IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v8y2016i5p423-d69296.html
   My bibliography  Save this article

Optimal Energy Mix with Renewable Portfolio Standards in Korea

Author

Listed:
  • Zong Woo Geem

    (Department of Energy IT, Gachon University, Seongnam 13120, Korea)

  • Jin-Hong Kim

    (Department of Civil & Environmental Engineering, Chung-Ang University, Seoul 06974, Korea)

Abstract

Korea is a heavily energy-dependent country whose primary energy consumption ranks ninth in the world. However, at the same time, it promised to reduce carbon emission and planned to use more renewable energy. Thus, the objective of this study is to propose an optimal energy mix planning model in electricity generation from various energy sources, such as gas, coal, nuclear, hydro, wind, photovoltaic, and biomass, which considers more renewable and sustainable portions by imposing governmental regulation named renewable portfolio standard (RPS). This optimization model minimizes various costs such as construction cost, operation and management cost, fuel cost, and carbon emission cost while satisfying minimal demand requirement, maximal annual installation potential, and renewable portfolio standard constraints. Results showed that this optimization model could successfully generate energy mix plan from 2012 to 2030 while minimizing the objective costs and satisfying all the constraints. Therefore, this optimization model contributes more efficient and objective method to the complex decision-making process with a sustainability option. This proposed energy mix model is expected to be applied not only to Korea, but also to many other countries in the future for more economical planning of their electricity generation while affecting climate change less.

Suggested Citation

  • Zong Woo Geem & Jin-Hong Kim, 2016. "Optimal Energy Mix with Renewable Portfolio Standards in Korea," Sustainability, MDPI, vol. 8(5), pages 1-14, May.
  • Handle: RePEc:gam:jsusta:v:8:y:2016:i:5:p:423-:d:69296
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/8/5/423/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/8/5/423/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ahn, Joongha & Woo, JongRoul & Lee, Jongsu, 2015. "Optimal allocation of energy sources for sustainable development in South Korea: Focus on the electric power generation industry," Energy Policy, Elsevier, vol. 78(C), pages 78-90.
    2. Vidal-Amaro, Juan José & Østergaard, Poul Alberg & Sheinbaum-Pardo, Claudia, 2015. "Optimal energy mix for transitioning from fossil fuels to renewable energy sources – The case of the Mexican electricity system," Applied Energy, Elsevier, vol. 150(C), pages 80-96.
    3. Park, Sang Yong & Yun, Bo-Yeong & Yun, Chang Yeol & Lee, Duk Hee & Choi, Dong Gu, 2016. "An analysis of the optimum renewable energy portfolio using the bottom–up model: Focusing on the electricity generation sector in South Korea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 319-329.
    4. Ku, Se-Ju & Yoo, Seung-Hoon, 2010. "Willingness to pay for renewable energy investment in Korea: A choice experiment study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(8), pages 2196-2201, October.
    5. Haller, Markus & Ludig, Sylvie & Bauer, Nico, 2012. "Bridging the scales: A conceptual model for coordinated expansion of renewable power generation, transmission and storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2687-2695.
    6. Eom, Jiyong & Schipper, Lee, 2010. "Trends in passenger transport energy use in South Korea," Energy Policy, Elsevier, vol. 38(7), pages 3598-3607, July.
    7. P. Massé & R. Gibrat, 1957. "Application of Linear Programming to Investments in the Electric Power Industry," Management Science, INFORMS, vol. 3(2), pages 149-166, January.
    8. Kim, Seunghyok & Koo, Jamin & Lee, Chang Jun & Yoon, En Sup, 2012. "Optimization of Korean energy planning for sustainability considering uncertainties in learning rates and external factors," Energy, Elsevier, vol. 44(1), pages 126-134.
    9. Mendes, Carla & Soares, Isabel, 2014. "Renewable energies impacting the optimal generation mix: The case of the Iberian Electricity Market," Energy, Elsevier, vol. 69(C), pages 23-33.
    10. Hobbs, Benjamin F., 1995. "Optimization methods for electric utility resource planning," European Journal of Operational Research, Elsevier, vol. 83(1), pages 1-20, May.
    11. Bhattacharya, Anindya & Kojima, Satoshi, 2012. "Power sector investment risk and renewable energy: A Japanese case study using portfolio risk optimization method," Energy Policy, Elsevier, vol. 40(C), pages 69-80.
    12. Dennis Anderson, 1972. "Models for Determining Least-Cost Investments in Electricity Supply," Bell Journal of Economics, The RAND Corporation, vol. 3(1), pages 267-299, Spring.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bogdan Popa & Otilia Nedelcu & Florica Popa & Khalid Ahmad-Rashid & Eliza-Isabela Tică, 2021. "Small Hydropower Plant for Sustainable Electricity from RES Mix," Sustainability, MDPI, vol. 13(22), pages 1-14, November.
    2. Bojana Škrbić & Željko Đurišić, 2023. "Novel Planning Methodology for Spatially Optimized RES Development Which Minimizes Flexibility Requirements for Their Integration into the Power System," Energies, MDPI, vol. 16(7), pages 1-34, April.
    3. Dallavalle, Elisa & Zanuttigh, Barbara & Contestabile, Pasquale & Giuggioli, Alessandro & Speranza, Davide, 2023. "Improved methodology for the optimal mixing of renewable energy sources and application to a multi-use offshore platform," Renewable Energy, Elsevier, vol. 210(C), pages 575-590.
    4. Sung-Yoon Huh & Chul-Yong Lee, 2017. "A Demand-Side Perspective on Developing a Future Electricity Generation Mix: Identifying Heterogeneity in Social Preferences," Energies, MDPI, vol. 10(8), pages 1-19, August.
    5. Kougias, Ioannis & Szabó, Sándor & Nikitas, Alexandros & Theodossiou, Nicolaos, 2019. "Sustainable energy modelling of non-interconnected Mediterranean islands," Renewable Energy, Elsevier, vol. 133(C), pages 930-940.
    6. Joon Ahn & Hyouck-Ju Kim, 2021. "Combustion Characteristics of 0.5 MW Class Oxy-Fuel FGR (Flue Gas Recirculation) Boiler for CO 2 Capture," Energies, MDPI, vol. 14(14), pages 1-13, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dongmin Son & Joonrak Kim & Bongju Jeong, 2019. "Optimal Operational Strategy for Power Producers in Korea Considering Renewable Portfolio Standards and Emissions Trading Schemes," Energies, MDPI, vol. 12(9), pages 1-24, May.
    2. Juárez-Luna, David & Mosiño, Alejandro, 2024. "Electricity generation portfolios in Mexico: Environmental, economic, and policy implications," Energy Policy, Elsevier, vol. 192(C).
    3. Ioannou, Anastasia & Angus, Andrew & Brennan, Feargal, 2017. "Risk-based methods for sustainable energy system planning: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 602-615.
    4. Sung-Yoon Huh & Chul-Yong Lee, 2017. "A Demand-Side Perspective on Developing a Future Electricity Generation Mix: Identifying Heterogeneity in Social Preferences," Energies, MDPI, vol. 10(8), pages 1-19, August.
    5. Timo Lohmann & Steffen Rebennack, 2017. "Tailored Benders Decomposition for a Long-Term Power Expansion Model with Short-Term Demand Response," Management Science, INFORMS, vol. 63(6), pages 2027-2048, June.
    6. Park, Sang Yong & Yun, Bo-Yeong & Yun, Chang Yeol & Lee, Duk Hee & Choi, Dong Gu, 2016. "An analysis of the optimum renewable energy portfolio using the bottom–up model: Focusing on the electricity generation sector in South Korea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 319-329.
    7. Oree, Vishwamitra & Sayed Hassen, Sayed Z. & Fleming, Peter J., 2017. "Generation expansion planning optimisation with renewable energy integration: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 790-803.
    8. Koltsaklis, Nikolaos E. & Nazos, Konstantinos, 2017. "A stochastic MILP energy planning model incorporating power market dynamics," Applied Energy, Elsevier, vol. 205(C), pages 1364-1383.
    9. De Jonghe, C. & Hobbs, B. F. & Belmans, R., 2011. "Integrating short-term demand response into long-term investment planning," Cambridge Working Papers in Economics 1132, Faculty of Economics, University of Cambridge.
    10. Pineau, Pierre-Olivier & Rasata, Hasina & Zaccour, Georges, 2011. "Impact of some parameters on investments in oligopolistic electricity markets," European Journal of Operational Research, Elsevier, vol. 213(1), pages 180-195, August.
    11. Moon, Hee Seung & Song, Yong Hyun & Lee, Ji Woo & Hong, Sanghyun & Kim, Eunsung & Kim, Seung Wan, 2024. "Implementation cost of net zero electricity system: Analysis based on Korean national target," Energy Policy, Elsevier, vol. 188(C).
    12. Inzunza, Andrés & Muñoz, Francisco D. & Moreno, Rodrigo, 2021. "Measuring the effects of environmental policies on electricity markets risk," Energy Economics, Elsevier, vol. 102(C).
    13. Ahn, Joongha & Woo, JongRoul & Lee, Jongsu, 2015. "Optimal allocation of energy sources for sustainable development in South Korea: Focus on the electric power generation industry," Energy Policy, Elsevier, vol. 78(C), pages 78-90.
    14. Paulino Martinez-Fernandez & Fernando deLlano-Paz & Anxo Calvo-Silvosa & Isabel Soares, 2019. "Assessing Renewable Energy Sources for Electricity (RES-E) Potential Using a CAPM-Analogous Multi-Stage Model," Energies, MDPI, vol. 12(19), pages 1-20, September.
    15. Zhang, Tiantian & Nakagawa, Kei & Matsumoto, Ken'ichi, 2023. "Evaluating solar photovoltaic power efficiency based on economic dimensions for 26 countries using a three-stage data envelopment analysis," Applied Energy, Elsevier, vol. 335(C).
    16. Kim, Hansung & Lee, Hwarang & Koo, Yoonmo & Choi, Dong Gu, 2020. "Comparative analysis of iterative approaches for incorporating learning-by-doing into the energy system models," Energy, Elsevier, vol. 197(C).
    17. Byun, Hyunsuk & Lee, Chul-Yong, 2017. "Analyzing Korean consumers’ latent preferences for electricity generation sources with a hierarchical Bayesian logit model in a discrete choice experiment," Energy Policy, Elsevier, vol. 105(C), pages 294-302.
    18. Timo Lohmann & Michael R. Bussieck & Lutz Westermann & Steffen Rebennack, 2021. "High-Performance Prototyping of Decomposition Methods in GAMS," INFORMS Journal on Computing, INFORMS, vol. 33(1), pages 34-50, January.
    19. Haas, J. & Cebulla, F. & Cao, K. & Nowak, W. & Palma-Behnke, R. & Rahmann, C. & Mancarella, P., 2017. "Challenges and trends of energy storage expansion planning for flexibility provision in low-carbon power systems – a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 603-619.
    20. Eunil Park & Ki Joon Kim & Sang Jib Kwon & Taeil Han & Wongi S. Na & Angel P. Del Pobil, 2017. "Economic Feasibility of Renewable Electricity Generation Systems for Local Government Office: Evaluation of the Jeju Special Self-Governing Province in South Korea," Sustainability, MDPI, vol. 9(1), pages 1-13, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:8:y:2016:i:5:p:423-:d:69296. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.