IDEAS home Printed from https://ideas.repec.org/a/eee/tefoso/v79y2012i7p1280-1291.html
   My bibliography  Save this article

Forecasting demand for a newly introduced product using reservation price data and Bayesian updating

Author

Listed:
  • Lee, Jongsu
  • Lee, Chul-Yong
  • Lee, Kichun Sky

Abstract

Forecasting demand during the early stages of a product's life cycle is a difficult but essential task for the purposes of marketing and policymaking. This paper introduces a procedure to derive accurate forecasts for newly introduced products for which limited data are available. We begin with the assumption that the consumer reservation price is related to the timing with which the consumer adopts the product. The model is estimated using reservation price data derived through a consumer survey, and the forecast is updated with sales data as they become available using Bayes's rule. The proposed model's forecasting performance is compared with that of benchmark models (i.e., Bass model, logistic growth model, and a Bayesian model based on analogy) using 23 quarters' worth of data on South Korea's broadband Internet services market. The proposed model outperforms all benchmark models in both prelaunch and postlaunch forecasting tests, supporting the thesis that consumer reservation price can be used to forecast demand for a new product before or shortly after product launch.

Suggested Citation

  • Lee, Jongsu & Lee, Chul-Yong & Lee, Kichun Sky, 2012. "Forecasting demand for a newly introduced product using reservation price data and Bayesian updating," Technological Forecasting and Social Change, Elsevier, vol. 79(7), pages 1280-1291.
  • Handle: RePEc:eee:tefoso:v:79:y:2012:i:7:p:1280-1291
    DOI: 10.1016/j.techfore.2012.04.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040162512000789
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.techfore.2012.04.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Shuying & Garces, Edwin & Daim, Tugrul, 2019. "Technology forecasting by analogy-based on social network analysis: The case of autonomous vehicles," Technological Forecasting and Social Change, Elsevier, vol. 148(C).
    2. Jun, Seung-Pyo & Sung, Tae-Eung & Park, Hyun-Woo, 2017. "Forecasting by analogy using the web search traffic," Technological Forecasting and Social Change, Elsevier, vol. 115(C), pages 37-51.
    3. Weihua Liu & Xinran Shen & Di Wang, 2020. "The impacts of dual overconfidence behavior and demand updating on the decisions of port service supply chain: a real case study from China," Annals of Operations Research, Springer, vol. 291(1), pages 565-604, August.
    4. Jiří Šindelář, 2019. "Sales forecasting in financial distribution: a comparison of quantitative forecasting methods," Journal of Financial Services Marketing, Palgrave Macmillan, vol. 24(3), pages 69-80, December.
    5. Lee, Hakyeon & Kim, Sang Gook & Park, Hyun-woo & Kang, Pilsung, 2014. "Pre-launch new product demand forecasting using the Bass model: A statistical and machine learning-based approach," Technological Forecasting and Social Change, Elsevier, vol. 86(C), pages 49-64.
    6. Wu, Xiang & (Yale) Gong, Yeming & Xu, Haoxuan & Chu, Chengbin & Zhang, Jinlong, 2017. "Dynamic lot-sizing models with pricing for new products," European Journal of Operational Research, Elsevier, vol. 260(1), pages 81-92.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:tefoso:v:79:y:2012:i:7:p:1280-1291. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.sciencedirect.com/science/journal/00401625 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.