IDEAS home Printed from https://ideas.repec.org/a/eee/resene/v77y2024ics0928765524000022.html
   My bibliography  Save this article

Discrete-continuous models of residential energy demand: A comprehensive review

Author

Listed:
  • Hanemann, Michael
  • Labandeira, Xavier
  • Labeaga, José M.
  • Vásquez-Lavín, Felipe

Abstract

This paper reviews forty years of research applying econometric models of discrete-continuous choice to analyze residential demand for energy. The review is primarily from the perspective of economic theory. We examine how well the utility-theoretic models developed in the literature match data that is commonly available on residential energy use, and we highlight the modeling challenges that have arisen through efforts to match theory with data. The literature contains two different formalizations of a corner solution. The first, by Dubin and McFadden (1984) and Hanemann (1984), models an extreme corner solution, in which only one of the discrete choice alternatives is chosen. While those papers share similarities, they also have some differences which have not been noticed or exposited in the literature. Subsequently, a formulation first implemented by Wales and Woodland (1983) and extended by Kim et al. (2002) and Bhat (2008) models a general corner solution, where several but not all of the discrete choice alternatives are chosen. Seventeen papers have employed one or another of these models to analyze residential demand for fuels and/or energy end uses in a variety of countries. We review issues that arose in these applications and identify some alternative model formulations that can be used in future work on residential energy demand.

Suggested Citation

  • Hanemann, Michael & Labandeira, Xavier & Labeaga, José M. & Vásquez-Lavín, Felipe, 2024. "Discrete-continuous models of residential energy demand: A comprehensive review," Resource and Energy Economics, Elsevier, vol. 77(C).
  • Handle: RePEc:eee:resene:v:77:y:2024:i:c:s0928765524000022
    DOI: 10.1016/j.reseneeco.2024.101426
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0928765524000022
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.reseneeco.2024.101426?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. von Haefen R.H. & Phaneuf D.J. & Parsons G.R., 2004. "Estimation and Welfare Analysis With Large Demand Systems," Journal of Business & Economic Statistics, American Statistical Association, vol. 22, pages 194-205, April.
    2. Jean-Thomas Bernard & Denis Bolduc & Donald Belanger, 1996. "Quebec Residential Electricity Demand: A Microeconometric Approach," Canadian Journal of Economics, Canadian Economics Association, vol. 29(1), pages 92-113, February.
    3. Mansur, Erin T. & Mendelsohn, Robert & Morrison, Wendy, 2008. "Climate change adaptation: A study of fuel choice and consumption in the US energy sector," Journal of Environmental Economics and Management, Elsevier, vol. 55(2), pages 175-193, March.
    4. Bhat, Chandra R. & Sen, Sudeshna, 2006. "Household vehicle type holdings and usage: an application of the multiple discrete-continuous extreme value (MDCEV) model," Transportation Research Part B: Methodological, Elsevier, vol. 40(1), pages 35-53, January.
    5. repec:bla:scandj:v:103:y:2001:i:1:p:165-84 is not listed on IDEAS
    6. McFadden, Daniel, 1989. "A Method of Simulated Moments for Estimation of Discrete Response Models without Numerical Integration," Econometrica, Econometric Society, vol. 57(5), pages 995-1026, September.
    7. Frontuto, Vito, 2019. "Forecasting household consumption of fuels: A multiple discrete-continuous approach," Applied Energy, Elsevier, vol. 240(C), pages 205-214.
    8. François Bourguignon & Martin Fournier & Marc Gurgand, 2007. "Selection Bias Corrections Based On The Multinomial Logit Model: Monte Carlo Comparisons," Journal of Economic Surveys, Wiley Blackwell, vol. 21(1), pages 174-205, February.
    9. Pinjari, Abdul Rawoof & Bhat, Chandra, 2021. "Computationally efficient forecasting procedures for Kuhn-Tucker consumer demand model systems: Application to residential energy consumption analysis," Journal of choice modelling, Elsevier, vol. 39(C).
    10. Lloyd-Smith, Patrick, 2018. "A new approach to calculating welfare measures in Kuhn-Tucker demand models," Journal of choice modelling, Elsevier, vol. 26(C), pages 19-27.
    11. Anna Risch & Claire Salmon, 2017. "What matters in residential energy consumption: evidence from France," International Journal of Global Energy Issues, Inderscience Enterprises Ltd, vol. 40(1/2), pages 79-116.
    12. Vaage, Kjell, 2000. "Heating technology and energy use: a discrete/continuous choice approach to Norwegian household energy demand," Energy Economics, Elsevier, vol. 22(6), pages 649-666, December.
    13. Liao, Huei-Chu & Chang, Tsai-Feng, 2002. "Space-heating and water-heating energy demands of the aged in the US," Energy Economics, Elsevier, vol. 24(3), pages 267-284, May.
    14. Lee, Lung-Fei & Pitt, Mark M, 1986. "Microeconometric Demand Systems with Binding Nonnegativity Constraints: The Dual Approach," Econometrica, Econometric Society, vol. 54(5), pages 1237-1242, September.
    15. Newell, Richard G. & Pizer, William A., 2008. "Carbon mitigation costs for the commercial building sector: Discrete-continuous choice analysis of multifuel energy demand," Resource and Energy Economics, Elsevier, vol. 30(4), pages 527-539, December.
    16. Bhat, Chandra R. & Srinivasan, Sivaramakrishnan & Sen, Sudeshna, 2006. "A joint model for the perfect and imperfect substitute goods case: Application to activity time-use decisions," Transportation Research Part B: Methodological, Elsevier, vol. 40(10), pages 827-850, December.
    17. Lee, Lung-Fei & Pitt, Mark M., 1987. "Microeconometric models of rationing, imperfect markets, and non-negativity constraints," Journal of Econometrics, Elsevier, vol. 36(1-2), pages 89-110.
    18. Hausman, Jerry A & Wise, David A, 1978. "A Conditional Probit Model for Qualitative Choice: Discrete Decisions Recognizing Interdependence and Heterogeneous Preferences," Econometrica, Econometric Society, vol. 46(2), pages 403-426, March.
    19. Michael Parti & Cynthia Parti, 1980. "The Total and Appliance-Specific Conditional Demand for Electricity in the Household Sector," Bell Journal of Economics, The RAND Corporation, vol. 11(1), pages 309-321, Spring.
    20. Chiang, Jeongwen & Lee, Lung-Fei, 1992. "Discrete/continuous models of consumer demand with binding nonnegativity constraints," Journal of Econometrics, Elsevier, vol. 54(1-3), pages 79-93.
    21. Yu, Biying & Zhang, Junyi & Fujiwara, Akimasa, 2011. "Representing in-home and out-of-home energy consumption behavior in Beijing," Energy Policy, Elsevier, vol. 39(7), pages 4168-4177, July.
    22. Saxena, Shobhit & Pinjari, Abdul Rawoof & Bhat, Chandra R., 2022. "Multiple discrete-continuous choice models with additively separable utility functions and linear utility on outside good: Model properties and characterization of demand functions," Transportation Research Part B: Methodological, Elsevier, vol. 155(C), pages 526-557.
    23. Neary, J. P. & Roberts, K. W. S., 1980. "The theory of household behaviour under rationing," European Economic Review, Elsevier, vol. 13(1), pages 25-42, January.
    24. Kelvin J. Lancaster, 1966. "A New Approach to Consumer Theory," Journal of Political Economy, University of Chicago Press, vol. 74(2), pages 132-132.
    25. Karl-Göran Mäler, 1971. "A Method of Estimating Social Benefits from Pollution Control," Palgrave Macmillan Books, in: Peter Bohm & Allen V. Kneese (ed.), The Economics of Environment, pages 106-118, Palgrave Macmillan.
    26. Jeong, Jaehoon & Seob Kim, Chang & Lee, Jongsu, 2011. "Household electricity and gas consumption for heating homes," Energy Policy, Elsevier, vol. 39(5), pages 2679-2687, May.
    27. Willig, Robert D., 1978. "Incremental consumer's surplus and hedonic price adjustment," Journal of Economic Theory, Elsevier, vol. 17(2), pages 227-253, April.
    28. Jeffrey T. LaFrance, 1993. "Weak Separability in Applied Welfare Analysis," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 75(3), pages 770-775.
    29. Mervyn A. King, 1980. "An Econometric Model of Tenure Choice and Demand for Housing as a Joint Decision," NBER Chapters, in: Econometric Studies in Public Finance, pages 137-159, National Bureau of Economic Research, Inc.
    30. Kuriyama, Koichi & Michael Hanemann, W. & Hilger, James R., 2010. "A latent segmentation approach to a Kuhn-Tucker model: An application to recreation demand," Journal of Environmental Economics and Management, Elsevier, vol. 60(3), pages 209-220, November.
    31. Couture, Stéphane & Garcia, Serge & Reynaud, Arnaud, 2012. "Household energy choices and fuelwood consumption: An econometric approach using French data," Energy Economics, Elsevier, vol. 34(6), pages 1972-1981.
    32. Daniel J. Phaneuf & Catherine L. Kling & Joseph A. Herriges, 2000. "Estimation and Welfare Calculations in a Generalized Corner Solution Model with an Application to Recreation Demand," The Review of Economics and Statistics, MIT Press, vol. 82(1), pages 83-92, February.
    33. Hanemann, W Michael, 1984. "Discrete-Continuous Models of Consumer Demand," Econometrica, Econometric Society, vol. 52(3), pages 541-561, May.
    34. Joseph A. Herriges & Catherine L. Kling & Daniel J. Phaneuf, 1999. "Corner Solution Models of Recreation Demand: A Comparison of Competing Frameworks," Chapters, in: Joseph A. Herriges & Catherine L. Kling (ed.), Valuing Recreation and the Environment, chapter 6, pages 163-198, Edward Elgar Publishing.
    35. Wales, T. J. & Woodland, A. D., 1983. "Estimation of consumer demand systems with binding non-negativity constraints," Journal of Econometrics, Elsevier, vol. 21(3), pages 263-285, April.
    36. Dubin, Jeffrey A & McFadden, Daniel L, 1984. "An Econometric Analysis of Residential Electric Appliance Holdings and Consumption," Econometrica, Econometric Society, vol. 52(2), pages 345-362, March.
    37. Muellbauer, John, 1974. "Household composition, Engel curves and welfare comparisons between households : A duality approach," European Economic Review, Elsevier, vol. 5(2), pages 103-122, August.
    38. Wasi, Nada & Carson, Richard T., 2013. "The influence of rebate programs on the demand for water heaters: The case of New South Wales," Energy Economics, Elsevier, vol. 40(C), pages 645-656.
    39. Lucas W. Davis & Lutz Kilian, 2011. "The Allocative Cost of Price Ceilings in the U.S. Residential Market for Natural Gas," Journal of Political Economy, University of Chicago Press, vol. 119(2), pages 212-241.
    40. Roger Haefen, 2008. "Latent Consideration Sets and Continuous Demand Systems," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 41(3), pages 363-379, November.
    41. von Haefen, Roger H., 2007. "Empirical strategies for incorporating weak complementarity into consumer demand models," Journal of Environmental Economics and Management, Elsevier, vol. 54(1), pages 15-31, July.
    42. Schmertmann, Carl P., 1994. "Selectivity bias correction methods in polychotomous sample selection models," Journal of Econometrics, Elsevier, vol. 60(1-2), pages 101-132.
    43. Bhat, Chandra R. & Sen, Sudeshna & Eluru, Naveen, 2009. "The impact of demographics, built environment attributes, vehicle characteristics, and gasoline prices on household vehicle holdings and use," Transportation Research Part B: Methodological, Elsevier, vol. 43(1), pages 1-18, January.
    44. Bhat, Chandra R., 2008. "The multiple discrete-continuous extreme value (MDCEV) model: Role of utility function parameters, identification considerations, and model extensions," Transportation Research Part B: Methodological, Elsevier, vol. 42(3), pages 274-303, March.
    45. Jeongwen Chiang, 1991. "A Simultaneous Approach to the Whether, What and How Much to Buy Questions," Marketing Science, INFORMS, vol. 10(4), pages 297-315.
    46. Runa Nesbakken, 2001. "Energy Consumption for Space Heating: A Discrete–Continuous Approach," Scandinavian Journal of Economics, Wiley Blackwell, vol. 103(1), pages 165-184, March.
    47. Bhat, Chandra R., 2005. "A multiple discrete-continuous extreme value model: formulation and application to discretionary time-use decisions," Transportation Research Part B: Methodological, Elsevier, vol. 39(8), pages 679-707, September.
    48. Phaneuf, Daniel J., 1999. "A Dual Approach to Modeling Corner Solutions in Recreation Demand," Journal of Environmental Economics and Management, Elsevier, vol. 37(1), pages 85-105, January.
    49. Larson, Douglas M., 1991. "Recovering weakly complementary preferences," Journal of Environmental Economics and Management, Elsevier, vol. 21(2), pages 97-108, September.
    50. Nesbakken, Runa, 1999. "Price sensitivity of residential energy consumption in Norway," Energy Economics, Elsevier, vol. 21(6), pages 493-515, December.
    51. Robert A. Pollak, 1971. "Additive Utility Functions and Linear Engel Curves," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 38(4), pages 401-414.
    52. Kei Kabaya & Koichi Kuriyama, 2021. "Discrete and Continuous Preference Heterogeneity in a Kuhn-Tucker Model: Beach Recreational Demand," Land Economics, University of Wisconsin Press, vol. 97(3), pages 548-561.
    53. Larsen, Bodil Merethe & Nesbakken, Runa, 2004. "Household electricity end-use consumption: results from econometric and engineering models," Energy Economics, Elsevier, vol. 26(2), pages 179-200, March.
    54. Michael Keane & Nada Wasi, 2013. "Comparing Alternative Models Of Heterogeneity In Consumer Choice Behavior," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 28(6), pages 1018-1045, September.
    55. Chihwa Kao & Lung-fei Lee & Mark M. Pitt, 2001. "Simulated Maximum Likelihood Estimation of the Linear Expenditure System with Binding Non-Negativity Constraints," Annals of Economics and Finance, Society for AEF, vol. 2(1), pages 215-235, May.
    56. Stephen Goldfeld & Richard Quandt, 1973. "The Estimation of Structural Shifts by Switching Regressions," NBER Chapters, in: Annals of Economic and Social Measurement, Volume 2, number 4, pages 475-485, National Bureau of Economic Research, Inc.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Frontuto, Vito, 2019. "Forecasting household consumption of fuels: A multiple discrete-continuous approach," Applied Energy, Elsevier, vol. 240(C), pages 205-214.
    2. Phaneuf, Daniel J. & Smith, V. Kerry, 2006. "Recreation Demand Models," Handbook of Environmental Economics, in: K. G. Mäler & J. R. Vincent (ed.), Handbook of Environmental Economics, edition 1, volume 2, chapter 15, pages 671-761, Elsevier.
    3. Pinjari, Abdul Rawoof & Bhat, Chandra, 2021. "Computationally efficient forecasting procedures for Kuhn-Tucker consumer demand model systems: Application to residential energy consumption analysis," Journal of choice modelling, Elsevier, vol. 39(C).
    4. Kuriyama, Koichi & Shoji, Yasushi & Tsuge, Takahiro, 2024. "The integer programing extreme value (IPEV) model: An application for estimation of the leisure trip demand," Transportation Research Part B: Methodological, Elsevier, vol. 186(C).
    5. Dorothée Charlier & Sondès Kahouli, 2019. "From Residential Energy Demand to Fuel Poverty: Income-induced Non-linearities in the Reactions of Households to Energy Price Fluctuations," The Energy Journal, , vol. 40(2), pages 101-138, March.
    6. Frontuto Vito, 2012. "Residential Energy Demand: a Multiple Discrete-Continuous Extreme Value Model using Italian Expenditure Data," Department of Economics and Statistics Cognetti de Martiis. Working Papers 201203, University of Turin.
    7. Bhat, Chandra R., 2008. "The multiple discrete-continuous extreme value (MDCEV) model: Role of utility function parameters, identification considerations, and model extensions," Transportation Research Part B: Methodological, Elsevier, vol. 42(3), pages 274-303, March.
    8. Vasquez Lavin, Felipe & Hanemann, W. Michael, 2008. "Functional Forms in Discrete/Continuous Choice Models With General Corner Solution," Department of Agricultural & Resource Economics, UC Berkeley, Working Paper Series qt7z25t659, Department of Agricultural & Resource Economics, UC Berkeley.
    9. Chandra Bhat & Abdul Pinjari, 2014. "Multiple discrete-continuous choice models: a reflective analysis and a prospective view," Chapters, in: Stephane Hess & Andrew Daly (ed.), Handbook of Choice Modelling, chapter 19, pages 427-454, Edward Elgar Publishing.
    10. Jean-Pierre H. Dubé, 2018. "Microeconometric Models of Consumer Demand," NBER Working Papers 25215, National Bureau of Economic Research, Inc.
    11. Abdul Pinjari & Chandra Bhat & David S. Bunch, 2013. "Workshop report: recent advances on modeling multiple discrete-continuous choices," Chapters, in: Stephane Hess & Andrew Daly (ed.), Choice Modelling, chapter 3, pages 73-90, Edward Elgar Publishing.
    12. Sikder, Sujan & Pinjari, Abdul Rawoof, 2013. "The benefits of allowing heteroscedastic stochastic distributions in multiple discrete-continuous choice models," Journal of choice modelling, Elsevier, vol. 9(C), pages 39-56.
    13. Jeong, Jaehoon & Seob Kim, Chang & Lee, Jongsu, 2011. "Household electricity and gas consumption for heating homes," Energy Policy, Elsevier, vol. 39(5), pages 2679-2687, May.
    14. Dorothée Charlier & Sondès Kahouli, 2018. "Fuel poverty and residential energy demand: how fuel-poor households react to energy price fluctuations," Post-Print halshs-01957771, HAL.
    15. Damette, Olivier & Delacote, Philippe & Lo, Gaye Del, 2018. "Households energy consumption and transition toward cleaner energy sources," Energy Policy, Elsevier, vol. 113(C), pages 751-764.
    16. Kuriyama, Koichi & Shoji, Yasushi & Tsuge, Takahiro, 2020. "The value of leisure time of weekends and long holidays: The multiple discrete–continuous extreme value (MDCEV) choice model with triple constraints," Journal of choice modelling, Elsevier, vol. 37(C).
    17. Bonnet, Céline & Richards, Timothy J., 2016. "Models of Consumer Demand for Differentiated Products," TSE Working Papers 16-741, Toulouse School of Economics (TSE).
    18. Pradeep K. Chintagunta & Harikesh S. Nair, 2011. "Structural Workshop Paper --Discrete-Choice Models of Consumer Demand in Marketing," Marketing Science, INFORMS, vol. 30(6), pages 977-996, November.
    19. Matsumoto, Shigeru, 2023. "The effects of carbon taxes on the welfare of households using multiple energy sources," Energy Economics, Elsevier, vol. 126(C).
    20. Tovar, Miguel A., 2012. "The structure of energy efficiency investment in the UK households and its average monetary and environmental savings," Energy Policy, Elsevier, vol. 50(C), pages 723-735.

    More about this item

    Keywords

    Discrete continuous choice; Preference heterogeneity; Fuel choice; Energy end use; Essential good; Outside good; Corner solution;
    All these keywords.

    JEL classification:

    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • D12 - Microeconomics - - Household Behavior - - - Consumer Economics: Empirical Analysis
    • Q41 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Demand and Supply; Prices

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:resene:v:77:y:2024:i:c:s0928765524000022. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505569 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.