017. "The Convenience Benefits of the District Heating System over Individual Heating Systems in Korean Households," Sustainability, MDPI, vol. 9(8), pages 1-12, August.

  20. Lee, Jongsu & Kim, Yeonbae & Lee, Jeong-Dong & Park, Yuri, 2006. "Estimating the extent of potential competition in the Korean mobile telecommunications market: Switching costs and number portability," International Journal of Industrial Organization, Elsevier, vol. 24(1), pages 107-124, January.

    Cited by:

    1. Grzybowski, Lukasz & Nitsche, Rainer & Verboven, Frank & Wiethaus, Lars, 2014. "Market definition for broadband internet in Slovakia – Are fixed and mobile technologies in the same market?," Information Economics and Policy, Elsevier, vol. 28(C), pages 39-56.
    2. Pacharasut Sujarittanonta, 2017. "Evaluating mobile number portability policy in the Thai mobile telecommunications market," Journal of Regulatory Economics, Springer, vol. 51(2), pages 220-233, April.
    3. Lucio Fuentelsaz & Juan Pablo Maicas & Yolanda Polo, 2012. "Switching Costs, Network Effects, and Competition in the European Mobile Telecommunications Industry," Information Systems Research, INFORMS, vol. 23(1), pages 93-108, March.
    4. Srinuan, Pratompong & Srinuan, Chalita & Bohlin, Erik, 2014. "An empirical analysis of multiple services and choices of consumer in the Swedish telecommunications market," Telecommunications Policy, Elsevier, vol. 38(5), pages 449-459.
    5. Kim, Junghun & Lee, Hyunjoo & Lee, Jongsu, 2020. "Smartphone preferences and brand loyalty: A discrete choice model reflecting the reference point and peer effect," Journal of Retailing and Consumer Services, Elsevier, vol. 52(C).
    6. Guglielmo Barone & Roberto Felici & Marcello Pagnini, 2010. "Switching costs in local credit markets," Temi di discussione (Economic working papers) 760, Bank of Italy, Economic Research and International Relations Area.
    7. Belleflamme,Paul & Peitz,Martin, 2015. "Industrial Organization," Cambridge Books, Cambridge University Press, number 9781107687899, January.
    8. Czajkowski, Mikołaj & Sobolewski, Maciej, 2013. "Estimation of switching costs and network effects in mobile telecommunications in Poland," 24th European Regional ITS Conference, Florence 2013 88515, International Telecommunications Society (ITS).
    9. Nakamura, A., 2011. "Estimating switching costs after introducing Fixed-Mobile Convergence in Japan," Information Economics and Policy, Elsevier, vol. 23(1), pages 59-71, March.
    10. Nicoletta Corrocher & Lorenzo Zirulia, 2010. "Switching costs, consumer heterogeneity and price discrimination," Journal of Economics, Springer, vol. 101(2), pages 149-167, October.
    11. Carlos Ocaña Pérez de Tudela & Yolanda Polo & Francisco Javier Sesé, 2009. "Existencia y heterogeneidad de los costes de cambio en la industria de la Telefonía Móvil," Hacienda Pública Española / Review of Public Economics, IEF, vol. 191(4), pages 9-26, December.
    12. Nakamura, Akihiro, 2015. "Mobile and fixed broadband access services substitution in Japan considering new broadband features," Telecommunications Policy, Elsevier, vol. 39(2), pages 140-154.
    13. Lee, Daeho & Shin, Jungwoo & Lee, Sangwon, 2015. "Network management in the era of convergence: Focusing on application-based quality assessment of Internet access service," Telecommunications Policy, Elsevier, vol. 39(8), pages 705-716.
    14. Amante, Ana & Vareda, João, 2010. "Improving consumer mobility in the mobile voice services market: a comprehensive set of remedies," 21st European Regional ITS Conference, Copenhagen 2010: Telecommunications at new crossroads - Changing value configurations, user roles, and regulation 2, International Telecommunications Society (ITS).
    15. Donghun Kim & Philip Sugai, 2006. "Willingness to Pay for Service Attributes in the Japanese Digital Content Market," Working Papers EMS_2006_14, Research Institute, International University of Japan.
    16. Lukasz Grzybowski & Pedro Pereira, 2011. "Subscription Choices and Switching Costs in Mobile Telephony," Review of Industrial Organization, Springer;The Industrial Organization Society, vol. 38(1), pages 23-42, January.
    17. Confraria, João & Ribeiro, Tiago & Vasconcelos, Helder, 2017. "Analysis of consumer preferences for mobile telecom plans using a discrete choice experiment," Telecommunications Policy, Elsevier, vol. 41(3), pages 157-169.
    18. Pearcy, Jason & Savage, Scott J., 2015. "Actual and potential competition in international telecommunications," International Journal of Industrial Organization, Elsevier, vol. 42(C), pages 94-105.
    19. Rebeca Escobar Briones, 2018. "Impacto de las modificaciones en el proceso de portabilidad numérica sobre los servicios de telecomunicación móvil/The impact on telecommunications services of modifications to mobile number portab," Estudios Económicos, El Colegio de México, Centro de Estudios Económicos, vol. 33(1), pages 3-28.
    20. Azevedo, Paulo F. & Ribeiro, Paulo & Rodrigues, Gabriela, 2019. "Credit portability and spreads: Evidence in the Brazilian market," Journal of Economics and Business, Elsevier, vol. 106(C).
    21. Ricardo Ribeiro & João Vareda, 2007. "Crowding Out or Complementarity in the Telecommunications Market?," Working Papers 07-33, NET Institute, revised Sep 2007.
    22. Álvaro Riascos & Juan David Martín & Natalia Serna, 2017. "Welfare Effects of Switching Barriers Through Permanence Clauses: Evidence from the Mobiles Market in Colombia," Documentos de Trabajo 16418, Quantil.
    23. Nakamura, Akihiro, 2017. "Evaluating Customer Reviews in Matching Services on the Internet," 28th European Regional ITS Conference, Passau 2017 169486, International Telecommunications Society (ITS).
    24. Jorge Ale, 2013. "Switching Costs and Introductory Pricing in the Wireless Service Industry," Working Papers 13-17, NET Institute.
    25. Daeho Lee & Jungwoo Shin & Junseok Hwang, 2011. "Application-Based Quality Assessment of Internet Access Service," TEMEP Discussion Papers 201183, Seoul National University; Technology Management, Economics, and Policy Program (TEMEP), revised Nov 2011.
    26. Ho Seoung Na & Junseok Hwang & Hongbum Kim, 2023. "Which Attributes Should be Considered in Regulating the Internet of Things? Evidence From Conjoint Analysis," SAGE Open, , vol. 13(4), pages 21582440231, November.
    27. Michal Grajek, 2007. "Estimating network effects and compatibility in mobile telecommunications," ESMT Research Working Papers ESMT-07-001, ESMT European School of Management and Technology.
    28. Acharya, Bikram & Lee, Jongsu & Moon, HyungBin, 2022. "Preference heterogeneity of local government for implementing ICT infrastructure and services through public-private partnership mechanism," Socio-Economic Planning Sciences, Elsevier, vol. 79(C).
    29. Zhang, Jianxiong & Tang, Wansheng & Hu, Mingmao, 2015. "Optimal supplier switching with volume-dependent switching costs," International Journal of Production Economics, Elsevier, vol. 161(C), pages 96-104.
    30. Florez Ramos, Esmeralda & Blind, Knut, 2020. "Data portability effects on data-driven innovation of online platforms: Analyzing Spotify," Telecommunications Policy, Elsevier, vol. 44(9).
    31. Akihiro Nakamura, 2010. "Changes in consumers' behavior when a vertically integrated service is separated —The case of Japanese mobile phone services—," Economics Bulletin, AccessEcon, vol. 30(1), pages 437-449.
    32. Usero Sánchez, Belén & Asimakopoulos, Grigorios, 2012. "Regulation and competition in the European mobile communications industry: An examination of the implementation of mobile number portability," Telecommunications Policy, Elsevier, vol. 36(3), pages 187-196.
    33. Mothobi, Onkokame, 2022. "The impact of telecommunication regulatory policy on mobile retail price in Sub-Saharan African countries," Information Economics and Policy, Elsevier, vol. 58(C).
    34. Donghun Kim & Philip Sugai, 2010. "Willingness to Pay for Digital Contents in Japan," Economics Bulletin, AccessEcon, vol. 30(3), pages 1745-1752.
    35. Dejan Trifunović & Đorđe Mitrović, 2018. "Pro-Competitive Regulatory Policies For Post-Paid And Pre-Paid Mobile Phone Markets," Economic Annals, Faculty of Economics and Business, University of Belgrade, vol. 63(218), pages 85-104, July – Se.
    36. Capponi, Giovanna & Corrocher, Nicoletta & Zirulia, Lorenzo, 2021. "Personalized pricing for customer retention: Theory and evidence from mobile communication," Telecommunications Policy, Elsevier, vol. 45(1).
    37. Park, Yuri & Koo, Yoonmo, 2016. "An empirical analysis of switching cost in the smartphone market in South Korea," Telecommunications Policy, Elsevier, vol. 40(4), pages 307-318.
    38. Savage, Scott James & Waldman, Donald M., 2009. "Ability, location and household demand for Internet bandwidth," International Journal of Industrial Organization, Elsevier, vol. 27(2), pages 166-174, March.

  21. Lee, Jeong-Dong & Lee, Jongsu & Kim, Tai-Yoo, 2004. "Ex-ante analysis of welfare change for a liberalization of the natural gas market," Energy Economics, Elsevier, vol. 26(3), pages 447-461, May.

    Cited by:

    1. Bloemhof, Barb, 2017. "Assessing consumer benefits in the Ontario residential retail natural gas market: ontario residential retail natural gas market: Why marketer entry did not help," Energy Policy, Elsevier, vol. 109(C), pages 555-564.
    2. Kasiri, Mohammadreza & Mirnezami, Seyed Reza, 2023. "How can the compensation structure of Iran's natural gas distribution services be modified based on incentive-based regulations?," Energy, Elsevier, vol. 285(C).
    3. Raymond Li & Chi-Keung Woo & Asher Tishler & Jay Zarnikau, 2022. "Price Responsiveness of Residential Demand for Natural Gas in the United States," Energies, MDPI, vol. 15(12), pages 1-22, June.
    4. Li, Raymond & Woo, Chi-Keung & Tishler, Asher & Zarnikau, Jay, 2022. "Price responsiveness of commercial demand for natural gas in the US," Energy, Elsevier, vol. 256(C).
    5. Li, Raymond & Woo, Chi-Keung & Tishler, Asher & Zarnikau, Jay, 2022. "How price responsive is industrial demand for natural gas in the United States?," Utilities Policy, Elsevier, vol. 74(C).

IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.