IDEAS home Printed from https://ideas.repec.org/a/zbw/jumsac/294970.html
   My bibliography  Save this article

Is Visiting the ESB Website Deteriorating the Air Quality of our Countries? A Statistical Analysis of the Relationship Between Air Pollution Levels and Information & Communication Technologies

Author

Listed:
  • Kühn, Katharina Isabella

Abstract

Information and communication technology (ICT) is often praised for reducing emissions, however, data centres enabling these technologies have a high energy demand which produces emissions due to CO2-intensive energy production. The purpose of this paper is to investigate whether a relationship between ICT categories and air quality exists and how ICT affects it. This will contribute to a greater understanding of how to mitigate the effect of the rise of new digital technologies. This paper examines the effects of ICT aspects (Knowledge, Technology, Future Readiness) on air quality in 57 countries by using multilinear regression. The results show that a linear relationship between ICT factors and air quality exists. Technology has a negative effect on air quality, whereas Future Readiness has a positive effect. The effect of Future Readiness on air quality is almost twice as high compared to Technology. A relationship between Knowledge and air quality, as proposed in the literature, could not be proven by the model. It can be concluded that this combination of findings provides some support for the conceptual premise that the net effect of ICT on air quality might be positive and that the share of the total carbon footprint of the ICT sector might have been forecasted too high.

Suggested Citation

  • Kühn, Katharina Isabella, 2021. "Is Visiting the ESB Website Deteriorating the Air Quality of our Countries? A Statistical Analysis of the Relationship Between Air Pollution Levels and Information & Communication Technologies," Junior Management Science (JUMS), Junior Management Science e. V., vol. 6(4), pages 839-851.
  • Handle: RePEc:zbw:jumsac:294970
    DOI: 10.5282/jums/v6i4pp839-851
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/294970/1/5125-3364.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.5282/jums/v6i4pp839-851?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Chan, Chien Aun & Gygax, André F. & Leckie, Christopher & Wong, Elaine & Nirmalathas, Ampalavanapillai & Hinton, Kerry, 2016. "Telecommunications energy and greenhouse gas emissions management for future network growth," Applied Energy, Elsevier, vol. 166(C), pages 174-185.
    2. Cole, Matthew A. & Elliott, Robert J.R. & Shimamoto, Kenichi, 2005. "Industrial characteristics, environmental regulations and air pollution: an analysis of the UK manufacturing sector," Journal of Environmental Economics and Management, Elsevier, vol. 50(1), pages 121-143, July.
    3. Clarkson, Peter M. & Li, Yue & Richardson, Gordon D. & Vasvari, Florin P., 2011. "Does it really pay to be green? Determinants and consequences of proactive environmental strategies," Journal of Accounting and Public Policy, Elsevier, vol. 30(2), pages 122-144, March.
    4. Cho, Youngsang & Lee, Jongsu & Kim, Tai-Yoo, 2007. "The impact of ICT investment and energy price on industrial electricity demand: Dynamic growth model approach," Energy Policy, Elsevier, vol. 35(9), pages 4730-4738, September.
    5. Corinne Le Quéré & Robert B. Jackson & Matthew W. Jones & Adam J. P. Smith & Sam Abernethy & Robbie M. Andrew & Anthony J. De-Gol & David R. Willis & Yuli Shan & Josep G. Canadell & Pierre Friedlingst, 2020. "Temporary reduction in daily global CO2 emissions during the COVID-19 forced confinement," Nature Climate Change, Nature, vol. 10(7), pages 647-653, July.
    6. Christopher L. Weber & Jonathan G. Koomey & H. Scott Matthews, 2010. "The Energy and Climate Change Implications of Different Music Delivery Methods," Journal of Industrial Ecology, Yale University, vol. 14(5), pages 754-769, October.
    7. Karl Mathiesen, 2018. "Rating climate risks to credit worthiness," Nature Climate Change, Nature, vol. 8(6), pages 454-456, June.
    8. Sadorsky, Perry, 2012. "Information communication technology and electricity consumption in emerging economies," Energy Policy, Elsevier, vol. 48(C), pages 130-136.
    9. Yusuke Kishita & Yohei Yamaguchi & Yasushi Umeda & Yoshiyuki Shimoda & Minako Hara & Atsushi Sakurai & Hiroki Oka & Yuriko Tanaka, 2016. "Describing Long-Term Electricity Demand Scenarios in the Telecommunications Industry: A Case Study of Japan," Sustainability, MDPI, vol. 8(1), pages 1-16, January.
    10. Joysri Acharyya, 2009. "Fdi, Growth And The Environment: Evidence From India On Co2 Emission During The Last Two Decades," Journal of Economic Development, Chung-Ang Unviersity, Department of Economics, vol. 34(1), pages 43-58, June.
    11. Anders S. G. Andrae & Tomas Edler, 2015. "On Global Electricity Usage of Communication Technology: Trends to 2030," Challenges, MDPI, vol. 6(1), pages 1-41, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Taha Zaghdoudi, 2017. "Internet usage, renewable energy, electricity consumption and economic growth : Evidence from developed countries," Economics Bulletin, AccessEcon, vol. 37(3), pages 1612-1619.
    2. Melike E. Bildirici & Rui Alexandre Castanho & Fazıl Kayıkçı & Sema Yılmaz Genç, 2022. "ICT, Energy Intensity, and CO 2 Emission Nexus," Energies, MDPI, vol. 15(13), pages 1-15, June.
    3. Wen-Cheng Lu, 2018. "The impacts of information and communication technology, energy consumption, financial development, and economic growth on carbon dioxide emissions in 12 Asian countries," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 23(8), pages 1351-1365, December.
    4. Axenbeck, Janna & Niebel, Thomas, 2021. "Climate Protection Potentials of Digitalized Production Processes: Microeconometric Evidence," 23rd ITS Biennial Conference, Online Conference / Gothenburg 2021. Digital societies and industrial transformations: Policies, markets, and technologies in a post-Covid world 238007, International Telecommunications Society (ITS).
    5. Tilman Santarius & Johanna Pohl & Steffen Lange, 2020. "Digitalization and the Decoupling Debate: Can ICT Help to Reduce Environmental Impacts While the Economy Keeps Growing?," Sustainability, MDPI, vol. 12(18), pages 1-20, September.
    6. Munshi Naser Ibne Afzal & Munshi Naser Ibne Afzal & Jeff Gow & Jeff Gow, 2016. "Electricity Consumption and Information and Communication Technology in the Next Eleven Emerging Economies," International Journal of Energy Economics and Policy, Econjournals, vol. 6(3), pages 381-388.
    7. Max Freidin & Dmitry Burakov, 2018. "Economic Growth, Electricity Consumption and Internet Usage Nexus: Evidence from a Panel of Commonwealth of Independent States," International Journal of Energy Economics and Policy, Econjournals, vol. 8(5), pages 267-272.
    8. Rishan Adha & Cheng-Yih Hong & Somya Agrawal & Li-Hua Li, 2023. "ICT, carbon emissions, climate change, and energy demand nexus: The potential benefit of digitalization in Taiwan," Energy & Environment, , vol. 34(5), pages 1619-1638, August.
    9. Wang, Lei & Chen, Yangyang & Ramsey, Thomas Stephen & Hewings, Geoffrey J.D., 2021. "Will researching digital technology really empower green development?," Technology in Society, Elsevier, vol. 66(C).
    10. Dehghan Shabani, Zahra & Shahnazi, Rouhollah, 2019. "Energy consumption, carbon dioxide emissions, information and communications technology, and gross domestic product in Iranian economic sectors: A panel causality analysis," Energy, Elsevier, vol. 169(C), pages 1064-1078.
    11. Patrick Schulte & Heinz Welsch & Sascha Rexhäuser, 2016. "ICT and the Demand for Energy: Evidence from OECD Countries," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 63(1), pages 119-146, January.
    12. Oseghale Baryl Ihayere & Philip Olasupo Alege & Obindah Gershon & Jeremiah Ogaga Ejemeyovwi & Praise Daramola, 2021. "Information Communication Technology Access and Use towards Energy Consumption in Selected Sub Saharan Africa," International Journal of Energy Economics and Policy, Econjournals, vol. 11(1), pages 471-477.
    13. Axenbeck, Janna & Berner, Anne & Kneib, Thomas, 2022. "What drives the relationship between digitalization and industrial energy demand? Exploring firm-level heterogeneity," ZEW Discussion Papers 22-059, ZEW - Leibniz Centre for European Economic Research.
    14. Bright Akwasi Gyamfi & Asiedu B. Ampomah & Festus V. Bekun & Simplice A. Asongu, 2022. "Can information and communication technology and institutional quality help mitigate climate change in E7 economies? An environmental Kuznets curve extension," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 11(1), pages 1-20, December.
    15. Khayyat, Nabaz T. & Lee, Jongsu & Lee, Jeong-Dong, 2014. "How ICT Investment Influences Energy Demand in South Korea and Japan?," MPRA Paper 55454, University Library of Munich, Germany.
    16. Jens Malmodin & Dag Lundén, 2018. "The Energy and Carbon Footprint of the Global ICT and E&M Sectors 2010–2015," Sustainability, MDPI, vol. 10(9), pages 1-31, August.
    17. Salahuddin, Mohammad & Alam, Khorshed & Ozturk, Ilhan, 2016. "The effects of Internet usage and economic growth on CO2 emissions in OECD countries: A panel investigation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 1226-1235.
    18. Huaxue Zhao & Yu Cheng & Ruijing Zheng, 2022. "Impact of the Digital Economy on PM 2.5 : Experience from the Middle and Lower Reaches of the Yellow River Basin," IJERPH, MDPI, vol. 19(24), pages 1-20, December.
    19. Kopp, Thomas & Nabernegg, Markus & Lange, Steffen, 2023. "The net climate effect of digitalization, differentiating between firms and households," Energy Economics, Elsevier, vol. 126(C).
    20. Tang, Chang & Xue, Yan & Wu, Haitao & Irfan, Muhammad & Hao, Yu, 2022. "How does telecommunications infrastructure affect eco-efficiency? Evidence from a quasi-natural experiment in China," Technology in Society, Elsevier, vol. 69(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:jumsac:294970. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://jums.academy/en/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.