IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v8y2016i10p969-d78796.html
   My bibliography  Save this article

For a Green Stadium: Economic Feasibility of Sustainable Renewable Electricity Generation at the Jeju World Cup Venue

Author

Listed:
  • Eunil Park

    (Korea Institute of Civil Engineering and Building Technology (KICT), Goyang, Gyeonggi-do 10223, Korea)

  • Sang Jib Kwon

    (Department of Business Administration, Dongguk University, Gyeongju 38066, Korea)

  • Angel P. Del Pobil

    (Robotic Intelligence Laboratory, University Jaume-I, Castellón de la Plana 12071, Spain
    Department of Interaction Science, Sungkyunkwan University, Seoul 03063, Korea)

Abstract

After the 2002 FIFA World Cup in South Korea and Japan, the local governments of South Korea were left in charge of several large-scale soccer stadiums. Although these governments have made significant efforts toward creating profits from the stadiums, it is proving to be too difficult for several administrations to cover their full operational, maintenance, and conservation costs. In order to overcome this problem, one of the governments, Seogwipo City, which owns Jeju World Cup Stadium (JWCS), is attempting to provide an independent renewable electricity generation system for the operation of the stadium. The current study therefore examines potential configurations of an independent renewable electricity generation system for JWCS, using HOMER software. The simulation results yield three optimal system configurations with a renewable fraction of 1.00 and relatively low values for the cost of energy ($0.405, $0.546, and $0.692 per kWh). Through the examination of these three possible optimal configurations, the implications and limitations of the current study are presented.

Suggested Citation

  • Eunil Park & Sang Jib Kwon & Angel P. Del Pobil, 2016. "For a Green Stadium: Economic Feasibility of Sustainable Renewable Electricity Generation at the Jeju World Cup Venue," Sustainability, MDPI, vol. 8(10), pages 1-11, September.
  • Handle: RePEc:gam:jsusta:v:8:y:2016:i:10:p:969-:d:78796
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/8/10/969/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/8/10/969/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Eunil Park & Taeil Han & Taehyeong Kim & Sang Jib Kwon & Angel P. Del Pobil, 2016. "Economic and Environmental Benefits of Optimized Hybrid Renewable Energy Generation Systems at Jeju National University, South Korea," Sustainability, MDPI, vol. 8(9), pages 1-12, September.
    2. Sen, Rohit & Bhattacharyya, Subhes C., 2014. "Off-grid electricity generation with renewable energy technologies in India: An application of HOMER," Renewable Energy, Elsevier, vol. 62(C), pages 388-398.
    3. Woo-Kyu Chae & Hak-Ju Lee & Jong-Nam Won & Jung-Sung Park & Jae-Eon Kim, 2015. "Design and Field Tests of an Inverted Based Remote MicroGrid on a Korean Island," Energies, MDPI, vol. 8(8), pages 1-18, August.
    4. Shin, Jungwoo & Woo, JongRoul & Huh, Sung-Yoon & Lee, Jongsu & Jeong, Gicheol, 2014. "Analyzing public preferences and increasing acceptability for the Renewable Portfolio Standard in Korea," Energy Economics, Elsevier, vol. 42(C), pages 17-26.
    5. Park, Eunil & Kwon, Sang Jib, 2016. "Solutions for optimizing renewable power generation systems at Kyung-Hee University׳s Global Campus, South Korea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 439-449.
    6. Kyeongsik Yoo & Eunil Park & Heetae Kim & Jay Y. Ohm & Taeyong Yang & Ki Joon Kim & Hyun Joon Chang & Angel P. Del Pobil, 2014. "Optimized Renewable and Sustainable Electricity Generation Systems for Ulleungdo Island in South Korea," Sustainability, MDPI, vol. 6(11), pages 1-11, November.
    7. Dursun, Bahtiyar, 2012. "Determination of the optimum hybrid renewable power generating systems for Kavakli campus of Kirklareli University, Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 6183-6190.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Elnour, Mariam & Fadli, Fodil & Himeur, Yassine & Petri, Ioan & Rezgui, Yacine & Meskin, Nader & Ahmad, Ahmad M., 2022. "Performance and energy optimization of building automation and management systems: Towards smart sustainable carbon-neutral sports facilities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    2. Park, Eunil, 2017. "Potentiality of renewable resources: Economic feasibility perspectives in South Korea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 61-70.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Heetae Kim & Jinwoo Bae & Seoin Baek & Donggyun Nam & Hyunsung Cho & Hyun Joon Chang, 2017. "Comparative Analysis between the Government Micro-Grid Plan and Computer Simulation Results Based on Real Data: The Practical Case for a South Korean Island," Sustainability, MDPI, vol. 9(2), pages 1-18, January.
    2. Park, Eunil & Kwon, Sang Jib, 2016. "Solutions for optimizing renewable power generation systems at Kyung-Hee University׳s Global Campus, South Korea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 439-449.
    3. Park, Eunil, 2017. "Potentiality of renewable resources: Economic feasibility perspectives in South Korea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 61-70.
    4. Park, Eunil & Kwon, Sang Jib, 2016. "Renewable electricity generation systems for electric-powered taxis: The case of Daejeon metropolitan city," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1466-1474.
    5. Eunil Park & Taeil Han & Taehyeong Kim & Sang Jib Kwon & Angel P. Del Pobil, 2016. "Economic and Environmental Benefits of Optimized Hybrid Renewable Energy Generation Systems at Jeju National University, South Korea," Sustainability, MDPI, vol. 8(9), pages 1-12, September.
    6. Seoin Baek & Heetae Kim & Hyun Joon Chang, 2016. "Optimal Hybrid Renewable Airport Power System: Empirical Study on Incheon International Airport, South Korea," Sustainability, MDPI, vol. 8(6), pages 1-13, June.
    7. Eunil Park & Ki Joon Kim & Sang Jib Kwon & Taeil Han & Wongi S. Na & Angel P. Del Pobil, 2017. "Economic Feasibility of Renewable Electricity Generation Systems for Local Government Office: Evaluation of the Jeju Special Self-Governing Province in South Korea," Sustainability, MDPI, vol. 9(1), pages 1-13, January.
    8. Jinwoo Bae & Soojung Lee & Heetae Kim, 2021. "Comparative study on the economic feasibility of nanogrid and microgrid electrification: The case of Jeju Island, South Korea," Energy & Environment, , vol. 32(1), pages 168-188, February.
    9. Bahramara, S. & Moghaddam, M. Parsa & Haghifam, M.R., 2016. "Optimal planning of hybrid renewable energy systems using HOMER: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 609-620.
    10. Moritz Wegener & Antonio Isalgué & Anders Malmquist & Andrew Martin, 2019. "3E-Analysis of a Bio-Solar CCHP System for the Andaman Islands, India—A Case Study," Energies, MDPI, vol. 12(6), pages 1-19, March.
    11. Pascasio, Jethro Daniel A. & Esparcia, Eugene A. & Castro, Michael T. & Ocon, Joey D., 2021. "Comparative assessment of solar photovoltaic-wind hybrid energy systems: A case for Philippine off-grid islands," Renewable Energy, Elsevier, vol. 179(C), pages 1589-1607.
    12. Park, Sang Yong & Yun, Bo-Yeong & Yun, Chang Yeol & Lee, Duk Hee & Choi, Dong Gu, 2016. "An analysis of the optimum renewable energy portfolio using the bottom–up model: Focusing on the electricity generation sector in South Korea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 319-329.
    13. Kalinci, Yildiz, 2015. "Alternative energy scenarios for Bozcaada island, Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 468-480.
    14. Subodh Kharel & Bahman Shabani, 2018. "Hydrogen as a Long-Term Large-Scale Energy Storage Solution to Support Renewables," Energies, MDPI, vol. 11(10), pages 1-17, October.
    15. Kyeongsik Yoo & Eunil Park & Heetae Kim & Jay Y. Ohm & Taeyong Yang & Ki Joon Kim & Hyun Joon Chang & Angel P. Del Pobil, 2014. "Optimized Renewable and Sustainable Electricity Generation Systems for Ulleungdo Island in South Korea," Sustainability, MDPI, vol. 6(11), pages 1-11, November.
    16. Seoin Baek & Heetae Kim & Hyun Joon Chang, 2015. "Optimal Hybrid Renewable Power System for an Emerging Island of South Korea: The Case of Yeongjong Island," Sustainability, MDPI, vol. 7(10), pages 1-17, October.
    17. Baek, Seoin & Park, Eunil & Kim, Min-Gil & Kwon, Sang Jib & Kim, Ki Joon & Ohm, Jay Y. & del Pobil, Angel P., 2016. "Optimal renewable power generation systems for Busan metropolitan city in South Korea," Renewable Energy, Elsevier, vol. 88(C), pages 517-525.
    18. Kim, Sunwoo & Choi, Yechan & Park, Joungho & Adams, Derrick & Heo, Seongmin & Lee, Jay H., 2024. "Multi-period, multi-timescale stochastic optimization model for simultaneous capacity investment and energy management decisions for hybrid Micro-Grids with green hydrogen production under uncertainty," Renewable and Sustainable Energy Reviews, Elsevier, vol. 190(PA).
    19. Bhatt, Ankit & Sharma, M.P. & Saini, R.P., 2016. "Feasibility and sensitivity analysis of an off-grid micro hydro–photovoltaic–biomass and biogas–diesel–battery hybrid energy system for a remote area in Uttarakhand state, India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 53-69.
    20. Rajbongshi, Rumi & Borgohain, Devashree & Mahapatra, Sadhan, 2017. "Optimization of PV-biomass-diesel and grid base hybrid energy systems for rural electrification by using HOMER," Energy, Elsevier, vol. 126(C), pages 461-474.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:8:y:2016:i:10:p:969-:d:78796. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.