IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v151y2021ics0301421521000215.html
   My bibliography  Save this article

Consumer acceptance of the energy transition in Switzerland: The role of attitudes explained through a hybrid discrete choice model

Author

Listed:
  • Motz, Alessandra

Abstract

While several countries progress in the energy transition, the social acceptance of new infrastructures becomes increasingly important. We focus on market acceptance, and study the preferences of Swiss households with respect to selected energy sources used for electricity generation. By applying a hybrid discrete choice model with latent variables on stated preference data, we assess households’ preferences with respect to the price, origin, and reliability of their electricity supply, and evaluate the impact of demographic, behavioural, and attitudinal drivers thereon. Latent variables representing attitudes allow us to explicitly model psychological traits otherwise unobservable from the data, evaluate their impact on individual choices, and connect them with demographic or behavioural variables. We find that households evaluate variations in the price and reliability of supply differently, depending on the energy source used. Environmental concern is associated to a stronger interest in a generic 100% renewable-based supply, informed optimism to a higher acceptance of nuclear generation. Energy illiteracy and environmental-friendly habits are more frequent among environmentally conscious households, less so among the informed optimists. Measures to foster energy literacy and ensure transparency of energy supply contracts are recommended in order to elicit or maintain consensus, and achieve the desired energy policy goals.

Suggested Citation

  • Motz, Alessandra, 2021. "Consumer acceptance of the energy transition in Switzerland: The role of attitudes explained through a hybrid discrete choice model," Energy Policy, Elsevier, vol. 151(C).
  • Handle: RePEc:eee:enepol:v:151:y:2021:i:c:s0301421521000215
    DOI: 10.1016/j.enpol.2021.112152
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421521000215
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2021.112152?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sun, Chuanwang & Zhu, Xiting, 2014. "Evaluating the public perceptions of nuclear power in China: Evidence from a contingent valuation survey," Energy Policy, Elsevier, vol. 69(C), pages 397-405.
    2. Harry Foster & James Burrows, 2017. "Hypothetical bias: a new meta-analysis," Chapters, in: Daniel McFadden & Kenneth Train (ed.), Contingent Valuation of Environmental Goods, chapter 10, pages 270-291, Edward Elgar Publishing.
    3. Stoutenborough, James W. & Vedlitz, Arnold, 2016. "The role of scientific knowledge in the public's perceptions of energy technology risks," Energy Policy, Elsevier, vol. 96(C), pages 206-216.
    4. Zorić, Jelena & Hrovatin, Nevenka, 2012. "Household willingness to pay for green electricity in Slovenia," Energy Policy, Elsevier, vol. 47(C), pages 180-187.
    5. Roe, Brian & Teisl, Mario F. & Levy, Alan & Russell, Matthew, 2001. "US consumers' willingness to pay for green electricity," Energy Policy, Elsevier, vol. 29(11), pages 917-925, September.
    6. Vivianne H. M. Visschers & Michael Siegrist, 2013. "How a Nuclear Power Plant Accident Influences Acceptance of Nuclear Power: Results of a Longitudinal Study Before and After the Fukushima Disaster," Risk Analysis, John Wiley & Sons, vol. 33(2), pages 333-347, February.
    7. Siegrist, Michael & Visschers, Vivianne H.M., 2013. "Acceptance of nuclear power: The Fukushima effect," Energy Policy, Elsevier, vol. 59(C), pages 112-119.
    8. Alvarez-Farizo, Begona & Hanley, Nick, 2002. "Using conjoint analysis to quantify public preferences over the environmental impacts of wind farms. An example from Spain," Energy Policy, Elsevier, vol. 30(2), pages 107-116, January.
    9. Wustenhagen, Rolf & Wolsink, Maarten & Burer, Mary Jean, 2007. "Social acceptance of renewable energy innovation: An introduction to the concept," Energy Policy, Elsevier, vol. 35(5), pages 2683-2691, May.
    10. Dong, Changgui & Sigrin, Benjamin, 2019. "Using willingness to pay to forecast the adoption of solar photovoltaics: A “parameterization + calibration” approach," Energy Policy, Elsevier, vol. 129(C), pages 100-110.
    11. Batley, S. L. & Colbourne, D. & Fleming, P. D. & Urwin, P., 2001. "Citizen versus consumer: challenges in the UK green power market," Energy Policy, Elsevier, vol. 29(6), pages 479-487, May.
    12. Carlo Andrea Bollino, 2009. "The Willingness to Pay for Renewable Energy Sources: The Case of Italy with Socio-demographic Determinants," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 81-96.
    13. Petrovich, Beatrice & Hille, Stefanie Lena & Wüstenhagen, Rolf, 2019. "Beauty and the budget: A segmentation of residential solar adopters," Ecological Economics, Elsevier, vol. 164(C), pages 1-1.
    14. Ajzen, Icek, 1991. "The theory of planned behavior," Organizational Behavior and Human Decision Processes, Elsevier, vol. 50(2), pages 179-211, December.
    15. Mewton, Ross T. & Cacho, Oscar J., 2011. "Green Power voluntary purchases: Price elasticity and policy analysis," Energy Policy, Elsevier, vol. 39(1), pages 377-385, January.
    16. Sundt, Swantje & Rehdanz, Katrin, 2015. "Consumers' willingness to pay for green electricity: A meta-analysis of the literature," Energy Economics, Elsevier, vol. 51(C), pages 1-8.
    17. Andrew A. Goett & Kathleen Hudson & Kenneth E. Train, 2000. "Customers' Choice Among Retail Energy Suppliers: The Willingness-to-Pay for Service Attributes," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 1-28.
    18. Cohen, Jed J. & Moeltner, Klaus & Reichl, Johannes & Schmidthaler, Michael, 2016. "Linking the value of energy reliability to the acceptance of energy infrastructure: Evidence from the EU," Resource and Energy Economics, Elsevier, vol. 45(C), pages 124-143.
    19. Yoo, James & Ready, Richard C., 2014. "Preference heterogeneity for renewable energy technology," Energy Economics, Elsevier, vol. 42(C), pages 101-114.
    20. Cicia, Gianni & Cembalo, Luigi & Del Giudice, Teresa & Palladino, Andrea, 2012. "Fossil energy versus nuclear, wind, solar and agricultural biomass: Insights from an Italian national survey," Energy Policy, Elsevier, vol. 42(C), pages 59-66.
    21. Contu, Davide & Strazzera, Elisabetta & Mourato, Susana, 2016. "Modeling individual preferences for energy sources: The case of IV generation nuclear energy in Italy," Ecological Economics, Elsevier, vol. 127(C), pages 37-58.
    22. Chung, Ji-Bum & Kim, Eun-Sung, 2018. "Public perception of energy transition in Korea: Nuclear power, climate change, and party preference," Energy Policy, Elsevier, vol. 116(C), pages 137-144.
    23. Visschers, Vivianne H.M. & Keller, Carmen & Siegrist, Michael, 2011. "Climate change benefits and energy supply benefits as determinants of acceptance of nuclear power stations: Investigating an explanatory model," Energy Policy, Elsevier, vol. 39(6), pages 3621-3629, June.
    24. Kotchen, Matthew J. & Moore, Michael R., 2007. "Private provision of environmental public goods: Household participation in green-electricity programs," Journal of Environmental Economics and Management, Elsevier, vol. 53(1), pages 1-16, January.
    25. Train, Kenneth E & McFadden, Daniel L & Goett, Andrew A, 1987. "Consumer Attitudes and Voluntary Rate Schedules for Public Utilities," The Review of Economics and Statistics, MIT Press, vol. 69(3), pages 383-391, August.
    26. Jun, Eunju & Joon Kim, Won & Hoon Jeong, Yong & Heung Chang, Soon, 2010. "Measuring the social value of nuclear energy using contingent valuation methodology," Energy Policy, Elsevier, vol. 38(3), pages 1470-1476, March.
    27. Daniel McFadden, 2017. "Stated preference methods and their applicability to environmental use and non-use valuations," Chapters, in: Daniel McFadden & Kenneth Train (ed.), Contingent Valuation of Environmental Goods, chapter 6, pages 153-187, Edward Elgar Publishing.
    28. Wustenhagen, Rolf & Markard, Jochen & Truffer, Bernhard, 2003. "Diffusion of green power products in Switzerland," Energy Policy, Elsevier, vol. 31(7), pages 621-632, June.
    29. Merk, Christine & Rehdanz, Katrin & Schröder, Carsten, 2019. "How consumers trade off supply security and green electricity: Evidence from Germany and Great Britain," Energy Economics, Elsevier, vol. 84(S1).
    30. Bergmann, Ariel & Hanley, Nick & Wright, Robert, 2006. "Valuing the attributes of renewable energy investments," Energy Policy, Elsevier, vol. 34(9), pages 1004-1014, June.
    31. Oliver, Henry & Volschenk, Jako & Smit, Eon, 2011. "Residential consumers in the Cape Peninsula's willingness to pay for premium priced green electricity," Energy Policy, Elsevier, vol. 39(2), pages 544-550, February.
    32. Mah, Daphne Ngar-yin & Hills, Peter & Tao, Julia, 2014. "Risk perception, trust and public engagement in nuclear decision-making in Hong Kong," Energy Policy, Elsevier, vol. 73(C), pages 368-390.
    33. Kaenzig, Josef & Heinzle, Stefanie Lena & Wüstenhagen, Rolf, 2013. "Whatever the customer wants, the customer gets? Exploring the gap between consumer preferences and default electricity products in Germany," Energy Policy, Elsevier, vol. 53(C), pages 311-322.
    34. Contu, Davide & Mourato, Susana, 2020. "Complementing choice experiment with contingent valuation data: Individual preferences and views towards IV generation nuclear energy in the UK," Energy Policy, Elsevier, vol. 136(C).
    35. Ma, Chunbo & Burton, Michael, 2016. "Warm glow from green power: Evidence from Australian electricity consumers," Journal of Environmental Economics and Management, Elsevier, vol. 78(C), pages 106-120.
    36. Kim, Junghun & Park, Stephen Youngjun & Lee, Jongsu, 2018. "Do people really want renewable energy? Who wants renewable energy?: Discrete choice model of reference-dependent preference in South Korea," Energy Policy, Elsevier, vol. 120(C), pages 761-770.
    37. Mark A. Andor, Andreas Gerster, and Stephan Sommer, 2020. "Consumer Inattention, Heuristic Thinking and the Role of Energy Labels," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    38. Amador, Francisco Javier & González, Rosa Marina & Ramos-Real, Francisco Javier, 2013. "Supplier choice and WTP for electricity attributes in an emerging market: The role of perceived past experience, environmental concern and energy saving behavior," Energy Economics, Elsevier, vol. 40(C), pages 953-966.
    39. Ma, Chunbo & Rogers, Abbie A. & Kragt, Marit E. & Zhang, Fan & Polyakov, Maksym & Gibson, Fiona & Chalak, Morteza & Pandit, Ram & Tapsuwan, Sorada, 2015. "Consumers’ willingness to pay for renewable energy: A meta-regression analysis," Resource and Energy Economics, Elsevier, vol. 42(C), pages 93-109.
    40. Nomura, Noboru & Akai, Makoto, 2004. "Willingness to pay for green electricity in Japan as estimated through contingent valuation method," Applied Energy, Elsevier, vol. 78(4), pages 453-463, August.
    41. Strazzera, Elisabetta & Mura, Marina & Contu, Davide, 2012. "Combining choice experiments with psychometric scales to assess the social acceptability of wind energy projects: A latent class approach," Energy Policy, Elsevier, vol. 48(C), pages 334-347.
    42. Maria Kamargianni & Moshe Ben-Akiva & Amalia Polydoropoulou, 2014. "Incorporating social interaction into hybrid choice models," Transportation, Springer, vol. 41(6), pages 1263-1285, November.
    43. Maya Abou-Zeid & Moshe Ben-Akiva, 2014. "Hybrid choice models," Chapters, in: Stephane Hess & Andrew Daly (ed.), Handbook of Choice Modelling, chapter 17, pages 383-412, Edward Elgar Publishing.
    44. Hansla, Andre & Gamble, Amelie & Juliusson, Asgeir & Garling, Tommy, 2008. "Psychological determinants of attitude towards and willingness to pay for green electricity," Energy Policy, Elsevier, vol. 36(2), pages 768-774, February.
    45. Moshe Ben-Akiva & André Palma & Daniel McFadden & Maya Abou-Zeid & Pierre-André Chiappori & Matthieu Lapparent & Steven Durlauf & Mogens Fosgerau & Daisuke Fukuda & Stephane Hess & Charles Manski & Ar, 2012. "Process and context in choice models," Marketing Letters, Springer, vol. 23(2), pages 439-456, June.
    46. Vij, Akshay & Walker, Joan L., 2016. "How, when and why integrated choice and latent variable models are latently useful," Transportation Research Part B: Methodological, Elsevier, vol. 90(C), pages 192-217.
    47. Plum, Christiane & Olschewski, Roland & Jobin, Marilou & van Vliet, Oscar, 2019. "Public preferences for the Swiss electricity system after the nuclear phase-out: A choice experiment," Energy Policy, Elsevier, vol. 130(C), pages 181-196.
    48. Roland Menges & Carsten Schroeder & Stefan Traub, 2005. "Altruism, Warm Glow and the Willingness-to-Donate for Green Electricity: An Artefactual Field Experiment," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 31(4), pages 431-458, August.
    49. Bauwens, Thomas, 2016. "Explaining the diversity of motivations behind community renewable energy," Energy Policy, Elsevier, vol. 93(C), pages 278-290.
    50. Koto, Prosper Senyo & Yiridoe, Emmanuel K., 2019. "Expected willingness to pay for wind energy in Atlantic Canada," Energy Policy, Elsevier, vol. 129(C), pages 80-88.
    51. Conte, Marc N. & Jacobsen, Grant D., 2016. "Explaining Demand for Green Electricity Using Data from All U.S. Utilities," Energy Economics, Elsevier, vol. 60(C), pages 122-130.
    52. Stoutenborough, James W. & Sturgess, Shelbi G. & Vedlitz, Arnold, 2013. "Knowledge, risk, and policy support: Public perceptions of nuclear power," Energy Policy, Elsevier, vol. 62(C), pages 176-184.
    53. Chorus, Caspar G. & Kroesen, Maarten, 2014. "On the (im-)possibility of deriving transport policy implications from hybrid choice models," Transport Policy, Elsevier, vol. 36(C), pages 217-222.
    54. Borchers, Allison M. & Duke, Joshua M. & Parsons, George R., 2007. "Does willingness to pay for green energy differ by source?," Energy Policy, Elsevier, vol. 35(6), pages 3327-3334, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lei Fan & Yunyun Zhang & Meilin Jin & Qiang Ma & Jing Zhao, 2022. "Does New Digital Infrastructure Promote the Transformation of the Energy Structure? The Perspective of China’s Energy Industry Chain," Energies, MDPI, vol. 15(23), pages 1-18, November.
    2. Agnieszka Janik & Adam Ryszko & Marek Szafraniec, 2021. "Determinants of the EU Citizens’ Attitudes towards the European Energy Union Priorities," Energies, MDPI, vol. 14(17), pages 1-32, August.
    3. Agarwal, Ankit & Canfield, Casey & Fikru, Mahelet G., 2024. "Role of greener default options on consumer preferences for renewable energy procurement," Renewable Energy, Elsevier, vol. 221(C).
    4. Xiaohui Hu & Wu Tang & Xuliang Zhang & Dongzheng Jie, 2024. "“Small Sacrifice for the Greater Good”: Decoding Just Transition in a Chinese Peripheral Region," Social Inclusion, Cogitatio Press, vol. 12.
    5. Alex W. J. Cheng & Harry F. Lee, 2022. "Energy Transition towards Sustainable Development: Perspective of Individuals’ Engagement Amid Transition Process," Sustainability, MDPI, vol. 14(16), pages 1-16, August.
    6. Joalland, Olivier & Mahieu, Pierre-Alexandre, 2023. "Developing large-scale offshore wind power programs: A choice experiment analysis in France," Ecological Economics, Elsevier, vol. 204(PA).
    7. Xiaheng Zhang & Lin Xiao & Guichao Jin, 2023. "Residential Environmental Protection Commodity Consumption Model and Trend Forecast Based on Consumer Preference," Sustainability, MDPI, vol. 15(14), pages 1-19, July.
    8. Contu, Davide & Strazzera, Elisabetta, 2022. "Testing for saliency-led choice behavior in discrete choice modeling: An application in the context of preferences towards nuclear energy in Italy," Journal of choice modelling, Elsevier, vol. 44(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cardella, Eric & Ewing, Brad & Williams, Ryan Blake, 2018. "Green is Good – The Impact of Information Nudges on the Adoption of Voluntary Green Power Plans," 2018 Annual Meeting, February 2-6, 2018, Jacksonville, Florida 266583, Southern Agricultural Economics Association.
    2. Ndebele, Tom, 2020. "Assessing the potential for consumer-driven renewable energy development in deregulated electricity markets dominated by renewables," Energy Policy, Elsevier, vol. 136(C).
    3. Soon, Jan-Jan & Ahmad, Siti-Aznor, 2015. "Willingly or grudgingly? A meta-analysis on the willingness-to-pay for renewable energy use," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 877-887.
    4. Oerlemans, Leon A.G. & Chan, Kai-Ying & Volschenk, Jako, 2016. "Willingness to pay for green electricity: A review of the contingent valuation literature and its sources of error," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 875-885.
    5. Herbes, Carsten & Friege, Christian & Baldo, Davide & Mueller, Kai-Markus, 2015. "Willingness to pay lip service? Applying a neuroscience-based method to WTP for green electricity," Energy Policy, Elsevier, vol. 87(C), pages 562-572.
    6. Zorić, Jelena & Hrovatin, Nevenka, 2012. "Household willingness to pay for green electricity in Slovenia," Energy Policy, Elsevier, vol. 47(C), pages 180-187.
    7. Dagher, Leila & Bird, Lori & Heeter, Jenny, 2017. "Residential green power demand in the United States," Renewable Energy, Elsevier, vol. 114(PB), pages 1062-1068.
    8. Simona Bigerna & Paolo Polinori, 2015. "Assessing the Determinants of Renewable Electricity Acceptance Integrating Meta-Analysis Regression and a Local Comprehensive Survey," Sustainability, MDPI, vol. 7(9), pages 1-24, August.
    9. Dagher, Leila & Harajli, Hassan, 2015. "Willingness to pay for green power in an unreliable electricity sector: Part 1. The case of the Lebanese residential sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1634-1642.
    10. Alló, Maria & Loureiro, Maria L., 2014. "The role of social norms on preferences towards climate change policies: A meta-analysis," Energy Policy, Elsevier, vol. 73(C), pages 563-574.
    11. Bae, Jeong Hwan & Rishi, Meenakshi, 2018. "Increasing consumer participation rates for green pricing programs: A choice experiment for South Korea," Energy Economics, Elsevier, vol. 74(C), pages 490-502.
    12. Bae, Jeong Hwan & Rishi, Meenakshi & Li, Dmitriy, 2021. "Consumer preferences for a green certificate program in South Korea," Energy, Elsevier, vol. 230(C).
    13. Will, Christian & Lehmann, Nico & Baumgartner, Nora & Feurer, Sven & Jochem, Patrick & Fichtner, Wolf, 2022. "Consumer understanding and evaluation of carbon-neutral electric vehicle charging services," Applied Energy, Elsevier, vol. 313(C).
    14. Martínez-Cruz, Adán L. & Núñez, Héctor M., 2021. "Tension in Mexico's energy transition: Are urban residential consumers in Aguascalientes willing to pay for renewable energy and green jobs?," Energy Policy, Elsevier, vol. 150(C).
    15. Murakami, Kayo & Ida, Takanori & Tanaka, Makoto & Friedman, Lee, 2015. "Consumers' willingness to pay for renewable and nuclear energy: A comparative analysis between the US and Japan," Energy Economics, Elsevier, vol. 50(C), pages 178-189.
    16. Gianluca Grilli, 2017. "Renewable energy and willingness to pay: Evidences from a meta-analysis," ECONOMICS AND POLICY OF ENERGY AND THE ENVIRONMENT, FrancoAngeli Editore, vol. 2017(1-2), pages 253-271.
    17. Sauthoff, Saramena & Danne, Michael & Mußhoff, Oliver, 2017. "To switch or not to switch? – Understanding German consumers’ willingness to pay for green electricity tariff attributes," Department of Agricultural and Rural Development (DARE) Discussion Papers 260771, Georg-August-Universitaet Goettingen, Department of Agricultural Economics and Rural Development (DARE).
    18. Gracia, Azucena & Barreiro-Hurlé, Jesús & Pérez y Pérez, Luis, 2012. "Can renewable energy be financed with higher electricity prices? Evidence from a Spanish region," Energy Policy, Elsevier, vol. 50(C), pages 784-794.
    19. Kaenzig, Josef & Heinzle, Stefanie Lena & Wüstenhagen, Rolf, 2013. "Whatever the customer wants, the customer gets? Exploring the gap between consumer preferences and default electricity products in Germany," Energy Policy, Elsevier, vol. 53(C), pages 311-322.
    20. Komarek, Timothy M. & Lupi, Frank & Kaplowitz, Michael D., 2011. "Valuing energy policy attributes for environmental management: Choice experiment evidence from a research institution," Energy Policy, Elsevier, vol. 39(9), pages 5105-5115, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:151:y:2021:i:c:s0301421521000215. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.