IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v150y2021ics0301421521000148.html
   My bibliography  Save this article

Tension in Mexico's energy transition: Are urban residential consumers in Aguascalientes willing to pay for renewable energy and green jobs?

Author

Listed:
  • Martínez-Cruz, Adán L.
  • Núñez, Héctor M.

Abstract

Via a discrete choice experiment (DCE), a sample of urban residents that contribute to their household electricity bill in Aguascalientes, Mexico, has been asked to choose from among four electricity contracts —a status quo alternative, and three alternatives described in terms of type of renewable energy source (RES), % of RES in current electricity mix, new jobs in RE sector, and % increase in self-reported bimonthly electricity bill. Respondents report a positive willingness to pay (WTP) for both RES and new jobs in RE sector, and a higher WTP for solar energy in comparison to biomass energy. These results are timely as there is a tension in Mexico due to the energy strategy pursued by the current federal administration —which in practice has slowed down the energy transition initiated in 2015. This paper's findings suggest that respondents to our DCE would support a just energy transition aiming to boost both RES and the creation of green jobs.

Suggested Citation

  • Martínez-Cruz, Adán L. & Núñez, Héctor M., 2021. "Tension in Mexico's energy transition: Are urban residential consumers in Aguascalientes willing to pay for renewable energy and green jobs?," Energy Policy, Elsevier, vol. 150(C).
  • Handle: RePEc:eee:enepol:v:150:y:2021:i:c:s0301421521000148
    DOI: 10.1016/j.enpol.2021.112145
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421521000148
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2021.112145?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hancevic, Pedro I. & Nuñez, Hector M., 2017. "Distributed Photovoltaic Power Generation: A Widespread Application in the Mexican Residential Sector," 2017 Annual Meeting, July 30-August 1, Chicago, Illinois 258129, Agricultural and Applied Economics Association.
    2. Kontogianni, Areti & Tourkolias, Christos & Skourtos, Michalis, 2013. "Renewables portfolio, individual preferences and social values towards RES technologies," Energy Policy, Elsevier, vol. 55(C), pages 467-476.
    3. Abdullah, Sabah & Mariel, Petr, 2010. "Choice experiment study on the willingness to pay to improve electricity services," Energy Policy, Elsevier, vol. 38(8), pages 4570-4581, August.
    4. Vecchiato, Daniel & Tempesta, Tiziano, 2015. "Public preferences for electricity contracts including renewable energy: A marketing analysis with choice experiments," Energy, Elsevier, vol. 88(C), pages 168-179.
    5. Aizaki, Hideo, 2012. "Basic Functions for Supporting an Implementation of Choice Experiments in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 50(c02).
    6. Joseph E. Aldy & Matthew J. Kotchen & Anthony A. Leiserowitz, 2012. "Willingness to pay and political support for a US national clean energy standard," Nature Climate Change, Nature, vol. 2(8), pages 596-599, August.
    7. Murakami, Kayo & Ida, Takanori & Tanaka, Makoto & Friedman, Lee, 2015. "Consumers' willingness to pay for renewable and nuclear energy: A comparative analysis between the US and Japan," Energy Economics, Elsevier, vol. 50(C), pages 178-189.
    8. Sundt, Swantje & Rehdanz, Katrin, 2015. "Consumers' willingness to pay for green electricity: A meta-analysis of the literature," Energy Economics, Elsevier, vol. 51(C), pages 1-8.
    9. Yoo, James & Ready, Richard C., 2014. "Preference heterogeneity for renewable energy technology," Energy Economics, Elsevier, vol. 42(C), pages 101-114.
    10. Rehdanz, Katrin & Schröder, Carsten & Narita, Daiju & Okubo, Toshihiro, 2017. "Public preferences for alternative electricity mixes in post-Fukushima Japan," Energy Economics, Elsevier, vol. 65(C), pages 262-270.
    11. Bigerna, Simona & Polinori, Paolo, 2014. "Italian households׳ willingness to pay for green electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 110-121.
    12. Kosenius, Anna-Kaisa & Ollikainen, Markku, 2013. "Valuation of environmental and societal trade-offs of renewable energy sources," Energy Policy, Elsevier, vol. 62(C), pages 1148-1156.
    13. Hancevic, Pedro Ignacio & Lopez-Aguilar, Javier Alejandro, 2019. "Energy efficiency programs in the context of increasing block tariffs: The case of residential electricity in Mexico," Energy Policy, Elsevier, vol. 131(C), pages 320-331.
    14. Charlier, Dorothée & Martinez-Cruz, Adan L., 2020. "Do habitual energy saving behaviors of household heads impact energy consumption in their own dwelling? An exploration in the French residential sector," CERE Working Papers 2020:5, CERE - the Center for Environmental and Resource Economics.
    15. Pável Reyes-Mercado & Rajagopal, 2014. "Consumer preferences for green power in Mexico," International Journal of Business Innovation and Research, Inderscience Enterprises Ltd, vol. 8(2), pages 210-224.
    16. Hancevic, Pedro I. & Nuñez, Hector M. & Rosellon, Juan, 2017. "Distributed photovoltaic power generation: Possibilities, benefits, and challenges for a widespread application in the Mexican residential sector," Energy Policy, Elsevier, vol. 110(C), pages 478-489.
    17. Bergmann, Ariel & Hanley, Nick & Wright, Robert, 2006. "Valuing the attributes of renewable energy investments," Energy Policy, Elsevier, vol. 34(9), pages 1004-1014, June.
    18. Oliver, Henry & Volschenk, Jako & Smit, Eon, 2011. "Residential consumers in the Cape Peninsula's willingness to pay for premium priced green electricity," Energy Policy, Elsevier, vol. 39(2), pages 544-550, February.
    19. Gracia, Azucena & Barreiro-Hurlé, Jesús & Pérez y Pérez, Luis, 2012. "Can renewable energy be financed with higher electricity prices? Evidence from a Spanish region," Energy Policy, Elsevier, vol. 50(C), pages 784-794.
    20. Daniel McFadden & Kenneth Train, 2000. "Mixed MNL models for discrete response," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 15(5), pages 447-470.
    21. Train,Kenneth E., 2009. "Discrete Choice Methods with Simulation," Cambridge Books, Cambridge University Press, number 9780521747387, September.
    22. Borchers, Allison M. & Duke, Joshua M. & Parsons, George R., 2007. "Does willingness to pay for green energy differ by source?," Energy Policy, Elsevier, vol. 35(6), pages 3327-3334, June.
    23. Shin Kinoshita, 2020. "Conjoint analysis of Japanese households’ energy-saving behavior after the earthquake: The role of the preferences for renewable energy," Energy & Environment, , vol. 31(4), pages 676-691, June.
    24. Aldy, Joseph Edgar & Leiserowitz, Anthony A & Kotchen, Matthew J, 2012. "Willingness to Pay and Political Support for a U.S. National Clean Energy Standard," Scholarly Articles 8832942, Harvard Kennedy School of Government.
    25. Oerlemans, Leon A.G. & Chan, Kai-Ying & Volschenk, Jako, 2016. "Willingness to pay for green electricity: A review of the contingent valuation literature and its sources of error," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 875-885.
    26. Robert J. Johnston & Kevin J. Boyle & Wiktor (Vic) Adamowicz & Jeff Bennett & Roy Brouwer & Trudy Ann Cameron & W. Michael Hanemann & Nick Hanley & Mandy Ryan & Riccardo Scarpa & Roger Tourangeau & Ch, 2017. "Contemporary Guidance for Stated Preference Studies," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 4(2), pages 319-405.
    27. Yang, Yingkui & Solgaard, Hans Stubbe & Haider, Wolfgang, 2016. "Wind, hydro or mixed renewable energy source: Preference for electricity products when the share of renewable energy increases," Energy Policy, Elsevier, vol. 97(C), pages 521-531.
    28. Anabela Botelho & Lina Lourenço-Gomes & Lígia M. Costa Pinto & Sara Sousa & Marieta Valente, 2018. "Discrete-choice experiments valuing local environmental impacts of renewables: two approaches to a case study in Portugal," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 20(1), pages 145-162, December.
    29. Longo, Alberto & Markandya, Anil & Petrucci, Marta, 2008. "The internalization of externalities in the production of electricity: Willingness to pay for the attributes of a policy for renewable energy," Ecological Economics, Elsevier, vol. 67(1), pages 140-152, August.
    30. Susaeta, Andres & Lal, Pankaj & Alavalapati, Janaki & Mercer, Evan, 2011. "Random preferences towards bioenergy environmental externalities: A case study of woody biomass based electricity in the Southern United States," Energy Economics, Elsevier, vol. 33(6), pages 1111-1118.
    31. Diesendorf, Mark & Elliston, Ben, 2018. "The feasibility of 100% renewable electricity systems: A response to critics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 318-330.
    32. Cicia, Gianni & Cembalo, Luigi & Del Giudice, Teresa & Palladino, Andrea, 2012. "Fossil energy versus nuclear, wind, solar and agricultural biomass: Insights from an Italian national survey," Energy Policy, Elsevier, vol. 42(C), pages 59-66.
    33. Soliño, Mario & Farizo, Begoña A. & Vázquez, María X. & Prada, Albino, 2012. "Generating electricity with forest biomass: Consistency and payment timeframe effects in choice experiments," Energy Policy, Elsevier, vol. 41(C), pages 798-806.
    34. Laura Taylor & Mark Morrison & Kevin Boyle, 2010. "Exchange Rules and the Incentive Compatibility of Choice Experiments," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 47(2), pages 197-220, October.
    35. Merk, Christine & Rehdanz, Katrin & Schröder, Carsten, 2019. "How consumers trade off supply security and green electricity: Evidence from Germany and Great Britain," Energy Economics, Elsevier, vol. 84(S1).
    36. Alberini, Anna & Bigano, Andrea & Ščasný, Milan & Zvěřinová, Iva, 2018. "Preferences for Energy Efficiency vs. Renewables: What Is the Willingness to Pay to Reduce CO2 Emissions?," Ecological Economics, Elsevier, vol. 144(C), pages 171-185.
    37. Zografakis, Nikolaos & Sifaki, Elli & Pagalou, Maria & Nikitaki, Georgia & Psarakis, Vasilios & Tsagarakis, Konstantinos P., 2010. "Assessment of public acceptance and willingness to pay for renewable energy sources in Crete," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(3), pages 1088-1095, April.
    38. Kim, Junghun & Park, Stephen Youngjun & Lee, Jongsu, 2018. "Do people really want renewable energy? Who wants renewable energy?: Discrete choice model of reference-dependent preference in South Korea," Energy Policy, Elsevier, vol. 120(C), pages 761-770.
    39. Amador, Francisco Javier & González, Rosa Marina & Ramos-Real, Francisco Javier, 2013. "Supplier choice and WTP for electricity attributes in an emerging market: The role of perceived past experience, environmental concern and energy saving behavior," Energy Economics, Elsevier, vol. 40(C), pages 953-966.
    40. Osiolo, Helen Hoka, 2017. "Willingness to pay for improved energy: Evidence from Kenya," Renewable Energy, Elsevier, vol. 112(C), pages 104-112.
    41. Ma, Chunbo & Rogers, Abbie A. & Kragt, Marit E. & Zhang, Fan & Polyakov, Maksym & Gibson, Fiona & Chalak, Morteza & Pandit, Ram & Tapsuwan, Sorada, 2015. "Consumers’ willingness to pay for renewable energy: A meta-regression analysis," Resource and Energy Economics, Elsevier, vol. 42(C), pages 93-109.
    42. Soon, Jan-Jan & Ahmad, Siti-Aznor, 2015. "Willingly or grudgingly? A meta-analysis on the willingness-to-pay for renewable energy use," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 877-887.
    43. Aravena, Claudia & Hutchinson, W. George & Longo, Alberto, 2012. "Environmental pricing of externalities from different sources of electricity generation in Chile," Energy Economics, Elsevier, vol. 34(4), pages 1214-1225.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xintao Li & Xue’er Xu & Diyi Liu & Mengqiao Han & Siqi Li, 2022. "Consumers’ Willingness to Pay for the Solar Photovoltaic System in the Post-Subsidy Era: A Comparative Analysis under an Urban-Rural Divide," Energies, MDPI, vol. 15(23), pages 1-22, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Oerlemans, Leon A.G. & Chan, Kai-Ying & Volschenk, Jako, 2016. "Willingness to pay for green electricity: A review of the contingent valuation literature and its sources of error," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 875-885.
    2. Soon, Jan-Jan & Ahmad, Siti-Aznor, 2015. "Willingly or grudgingly? A meta-analysis on the willingness-to-pay for renewable energy use," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 877-887.
    3. Cerdá, Emilio & López-Otero, Xiral & Quiroga, Sonia & Soliño, Mario, 2024. "Willingness to pay for renewables: Insights from a meta-analysis of choice experiments," Energy Economics, Elsevier, vol. 130(C).
    4. Dalia Streimikiene & Tomas Balezentis & Ilona Alisauskaite-Seskiene & Gintare Stankuniene & Zaneta Simanaviciene, 2019. "A Review of Willingness to Pay Studies for Climate Change Mitigation in the Energy Sector," Energies, MDPI, vol. 12(8), pages 1-38, April.
    5. Gianluca Grilli, 2017. "Renewable energy and willingness to pay: Evidences from a meta-analysis," ECONOMICS AND POLICY OF ENERGY AND THE ENVIRONMENT, FrancoAngeli Editore, vol. 2017(1-2), pages 253-271.
    6. Bakkensen, Laura & Schuler, Paul, 2020. "A preference for power: Willingness to pay for energy reliability versus fuel type in Vietnam," Energy Policy, Elsevier, vol. 144(C).
    7. Alló, Maria & Loureiro, Maria L., 2014. "The role of social norms on preferences towards climate change policies: A meta-analysis," Energy Policy, Elsevier, vol. 73(C), pages 563-574.
    8. Zhao, Xiaoli & Cai, Qiong & Li, Shujie & Ma, Chunbo, 2018. "Public preferences for biomass electricity in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 95(C), pages 242-253.
    9. Bae, Jeong Hwan & Rishi, Meenakshi & Li, Dmitriy, 2021. "Consumer preferences for a green certificate program in South Korea," Energy, Elsevier, vol. 230(C).
    10. Ma, Chunbo & Rogers, Abbie A. & Kragt, Marit E. & Zhang, Fan & Polyakov, Maksym & Gibson, Fiona & Chalak, Morteza & Pandit, Ram & Tapsuwan, Sorada, 2015. "Consumers’ willingness to pay for renewable energy: A meta-regression analysis," Resource and Energy Economics, Elsevier, vol. 42(C), pages 93-109.
    11. Motz, Alessandra, 2021. "Consumer acceptance of the energy transition in Switzerland: The role of attitudes explained through a hybrid discrete choice model," Energy Policy, Elsevier, vol. 151(C).
    12. Anabela Botelho & Lina Lourenço-Gomes & Lígia M. Costa Pinto & Sara Sousa & Marieta Valente, 2018. "Discrete-choice experiments valuing local environmental impacts of renewables: two approaches to a case study in Portugal," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 20(1), pages 145-162, December.
    13. Sauthoff, Saramena & Danne, Michael & Mußhoff, Oliver, 2017. "To switch or not to switch? – Understanding German consumers’ willingness to pay for green electricity tariff attributes," Department of Agricultural and Rural Development (DARE) Discussion Papers 260771, Georg-August-Universitaet Goettingen, Department of Agricultural Economics and Rural Development (DARE).
    14. Cardella, Eric & Ewing, Brad & Williams, Ryan Blake, 2018. "Green is Good – The Impact of Information Nudges on the Adoption of Voluntary Green Power Plans," 2018 Annual Meeting, February 2-6, 2018, Jacksonville, Florida 266583, Southern Agricultural Economics Association.
    15. Balezentis, Tomas & Streimikiene, Dalia & Mikalauskas, Ignas & Shen, Zhiyang, 2021. "Towards carbon free economy and electricity: The puzzle of energy costs, sustainability and security based on willingness to pay," Energy, Elsevier, vol. 214(C).
    16. Sundt, Swantje & Rehdanz, Katrin, 2015. "Consumers' willingness to pay for green electricity: A meta-analysis of the literature," Energy Economics, Elsevier, vol. 51(C), pages 1-8.
    17. Ndebele, Tom, 2020. "Assessing the potential for consumer-driven renewable energy development in deregulated electricity markets dominated by renewables," Energy Policy, Elsevier, vol. 136(C).
    18. Ayodele, T.R. & Ogunjuyigbe, A.S.O. & Ajayi, O.D. & Yusuff, A.A. & Mosetlhe, T.C., 2021. "Willingness to pay for green electricity derived from renewable energy sources in Nigeria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    19. Kim, Hyunggeun & Park, Sangkyu & Lee, Jongsu, 2021. "Is renewable energy acceptable with power grid expansion? A quantitative study of South Korea's renewable energy acceptance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    20. Masako Numata & Masahiro Sugiyama & Wunna Swe & Daniel del Barrio Alvarez, 2021. "Willingness to Pay for Renewable Energy in Myanmar: Energy Source Preference," Energies, MDPI, vol. 14(5), pages 1-17, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:150:y:2021:i:c:s0301421521000148. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.