IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v129y2019icp1056-1069.html
   My bibliography  Save this article

Competitiveness of open-cycle gas turbine and its potential in the future Korean electricity market with high renewable energy mix

Author

Listed:
  • Kim, Eun-Hwan
  • Park, Yong-Gi
  • Roh, Jae Hyung

Abstract

In this paper, we analyzed the competitiveness of an open-cycle gas turbine (OCGT) in the Korean electricity market and found reasons why OCGT has not been constructed since 2001, when the market opened. Through the analysis, we found that OCGT was weak in the Korean electricity market due to 3 factors: high load factor, high price of liquefied natural gas, and existing inefficient power plants. Using the conformity theory of the optimum in resource planning and the equilibrium in market dynamics, we verified the reasons by implementing resource planning using the Wien Automatic System Planning (WASP)-Ⅳ package with actual market data for the 16 years from 2001 to 2016. In addition, considering the new energy policy of Korea, shifting main sources of electricity generation from nuclear and coal to clean renewable energies and natural gas, we analyzed the competitiveness of OCGT in the future Korean electricity market. We identified the factors unfavorable for OCGT in the current market and suggested what should be changed to cope with high renewable energy penetration.

Suggested Citation

  • Kim, Eun-Hwan & Park, Yong-Gi & Roh, Jae Hyung, 2019. "Competitiveness of open-cycle gas turbine and its potential in the future Korean electricity market with high renewable energy mix," Energy Policy, Elsevier, vol. 129(C), pages 1056-1069.
  • Handle: RePEc:eee:enepol:v:129:y:2019:i:c:p:1056-1069
    DOI: 10.1016/j.enpol.2019.03.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421519301776
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2019.03.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lovering, Jessica R. & Yip, Arthur & Nordhaus, Ted, 2016. "Historical construction costs of global nuclear power reactors," Energy Policy, Elsevier, vol. 91(C), pages 371-382.
    2. Peter Cramton, 2017. "Electricity market design," Oxford Review of Economic Policy, Oxford University Press and Oxford Review of Economic Policy Limited, vol. 33(4), pages 589-612.
    3. Ahn, Joongha & Woo, JongRoul & Lee, Jongsu, 2015. "Optimal allocation of energy sources for sustainable development in South Korea: Focus on the electric power generation industry," Energy Policy, Elsevier, vol. 78(C), pages 78-90.
    4. Kim, Hyunsook & Kim, Sung-Soo, 2010. "The optimal fuel mix and redistribution of social surplus in the Korean power market," Energy Policy, Elsevier, vol. 38(12), pages 7929-7938, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wandisile Pram & Njabulo Kambule & Omoseni Adepoju, 2022. "Probing the Financial Sustainability of Eskom’s Open Cycle Gas Turbines (OCGTs) Utilisation (2018–2021)," Sustainability, MDPI, vol. 14(16), pages 1-16, August.
    2. Mohd Alsaleh & Azeem Oluwaseyi Zubair & Abdul Samad Abdul‐Rahim, 2020. "The impact of global competitiveness on the growth of bioenergy industry in EU‐28 region," Sustainable Development, John Wiley & Sons, Ltd., vol. 28(5), pages 1304-1316, September.
    3. Choo, Hyunwoong & Kim, Yong-Gun & Kim, Dongwoo, 2024. "Power sector carbon reduction review for South Korea in 2030," Renewable and Sustainable Energy Reviews, Elsevier, vol. 196(C).
    4. Józsa, Viktor & Malý, Milan & Füzesi, Dániel & Rácz, Erika & Kardos, Réka Anna & Jedelský, Jan, 2023. "Schlieren analysis of non-MILD distributed combustion in a mixture temperature-controlled burner," Energy, Elsevier, vol. 273(C).
    5. Insu Do & Siyoung Lee & Gab-Su Seo & Sungsoo Kim, 2023. "An Analysis of the Effects of Renewable Energy Intermittency on the 2030 Korean Electricity Market," Energies, MDPI, vol. 16(10), pages 1-19, May.
    6. Seong Won Moon & Tong Seop Kim, 2020. "Advanced Gas Turbine Control Logic Using Black Box Models for Enhancing Operational Flexibility and Stability," Energies, MDPI, vol. 13(21), pages 1-23, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Schreiner, Lena & Madlener, Reinhard, 2022. "Investing in power grid infrastructure as a flexibility option: A DSGE assessment for Germany," Energy Economics, Elsevier, vol. 107(C).
    2. Scott Duke Kominers & Alexander Teytelboym & Vincent P Crawford, 2017. "An invitation to market design," Oxford Review of Economic Policy, Oxford University Press and Oxford Review of Economic Policy Limited, vol. 33(4), pages 541-571.
    3. Ishizaka, Alessio & Siraj, Sajid & Nemery, Philippe, 2016. "Which energy mix for the UK (United Kingdom)? An evolutive descriptive mapping with the integrated GAIA (graphical analysis for interactive aid)–AHP (analytic hierarchy process) visualization tool," Energy, Elsevier, vol. 95(C), pages 602-611.
    4. Keppler, Jan Horst & Quemin, Simon & Saguan, Marcelo, 2022. "Why the sustainable provision of low-carbon electricity needs hybrid markets," Energy Policy, Elsevier, vol. 171(C).
    5. Koltsaklis, Nikolaos E. & Nazos, Konstantinos, 2017. "A stochastic MILP energy planning model incorporating power market dynamics," Applied Energy, Elsevier, vol. 205(C), pages 1364-1383.
    6. Peter Cramton, 2022. "Fostering Resiliency with Good Market Design: Lessons from Texas," ECONtribute Discussion Papers Series 145, University of Bonn and University of Cologne, Germany.
    7. Lyu, Chenyan & Do, Hung Xuan & Nepal, Rabindra & Jamasb, Tooraj, 2024. "Volatility spillovers and carbon price in the Nordic wholesale electricity markets," Energy Economics, Elsevier, vol. 134(C).
    8. Kim, Hyunsook & Kim, Sung-Soo, 2012. "The resource adequacy scheme in the Korean electricity market," Energy Policy, Elsevier, vol. 47(C), pages 133-144.
    9. Samadi, Sascha, 2018. "The experience curve theory and its application in the field of electricity generation technologies – A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2346-2364.
    10. Moon, Hee Seung & Song, Yong Hyun & Lee, Ji Woo & Hong, Sanghyun & Kim, Eunsung & Kim, Seung Wan, 2024. "Implementation cost of net zero electricity system: Analysis based on Korean national target," Energy Policy, Elsevier, vol. 188(C).
    11. Martin Bichler & Johannes Knörr & Felipe Maldonado, 2023. "Pricing in Nonconvex Markets: How to Price Electricity in the Presence of Demand Response," Information Systems Research, INFORMS, vol. 34(2), pages 652-675, June.
    12. Fernando Barros Jr & Victor R. Rodrigues, 2021. "On the determinants of a stable long-run relationship between energy consumption and economic growth," ECONOMICS AND POLICY OF ENERGY AND THE ENVIRONMENT, FrancoAngeli Editore, vol. 2021(2), pages 147-171.
    13. Peter Cramton & Emmanuele Bobbio & David Malec & Pat Sujarittanonta, 2022. "Electricity Markets in Transition: A Multi-Decade Micro-Model of Entry and Exit in Advanced Wholesale Markets," ECONtribute Discussion Papers Series 183, University of Bonn and University of Cologne, Germany.
    14. Mier, Mathias, 2021. "Efficient pricing of electricity revisited," Energy Economics, Elsevier, vol. 104(C).
    15. Boldrini, A. & Jiménez Navarro, J.P. & Crijns-Graus, W.H.J. & van den Broek, M.A., 2022. "The role of district heating systems to provide balancing services in the European Union," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    16. Micha Kahlen & Karsten Schroer & Wolfgang Ketter & Alok Gupta, 2024. "Smart Markets for Real-Time Allocation of Multiproduct Resources: The Case of Shared Electric Vehicles," Information Systems Research, INFORMS, vol. 35(2), pages 871-889, June.
    17. Schmeda-Lopez, Diego & McConnaughy, Thomas B. & McFarland, Eric W., 2018. "Radiation enhanced chemical production: Improving the value proposition of nuclear power," Energy, Elsevier, vol. 162(C), pages 491-504.
    18. Deakin, Matthew & Bloomfield, Hannah & Greenwood, David & Sheehy, Sarah & Walker, Sara & Taylor, Phil C., 2021. "Impacts of heat decarbonization on system adequacy considering increased meteorological sensitivity," Applied Energy, Elsevier, vol. 298(C).
    19. Fuat Oğuz, 2020. "Hayekian complexity and the role of regulation in electricity markets," Economic Affairs, Wiley Blackwell, vol. 40(3), pages 406-418, October.
    20. Richstein, Jörn C. & Lorenz, Casimir & Neuhoff, Karsten, 2020. "An auction story: How simple bids struggle with uncertainty," Energy Economics, Elsevier, vol. 89(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:129:y:2019:i:c:p:1056-1069. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.