IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i10p2669-d362867.html
   My bibliography  Save this article

Characteristics of Miscanthus Fuel by Wet Torrefaction on Fuel Upgrading and Gas Emission Behavior

Author

Listed:
  • Jae-Hyun Park

    (Division of Energy Systems Research, Graduate School, Ajou University, Wonchon-dong, Yeongtong-gu, Suwon 443-749, Korea)

  • Young-Chan Choi

    (Korea Institute of Energy Research (KIER), 152, Gajeong-ro, Yuseong-gu, Daejeon 34129, Korea)

  • Young-Joo Lee

    (Korea Institute of Energy Research (KIER), 152, Gajeong-ro, Yuseong-gu, Daejeon 34129, Korea)

  • Hyung-Taek Kim

    (Division of Energy Systems Research, Graduate School, Ajou University, Wonchon-dong, Yeongtong-gu, Suwon 443-749, Korea)

Abstract

Biomass is a solid fuel that can be used instead of coal to address the issue of greenhouse gases. Currently, biomass is used directly in combustion or via co-combustion in coal-fired power plants. However, its use is limited due to calorific value and ash problems. In this study, wet torrefaction (WT) was carried out at various temperatures (160 °C, 180 °C, and 200 °C) and the properties of the product were evaluated. In comparison to dry torrefaction, the ash contained in biomass was extracted by an acidic solution (i.e., acetic acid) from the overreaction of the biomass. From examining the ash content of the treated WT, it was confirmed that K 2 O of basic ash was mainly extracted. In particular, in the case of K 2 O, since the main cause of combustion problems are issues such as fouling and slagging, the removed WT can be stably combusted in the boiler. Finally, the combustion and emission behaviors were evaluated by TGA-DTG and TGA-FTIR. As the fuel-N was decreased in the WT proess, the NOx in the emission gas after combustion was lower than that of raw miscanthus, and SO 2 showed a similar value. As a result, it was confirmed that the WT sample is an advanced fuel in terms of fuel upgrading, alkali minerals, and NOx emission compared to raw miscanthus.

Suggested Citation

  • Jae-Hyun Park & Young-Chan Choi & Young-Joo Lee & Hyung-Taek Kim, 2020. "Characteristics of Miscanthus Fuel by Wet Torrefaction on Fuel Upgrading and Gas Emission Behavior," Energies, MDPI, vol. 13(10), pages 1-10, May.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:10:p:2669-:d:362867
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/10/2669/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/10/2669/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Álvarez, Ana & Nogueiro, Dositeo & Pizarro, Consuelo & Matos, María & Bueno, Julio L., 2018. "Non-oxidative torrefaction of biomass to enhance its fuel properties," Energy, Elsevier, vol. 158(C), pages 1-8.
    2. Mladenović, Milica & Paprika, Milijana & Marinković, Ana, 2018. "Denitrification techniques for biomass combustion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3350-3364.
    3. Mun, Tae-Young & Tumsa, Tefera Zelalem & Lee, Uendo & Yang, Won, 2016. "Performance evaluation of co-firing various kinds of biomass with low rank coals in a 500 MWe coal-fired power plant," Energy, Elsevier, vol. 115(P1), pages 954-962.
    4. Vamvuka, D. & Pitharoulis, M. & Alevizos, G. & Repouskou, E. & Pentari, D., 2009. "Ash effects during combustion of lignite/biomass blends in fluidized bed," Renewable Energy, Elsevier, vol. 34(12), pages 2662-2671.
    5. Huh, Sung-Yoon & Lee, Jongsu & Shin, Jungwoo, 2015. "The economic value of South Korea׳s renewable energy policies (RPS, RFS, and RHO): A contingent valuation study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 64-72.
    6. Cao, Wenhan & Martí-Rosselló, Teresa & Li, Jun & Lue, Leo, 2019. "Prediction of potassium compounds released from biomass during combustion," Applied Energy, Elsevier, vol. 250(C), pages 1696-1705.
    7. Bach, Quang-Vu & Skreiberg, Øyvind, 2016. "Upgrading biomass fuels via wet torrefaction: A review and comparison with dry torrefaction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 665-677.
    8. Kwon, Tae-hyeong, 2018. "Policy synergy or conflict for renewable energy support: Case of RPS and auction in South Korea," Energy Policy, Elsevier, vol. 123(C), pages 443-449.
    9. Li, Yueh-Heng & Lin, Hsien-Tsung & Xiao, Kai-Lin & Lasek, Janusz, 2018. "Combustion behavior of coal pellets blended with Miscanthus biochar," Energy, Elsevier, vol. 163(C), pages 180-190.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Antonios Nazos & Dorothea Politi & Georgios Giakoumakis & Dimitrios Sidiras, 2022. "Simulation and Optimization of Lignocellulosic Biomass Wet- and Dry-Torrefaction Process for Energy, Fuels and Materials Production: A Review," Energies, MDPI, vol. 15(23), pages 1-35, November.
    2. Rafail Isemin & Fouzi Tabet & Artemy Nebyvaev & Vadim Kokh-Tatarenko & Sergey Kuzmin & Oleg Milovanov & Dmitry Klimov & Alexander Mikhalev & Semen Dobkin & Yuri Zhulaev, 2022. "Prediction of the Behavior of Sunflower Husk Ash after Its Processing by Various Torrefaction Methods," Energies, MDPI, vol. 15(20), pages 1-14, October.
    3. Maja Ivanovski & Aleksandra Petrovič & Darko Goričanec & Danijela Urbancl & Marjana Simonič, 2023. "Exploring the Properties of the Torrefaction Process and Its Prospective in Treating Lignocellulosic Material," Energies, MDPI, vol. 16(18), pages 1-20, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Youhyun Lee & Bomi Kim & Heeju Hwang, 2020. "Which Institutional Conditions Lead to a Successful Local Energy Transition? Applying Fuzzy-Set Qualitative Comparative Analysis to Solar PV Cases in South Korea," Energies, MDPI, vol. 13(14), pages 1-19, July.
    2. José Airton de Mattos Carneiro-Junior & Giulyane Felix de Oliveira & Carine Tondo Alves & Heloysa Martins Carvalho Andrade & Silvio Alexandre Beisl Vieira de Melo & Ednildo Andrade Torres, 2021. "Valorization of Prosopis juliflora Woody Biomass in Northeast Brazilian through Dry Torrefaction," Energies, MDPI, vol. 14(12), pages 1-17, June.
    3. Yin, Chungen, 2020. "Development in biomass preparation for suspension firing towards higher biomass shares and better boiler performance and fuel rangeability," Energy, Elsevier, vol. 196(C).
    4. Gan, Yong Yang & Ong, Hwai Chyuan & Ling, Tau Chuan & Chen, Wei-Hsin & Chong, Cheng Tung, 2019. "Torrefaction of de-oiled Jatropha seed kernel biomass for solid fuel production," Energy, Elsevier, vol. 170(C), pages 367-374.
    5. Zhou, Dongdong & Cheng, Shusen, 2019. "Measurement study of the PCI process on the temperature distribution in raceway zone of blast furnace by using digital imaging techniques," Energy, Elsevier, vol. 174(C), pages 814-822.
    6. Wang, Xuebin & Zhang, Jiaye & Xu, Xinwei & Mikulčić, Hrvoje & Li, Yan & Zhou, Yuegui & Tan, Houzhang, 2020. "Numerical study of biomass Co-firing under Oxy-MILD mode," Renewable Energy, Elsevier, vol. 146(C), pages 2566-2576.
    7. Yao, Xiwen & Zhao, Zhicheng & Li, Jishuo & Zhang, Bohan & Zhou, Haodong & Xu, Kaili, 2020. "Experimental investigation of physicochemical and slagging characteristics of inorganic constituents in ash residues from gasification of different herbaceous biomass," Energy, Elsevier, vol. 198(C).
    8. Youhyun Lee & Inseok Seo, 2019. "Sustainability of a Policy Instrument: Rethinking the Renewable Portfolio Standard in South Korea," Sustainability, MDPI, vol. 11(11), pages 1-19, May.
    9. Devaraja, Udya Madhavi Aravindi & Senadheera, Sachini Supunsala & Gunarathne, Duleeka Sandamali, 2022. "Torrefaction severity and performance of Rubberwood and Gliricidia," Renewable Energy, Elsevier, vol. 195(C), pages 1341-1353.
    10. Kumar, R. & Strezov, V., 2021. "Thermochemical production of bio-oil: A review of downstream processing technologies for bio-oil upgrading, production of hydrogen and high value-added products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    11. Lin, Xiaona & Kong, Lingshuai & Ren, Xiajin & Zhang, Donghong & Cai, Hongzhen & Lei, Hanwu, 2021. "Catalytic co-pyrolysis of torrefied poplar wood and high-density polyethylene over hierarchical HZSM-5 for mono-aromatics production," Renewable Energy, Elsevier, vol. 164(C), pages 87-95.
    12. Neves, Renato Cruz & Klein, Bruno Colling & da Silva, Ricardo Justino & Rezende, Mylene Cristina Alves Ferreira & Funke, Axel & Olivarez-Gómez, Edgardo & Bonomi, Antonio & Maciel-Filho, Rubens, 2020. "A vision on biomass-to-liquids (BTL) thermochemical routes in integrated sugarcane biorefineries for biojet fuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    13. Jiang, Chunlong & Lin, Qizhao & Wang, Chengxin & Jiang, Xuedan & Bi, Haobo & Bao, Lin, 2020. "Experimental study of the ignition and combustion characteristics of cattle manure under different environmental conditions," Energy, Elsevier, vol. 197(C).
    14. Wander, Paulo R. & Bianchi, Flávio M. & Caetano, Nattan R. & Klunk, Marcos A. & Indrusiak, Maria Luiza S., 2020. "Cofiring low-rank coal and biomass in a bubbling fluidized bed with varying excess air ratio and fluidization velocity," Energy, Elsevier, vol. 203(C).
    15. Feng, Ping & Li, Xiaoyang & Wang, Jinyu & Li, Jie & Wang, Huan & He, Lu, 2021. "The mixtures of bio-oil derived from different biomass and coal/char as biofuels: Combustion characteristics," Energy, Elsevier, vol. 224(C).
    16. Tolmasquim, Maurício T. & de Barros Correia, Tiago & Addas Porto, Natália & Kruger, Wikus, 2021. "Electricity market design and renewable energy auctions: The case of Brazil," Energy Policy, Elsevier, vol. 158(C).
    17. Jaime Martín-Pascual & Joaquín Jódar & Miguel L. Rodríguez & Montserrat Zamorano, 2020. "Determination of the Optimal Operative Conditions for the Torrefaction of Olive Waste Biomass," Sustainability, MDPI, vol. 12(16), pages 1-11, August.
    18. Zeng, Lijun & Du, Wenjing & Zhang, Wencheng & Zhao, Laijun & Wang, Zhaohua, 2023. "An inter-provincial cooperation model under Renewable Portfolio Standard policy," Energy, Elsevier, vol. 269(C).
    19. Stolarski, Mariusz J. & Dudziec, Paweł & Krzyżaniak, Michał & Graban, Łukasz & Lajszner, Waldemar & Olba–Zięty, Ewelina, 2024. "How do key for the bioenergy industry properties of baled biomass change over two years of storage?," Renewable Energy, Elsevier, vol. 224(C).
    20. Kwon, Gihoon & Tsang, Daniel C.W. & Oh, Jeong-Ik & Kwon, Eilhann E. & Song, Hocheol, 2019. "Pyrolysis of aquatic carbohydrates using CO2 as reactive gas medium: A case study of chitin," Energy, Elsevier, vol. 177(C), pages 136-143.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:10:p:2669-:d:362867. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.