IDEAS home Printed from https://ideas.repec.org/r/eee/appene/v88y2011i2p502-507.html
   My bibliography  Save this item

The first step towards a 100% renewable energy-system for Ireland

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Hagos, Dejene Assefa & Gebremedhin, Alemayehu & Zethraeus, Björn, 2014. "Towards a flexible energy system – A case study for Inland Norway," Applied Energy, Elsevier, vol. 130(C), pages 41-50.
  2. David Borge-Diez, 2022. "Energy Policy, Energy Research, and Energy Politics: An Analytical Review of the Current Situation," Energies, MDPI, vol. 15(23), pages 1-13, November.
  3. Wang, Kexin & Chen, Shang & Liu, Liuchen & Zhu, Tong & Gan, Zhongxue, 2018. "Enhancement of renewable energy penetration through energy storage technologies in a CHP-based energy system for Chongming, China," Energy, Elsevier, vol. 162(C), pages 988-1002.
  4. Francesco Calise & Massimo Dentice D’Accadia & Carlo Barletta & Vittoria Battaglia & Antun Pfeifer & Neven Duic, 2017. "Detailed Modelling of the Deep Decarbonisation Scenarios with Demand Response Technologies in the Heating and Cooling Sector: A Case Study for Italy," Energies, MDPI, vol. 10(10), pages 1-33, October.
  5. Hong, Lixuan & Zhou, Nan & Fridley, David & Raczkowski, Chris, 2013. "Assessment of China's renewable energy contribution during the 12th Five Year Plan," Energy Policy, Elsevier, vol. 62(C), pages 1533-1543.
  6. Connolly, D. & Lund, H. & Mathiesen, B.V., 2016. "Smart Energy Europe: The technical and economic impact of one potential 100% renewable energy scenario for the European Union," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1634-1653.
  7. Tonini, Davide & Vadenbo, Carl & Astrup, Thomas Fruergaard, 2017. "Priority of domestic biomass resources for energy: Importance of national environmental targets in a climate perspective," Energy, Elsevier, vol. 124(C), pages 295-309.
  8. Ma, Weiwu & Xue, Xinpei & Liu, Gang, 2018. "Techno-economic evaluation for hybrid renewable energy system: Application and merits," Energy, Elsevier, vol. 159(C), pages 385-409.
  9. Budzianowski, Wojciech M., 2012. "Value-added carbon management technologies for low CO2 intensive carbon-based energy vectors," Energy, Elsevier, vol. 41(1), pages 280-297.
  10. Martínez-Jaramillo, Juan Esteban & van Ackere, Ann & Larsen, Erik R., 2020. "Towards a solar-hydro based generation: The case of Switzerland," Energy Policy, Elsevier, vol. 138(C).
  11. Rouindej, Kamyar & Samadani, Ehsan & Fraser, Roydon A., 2020. "A comprehensive data-driven study of electrical power grid and its implications for the design, performance, and operational requirements of adiabatic compressed air energy storage systems," Applied Energy, Elsevier, vol. 257(C).
  12. Flores, Julio R. & Montagna, Jorge M. & Vecchietti, Aldo, 2014. "An optimization approach for long term investments planning in energy," Applied Energy, Elsevier, vol. 122(C), pages 162-178.
  13. Jacobson, Mark Z. & von Krauland, Anna-Katharina & Coughlin, Stephen J. & Palmer, Frances C. & Smith, Miles M., 2022. "Zero air pollution and zero carbon from all energy at low cost and without blackouts in variable weather throughout the U.S. with 100% wind-water-solar and storage," Renewable Energy, Elsevier, vol. 184(C), pages 430-442.
  14. Luigi Aldieri & Jonas Grafström & Kristoffer Sundström & Concetto Paolo Vinci, 2019. "Wind Power and Job Creation," Sustainability, MDPI, vol. 12(1), pages 1-23, December.
  15. Thé, Jesse & Yu, Hesheng, 2017. "A critical review on the simulations of wind turbine aerodynamics focusing on hybrid RANS-LES methods," Energy, Elsevier, vol. 138(C), pages 257-289.
  16. Henning, Hans-Martin & Palzer, Andreas, 2014. "A comprehensive model for the German electricity and heat sector in a future energy system with a dominant contribution from renewable energy technologies—Part I: Methodology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 1003-1018.
  17. Pina, André & Silva, Carlos A. & Ferrão, Paulo, 2013. "High-resolution modeling framework for planning electricity systems with high penetration of renewables," Applied Energy, Elsevier, vol. 112(C), pages 215-223.
  18. Henriques, J.C.C. & Gato, L.M.C. & Lemos, J.M. & Gomes, R.P.F. & Falcão, A.F.O., 2016. "Peak-power control of a grid-integrated oscillating water column wave energy converter," Energy, Elsevier, vol. 109(C), pages 378-390.
  19. Wakeel, Muhammad & Hayat, Tasawer & Shah, Noor Samad & Iqbal, Jibran & Haq Khan, Zia Ul & Shah, Ghulam Mustafa & Rasool, Atta, 2023. "Biogas Energy Resources in Pakistan Status, Potential, and Barriers," Utilities Policy, Elsevier, vol. 84(C).
  20. Prasad, Ravita D. & Bansal, R.C. & Raturi, Atul, 2014. "Multi-faceted energy planning: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 686-699.
  21. Elliston, Ben & Diesendorf, Mark & MacGill, Iain, 2012. "Simulations of scenarios with 100% renewable electricity in the Australian National Electricity Market," Energy Policy, Elsevier, vol. 45(C), pages 606-613.
  22. Kursun, Berrin & Bakshi, Bhavik R. & Mahata, Manoj & Martin, Jay F., 2015. "Life cycle and emergy based design of energy systems in developing countries: Centralized and localized options," Ecological Modelling, Elsevier, vol. 305(C), pages 40-53.
  23. Martínez-Jaramillo, Juan Esteban & van Ackere, Ann & Larsen, Erik, 2023. "Long term impacts of climate change on the transition towards renewables in Switzerland," Energy, Elsevier, vol. 263(PE).
  24. Sinha, Avik, 2017. "Inequality of renewable energy generation across OECD countries: A note," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 9-14.
  25. Ashfaq, Asad & Kamali, Zulqarnain Haider & Agha, Mujtaba Hassan & Arshid, Hirra, 2017. "Heat coupling of the pan-European vs. regional electrical grid with excess renewable energy," Energy, Elsevier, vol. 122(C), pages 363-377.
  26. Kiss, Viktor Miklós, 2015. "Modelling the energy system of Pécs – The first step towards a sustainable city," Energy, Elsevier, vol. 80(C), pages 373-387.
  27. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
  28. Chen, Yanbo & Luo, Yu & Shi, Yixiang & Cai, Ningsheng, 2020. "Theoretical modeling of a pressurized tubular reversible solid oxide cell for methane production by co-electrolysis," Applied Energy, Elsevier, vol. 268(C).
  29. Xiong, Weiming & Wang, Yu & Mathiesen, Brian Vad & Lund, Henrik & Zhang, Xiliang, 2015. "Heat roadmap China: New heat strategy to reduce energy consumption towards 2030," Energy, Elsevier, vol. 81(C), pages 274-285.
  30. Azimian, Mahdi & Amir, Vahid & Javadi, Saeid, 2020. "Economic and Environmental Policy Analysis for Emission-Neutral Multi-Carrier Microgrid Deployment," Applied Energy, Elsevier, vol. 277(C).
  31. Brown, T. & Schlachtberger, D. & Kies, A. & Schramm, S. & Greiner, M., 2018. "Synergies of sector coupling and transmission reinforcement in a cost-optimised, highly renewable European energy system," Energy, Elsevier, vol. 160(C), pages 720-739.
  32. Le, Ngoc Anh & Bhattacharyya, Subhes C., 2011. "Integration of wind power into the British system in 2020," Energy, Elsevier, vol. 36(10), pages 5975-5983.
  33. Dai, Hancheng & Xie, Xuxuan & Xie, Yang & Liu, Jian & Masui, Toshihiko, 2016. "Green growth: The economic impacts of large-scale renewable energy development in China," Applied Energy, Elsevier, vol. 162(C), pages 435-449.
  34. Nikolaidis, Pavlos & Poullikkas, Andreas, 2017. "A comparative overview of hydrogen production processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 597-611.
  35. Lund, Henrik & Thellufsen, Jakob Zinck & Sorknæs, Peter & Mathiesen, Brian Vad & Chang, Miguel & Madsen, Poul Thøis & Kany, Mikkel Strunge & Skov, Iva Ridjan, 2022. "Smart energy Denmark. A consistent and detailed strategy for a fully decarbonized society," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
  36. Modhurima Dey Amin & Syed Badruddoza & Jill J. McCluskey, 2021. "Does conventional energy pricing induce innovation in renewable energy? New evidence from a nonlinear approach," Applied Economic Perspectives and Policy, John Wiley & Sons, vol. 43(2), pages 659-679, June.
  37. Thellufsen, Jakob Zinck & Lund, Henrik, 2016. "Roles of local and national energy systems in the integration of renewable energy," Applied Energy, Elsevier, vol. 183(C), pages 419-429.
  38. Ahmad, Salman & Tahar, Razman Mat, 2014. "Selection of renewable energy sources for sustainable development of electricity generation system using analytic hierarchy process: A case of Malaysia," Renewable Energy, Elsevier, vol. 63(C), pages 458-466.
  39. Oropeza-Perez, Ivan & Østergaard, Poul Alberg, 2014. "The influence of an estimated energy saving due to natural ventilation on the Mexican energy system," Energy, Elsevier, vol. 64(C), pages 1080-1091.
  40. Thellufsen, Jakob Zinck & Lund, Henrik, 2017. "Cross-border versus cross-sector interconnectivity in renewable energy systems," Energy, Elsevier, vol. 124(C), pages 492-501.
  41. Rui P. Borges & Flávia Franco & Fátima N. Serralha & Isabel Cabrita, 2024. "Green Hydrogen Production at the Gigawatt Scale in Portugal: A Technical and Economic Evaluation," Energies, MDPI, vol. 17(7), pages 1-21, March.
  42. Tom Brown & Mirko Schäfer & Martin Greiner, 2019. "Sectoral Interactions as Carbon Dioxide Emissions Approach Zero in a Highly-Renewable European Energy System," Energies, MDPI, vol. 12(6), pages 1-16, March.
  43. van Kooten, G. Cornelis & Withey, Patrick & Duan, Jon, 2020. "How big a battery?," Renewable Energy, Elsevier, vol. 146(C), pages 196-204.
  44. Cerovac, Tin & Ćosić, Boris & Pukšec, Tomislav & Duić, Neven, 2014. "Wind energy integration into future energy systems based on conventional plants – The case study of Croatia," Applied Energy, Elsevier, vol. 135(C), pages 643-655.
  45. Padrón, S. & Medina, J.F. & Rodríguez, A., 2011. "Analysis of a pumped storage system to increase the penetration level of renewable energy in isolated power systems. Gran Canaria: A case study," Energy, Elsevier, vol. 36(12), pages 6753-6762.
  46. Peng Jiang & Jiří Jaromír Klemeš & Yee Van Fan & Xiuju Fu & Yong Mong Bee, 2021. "More Is Not Enough: A Deeper Understanding of the COVID-19 Impacts on Healthcare, Energy and Environment Is Crucial," IJERPH, MDPI, vol. 18(2), pages 1-22, January.
  47. Ji, Changwei & Wang, Shuofeng & Zhang, Bo, 2012. "Performance of a hybrid hydrogen–gasoline engine under various operating conditions," Applied Energy, Elsevier, vol. 97(C), pages 584-589.
  48. Rakel Kristjansdottir & Henner Busch, 2019. "Towards a Neutral North—The Urban Low Carbon Transitions of Akureyri, Iceland," Sustainability, MDPI, vol. 11(7), pages 1-16, April.
  49. Dominković, D.F. & Weinand, J.M. & Scheller, F. & D'Andrea, M. & McKenna, R., 2022. "Reviewing two decades of energy system analysis with bibliometrics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
  50. Thanh Tu Tran & Shinichiro Fujimori & Toshihiko Masui, 2016. "Realizing the Intended Nationally Determined Contribution: The Role of Renewable Energies in Vietnam," Energies, MDPI, vol. 9(8), pages 1-17, July.
  51. Osorio-Aravena, Juan Carlos & Aghahosseini, Arman & Bogdanov, Dmitrii & Caldera, Upeksha & Ghorbani, Narges & Mensah, Theophilus Nii Odai & Khalili, Siavash & Muñoz-Cerón, Emilio & Breyer, Christian, 2021. "The impact of renewable energy and sector coupling on the pathway towards a sustainable energy system in Chile," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
  52. Prina, Matteo Giacomo & Cozzini, Marco & Garegnani, Giulia & Manzolini, Giampaolo & Moser, David & Filippi Oberegger, Ulrich & Pernetti, Roberta & Vaccaro, Roberto & Sparber, Wolfram, 2018. "Multi-objective optimization algorithm coupled to EnergyPLAN software: The EPLANopt model," Energy, Elsevier, vol. 149(C), pages 213-221.
  53. Maïzi, Nadia & Mazauric, Vincent & Assoumou, Edi & Bouckaert, Stéphanie & Krakowski, Vincent & Li, Xiang & Wang, Pengbo, 2018. "Maximizing intermittency in 100% renewable and reliable power systems: A holistic approach applied to Reunion Island in 2030," Applied Energy, Elsevier, vol. 227(C), pages 332-341.
  54. Hans Christian Gils & Sonja Simon & Rafael Soria, 2017. "100% Renewable Energy Supply for Brazil—The Role of Sector Coupling and Regional Development," Energies, MDPI, vol. 10(11), pages 1-22, November.
  55. Henriques, J.C.C. & Portillo, J.C.C. & Gato, L.M.C. & Gomes, R.P.F. & Ferreira, D.N. & Falcão, A.F.O., 2016. "Design of oscillating-water-column wave energy converters with an application to self-powered sensor buoys," Energy, Elsevier, vol. 112(C), pages 852-867.
  56. Isabella Donnelly & Kevin McDonnell & John Finnan, 2019. "Novel Approaches to Optimise Early Growth in Willow Crops," Agriculture, MDPI, vol. 9(6), pages 1-15, June.
  57. Kiss, Viktor M. & Hetesi, Zsolt & Kiss, Tibor, 2024. "The effect of time resolution on energy system simulation in case of intermittent energies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
  58. Kimming, M. & Sundberg, C. & Nordberg, Å. & Hansson, P.-A., 2015. "Vertical integration of local fuel producers into rural district heating systems – Climate impact and production costs," Energy Policy, Elsevier, vol. 78(C), pages 51-61.
  59. Delina, Laurence L. & Diesendorf, Mark, 2013. "Is wartime mobilisation a suitable policy model for rapid national climate mitigation?," Energy Policy, Elsevier, vol. 58(C), pages 371-380.
  60. Cabrera, Pedro & Lund, Henrik & Carta, José A., 2018. "Smart renewable energy penetration strategies on islands: The case of Gran Canaria," Energy, Elsevier, vol. 162(C), pages 421-443.
  61. Li, Yan & Feng, Tian-tian & Liu, Li-li & Zhang, Meng-xi, 2023. "How do the electricity market and carbon market interact and achieve integrated development?--A bibliometric-based review," Energy, Elsevier, vol. 265(C).
  62. Noor Muhammad Abd Rahman & Lim Chin Haw & Ahmad Fazlizan, 2021. "A Literature Review of Naturally Ventilated Public Hospital Wards in Tropical Climate Countries for Thermal Comfort and Energy Saving Improvements," Energies, MDPI, vol. 14(2), pages 1-22, January.
  63. Apichonnabutr, W. & Tiwary, A., 2018. "Trade-offs between economic and environmental performance of an autonomous hybrid energy system using micro hydro," Applied Energy, Elsevier, vol. 226(C), pages 891-904.
  64. Heard, B.P. & Brook, B.W. & Wigley, T.M.L. & Bradshaw, C.J.A., 2017. "Burden of proof: A comprehensive review of the feasibility of 100% renewable-electricity systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1122-1133.
  65. Shafiei, Ehsan & Davidsdottir, Brynhildur & Leaver, Jonathan & Stefansson, Hlynur & Asgeirsson, Eyjolfur Ingi, 2015. "Comparative analysis of hydrogen, biofuels and electricity transitional pathways to sustainable transport in a renewable-based energy system," Energy, Elsevier, vol. 83(C), pages 614-627.
  66. Hrnčić, Boris & Pfeifer, Antun & Jurić, Filip & Duić, Neven & Ivanović, Vladan & Vušanović, Igor, 2021. "Different investment dynamics in energy transition towards a 100% renewable energy system," Energy, Elsevier, vol. 237(C).
  67. Vaiaso, T.V. Jr. & Jack, M.W., 2021. "Quantifying the trade-off between percentage of renewable supply and affordability in Pacific island countries: Case study of Samoa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
  68. Bačeković, Ivan & Østergaard, Poul Alberg, 2018. "A smart energy system approach vs a non-integrated renewable energy system approach to designing a future energy system in Zagreb," Energy, Elsevier, vol. 155(C), pages 824-837.
  69. Lin, Shin-Yeu & Lin, Ai-Chih, 2014. "RLOPF (risk-limiting optimal power flow) for systems with high penetration of wind power," Energy, Elsevier, vol. 71(C), pages 49-61.
  70. Sousa, Jorge A.M. & Teixeira, Fábio & Faias, Sérgio, 2014. "Impact of a price-maker pumped storage hydro unit on the integration of wind energy in power systems," Energy, Elsevier, vol. 69(C), pages 3-11.
  71. Seung Hyo Baek & Byung Hee Lee, 2019. "Optimal Decision-Making of Renewable Energy Systems in Buildings in the Early Design Stage," Sustainability, MDPI, vol. 11(5), pages 1-19, March.
  72. Hamid Soleimani & Daryoush Habibi & Mehrdad Ghahramani & Asma Aziz, 2024. "Strengthening Power Systems for Net Zero: A Review of the Role of Synchronous Condensers and Emerging Challenges," Energies, MDPI, vol. 17(13), pages 1-23, July.
  73. Klinge Jacobsen, Henrik & Pade, Lise Lotte & Schröder, Sascha Thorsten & Kitzing, Lena, 2014. "Cooperation mechanisms to achieve EU renewable targets," Renewable Energy, Elsevier, vol. 63(C), pages 345-352.
  74. Kwon, Sunghoon & Won, Wangyun & Kim, Jiyong, 2016. "A superstructure model of an isolated power supply system using renewable energy: Development and application to Jeju Island, Korea," Renewable Energy, Elsevier, vol. 97(C), pages 177-188.
  75. Georgilakis, Pavlos S., 2011. "Environmental cost of distribution transformer losses," Applied Energy, Elsevier, vol. 88(9), pages 3146-3155.
  76. Karakoyun, Ece Cigdem & Avci, Harun & Kocaman, Ayse Selin & Nadar, Emre, 2023. "Deviations from commitments: Markov decision process formulations for the role of energy storage," International Journal of Production Economics, Elsevier, vol. 255(C).
  77. Djørup, Søren & Thellufsen, Jakob Zinck & Sorknæs, Peter, 2018. "The electricity market in a renewable energy system," Energy, Elsevier, vol. 162(C), pages 148-157.
  78. Hong, Lixuan & Lund, Henrik & Möller, Bernd, 2012. "The importance of flexible power plant operation for Jiangsu's wind integration," Energy, Elsevier, vol. 41(1), pages 499-507.
  79. Ridjan, Iva & Mathiesen, Brian Vad & Connolly, David & Duić, Neven, 2013. "The feasibility of synthetic fuels in renewable energy systems," Energy, Elsevier, vol. 57(C), pages 76-84.
  80. Nielsen, Steffen & Sorknæs, Peter & Østergaard, Poul Alberg, 2011. "Electricity market auction settings in a future Danish electricity system with a high penetration of renewable energy sources – A comparison of marginal pricing and pay-as-bid," Energy, Elsevier, vol. 36(7), pages 4434-4444.
  81. Wang, Zhaohua & Zhang, Hongzhi & Li, Hao & Wang, Bo & Cui, Qi & Zhang, Bin, 2022. "Economic impact and energy transformation of different effort-sharing schemes to pursue 2 ℃ warming limit in China," Applied Energy, Elsevier, vol. 320(C).
  82. Chen, Yizhong & Lu, Hongwei & Li, Jing & Huang, Guohe & He, Li, 2016. "Regional planning of new-energy systems within multi-period and multi-option contexts: A case study of Fengtai, Beijing, China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 356-372.
  83. Wang, Yongli & Li, Jiapu & Wang, Shuo & Yang, Jiale & Qi, Chengyuan & Guo, Hongzhen & Liu, Ximei & Zhang, Hongqing, 2020. "Operational optimization of wastewater reuse integrated energy system," Energy, Elsevier, vol. 200(C).
  84. Pfeifer, Antun & Krajačić, Goran & Haas, Reinhard & Duić, Neven, 2020. "Consequences of different strategic decisions of market coupled zones on the development of energy systems based on coal and hydropower," Energy, Elsevier, vol. 210(C).
  85. Calise, Francesco & Cipollina, Andrea & Dentice d’Accadia, Massimo & Piacentino, Antonio, 2014. "A novel renewable polygeneration system for a small Mediterranean volcanic island for the combined production of energy and water: Dynamic simulation and economic assessment," Applied Energy, Elsevier, vol. 135(C), pages 675-693.
  86. Olav H. Hohmeyer & Sönke Bohm, 2015. "Trends toward 100% renewable electricity supply in Germany and Europe: a paradigm shift in energy policies," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 4(1), pages 74-97, January.
  87. Maruf, Md. Nasimul Islam, 2021. "Open model-based analysis of a 100% renewable and sector-coupled energy system–The case of Germany in 2050," Applied Energy, Elsevier, vol. 288(C).
  88. Salehin, Sayedus & Ferdaous, M. Tanvirul & Chowdhury, Ridhwan M. & Shithi, Sumaia Shahid & Rofi, M.S.R. Bhuiyan & Mohammed, Mahir Asif, 2016. "Assessment of renewable energy systems combining techno-economic optimization with energy scenario analysis," Energy, Elsevier, vol. 112(C), pages 729-741.
  89. Doepfert, Markus & Castro, Rui, 2021. "Techno-economic optimization of a 100% renewable energy system in 2050 for countries with high shares of hydropower: The case of Portugal," Renewable Energy, Elsevier, vol. 165(P1), pages 491-503.
  90. Catalão, J.P.S. & Pousinho, H.M.I. & Contreras, J., 2012. "Optimal hydro scheduling and offering strategies considering price uncertainty and risk management," Energy, Elsevier, vol. 37(1), pages 237-244.
  91. Lin, Shin-Yeu & Chen, Jyun-Fu, 2013. "Distributed optimal power flow for smart grid transmission system with renewable energy sources," Energy, Elsevier, vol. 56(C), pages 184-192.
  92. Kiwan, Suhil & Al-Gharibeh, Elyasa, 2020. "Jordan toward a 100% renewable electricity system," Renewable Energy, Elsevier, vol. 147(P1), pages 423-436.
  93. Truong, Nguyen Le & Gustavsson, Leif, 2014. "Cost and primary energy efficiency of small-scale district heating systems," Applied Energy, Elsevier, vol. 130(C), pages 419-427.
  94. Strantzali, Eleni & Aravossis, Konstantinos, 2016. "Decision making in renewable energy investments: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 885-898.
  95. Hepbasli, Arif, 2011. "A comparative investigation of various greenhouse heating options using exergy analysis method," Applied Energy, Elsevier, vol. 88(12), pages 4411-4423.
  96. Liu, Wen & Hu, Weihao & Lund, Henrik & Chen, Zhe, 2013. "Electric vehicles and large-scale integration of wind power – The case of Inner Mongolia in China," Applied Energy, Elsevier, vol. 104(C), pages 445-456.
  97. Cho, Seolhee & Kim, Jiyong, 2015. "Feasibility and impact analysis of a renewable energy source (RES)-based energy system in Korea," Energy, Elsevier, vol. 85(C), pages 317-328.
  98. Khoodaruth, A. & Oree, V. & Elahee, M.K. & Clark, Woodrow W., 2017. "Exploring options for a 100% renewable energy system in Mauritius by 2050," Utilities Policy, Elsevier, vol. 44(C), pages 38-49.
  99. Fernando Martins & Pedro Moura & Aníbal T. de Almeida, 2022. "The Role of Electrification in the Decarbonization of the Energy Sector in Portugal," Energies, MDPI, vol. 15(5), pages 1-35, February.
  100. Wenyan Chen & Qiang Cai & Yuan Zhao & Guojuan Zheng & Yuting Liang, 2014. "Toxicity Evaluation of Pig Slurry Using Luminescent Bacteria and Zebrafish," IJERPH, MDPI, vol. 11(7), pages 1-15, July.
  101. Shiravi, Amir Hossein & Firoozzadeh, Mohammad & Lotfi, Marzieh, 2022. "Experimental study on the effects of air blowing and irradiance intensity on the performance of photovoltaic modules, using Central Composite Design," Energy, Elsevier, vol. 238(PA).
  102. Bellocchi, Sara & Gambini, Marco & Manno, Michele & Stilo, Tommaso & Vellini, Michela, 2018. "Positive interactions between electric vehicles and renewable energy sources in CO2-reduced energy scenarios: The Italian case," Energy, Elsevier, vol. 161(C), pages 172-182.
  103. Henning Meschede & Paul Bertheau & Siavash Khalili & Christian Breyer, 2022. "A review of 100% renewable energy scenarios on islands," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 11(6), November.
  104. Tokimatsu, Koji & Höök, Mikael & McLellan, Benjamin & Wachtmeister, Henrik & Murakami, Shinsuke & Yasuoka, Rieko & Nishio, Masahiro, 2018. "Energy modeling approach to the global energy-mineral nexus: Exploring metal requirements and the well-below 2 °C target with 100 percent renewable energy," Applied Energy, Elsevier, vol. 225(C), pages 1158-1175.
  105. Welsch, Manuel & Deane, Paul & Howells, Mark & Ó Gallachóir, Brian & Rogan, Fionn & Bazilian, Morgan & Rogner, Hans-Holger, 2014. "Incorporating flexibility requirements into long-term energy system models – A case study on high levels of renewable electricity penetration in Ireland," Applied Energy, Elsevier, vol. 135(C), pages 600-615.
  106. Martínez-Jaramillo, Juan Esteban & van Ackere, Ann & Larsen, Erik R., 2022. "Transitioning towards a 100% solar-hydro based generation: A system dynamic approach," Energy, Elsevier, vol. 239(PD).
  107. Jacobson, Mark Z. & Howarth, Robert W. & Delucchi, Mark A. & Scobie, Stan R. & Barth, Jannette M. & Dvorak, Michael J. & Klevze, Megan & Katkhuda, Hind & Miranda, Brian & Chowdhury, Navid A. & Jones, , 2013. "Response to comment on paper examining the feasibility of changing New York state's energy infrastructure to one derived from wind, water, and sunlight," Energy Policy, Elsevier, vol. 62(C), pages 1212-1215.
  108. Hansen, Kenneth & Breyer, Christian & Lund, Henrik, 2019. "Status and perspectives on 100% renewable energy systems," Energy, Elsevier, vol. 175(C), pages 471-480.
  109. Gota, Dan-Ioan & Lund, Henrik & Miclea, Liviu, 2011. "A Romanian energy system model and a nuclear reduction strategy," Energy, Elsevier, vol. 36(11), pages 6413-6419.
  110. Duquette, Jean & Wild, Peter & Rowe, Andrew, 2014. "The potential benefits of widespread combined heat and power based district energy networks in the province of Ontario," Energy, Elsevier, vol. 67(C), pages 41-51.
  111. Deason, Wesley, 2018. "Comparison of 100% renewable energy system scenarios with a focus on flexibility and cost," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3168-3178.
  112. Hayes, Liam & Stocks, Matthew & Blakers, Andrew, 2021. "Accurate long-term power generation model for offshore wind farms in Europe using ERA5 reanalysis," Energy, Elsevier, vol. 229(C).
  113. Welisch, Marijke, 2019. "Multi-unit renewables auctions for small markets - Designing the Danish multi-technology auction scheme," Renewable Energy, Elsevier, vol. 131(C), pages 372-380.
  114. Hao Li & Ying Qiao & Zongxiang Lu & Baosen Zhang, 2022. "Power System Transition with Multiple Flexibility Resources: A Data-Driven Approach," Sustainability, MDPI, vol. 14(5), pages 1-25, February.
  115. Bellocchi, S. & De Iulio, R. & Guidi, G. & Manno, M. & Nastasi, B. & Noussan, M. & Prina, M.G. & Roberto, R., 2020. "Analysis of smart energy system approach in local alpine regions - A case study in Northern Italy," Energy, Elsevier, vol. 202(C).
  116. Jiří Jaromír Klemeš & Petar Sabev Varbanov & Paweł Ocłoń & Hon Huin Chin, 2019. "Towards Efficient and Clean Process Integration: Utilisation of Renewable Resources and Energy-Saving Technologies," Energies, MDPI, vol. 12(21), pages 1-32, October.
  117. Cochran, Jaquelin & Mai, Trieu & Bazilian, Morgan, 2014. "Meta-analysis of high penetration renewable energy scenarios," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 246-253.
  118. Liu, Qipeng & Li, Ran & Dereli, Recep Kaan & Flynn, Damian & Casey, Eoin, 2022. "Water resource recovery facilities as potential energy generation units and their dynamic economic dispatch," Applied Energy, Elsevier, vol. 318(C).
  119. Diesendorf, Mark & Elliston, Ben, 2018. "The feasibility of 100% renewable electricity systems: A response to critics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 318-330.
  120. You, Wei & Geng, Yong & Dong, Huijuan & Wilson, Jeffrey & Pan, Hengyu & Wu, Rui & Sun, Lu & Zhang, Xi & Liu, Zhiqing, 2018. "Technical and economic assessment of RES penetration by modelling China's existing energy system," Energy, Elsevier, vol. 165(PB), pages 900-910.
  121. Kostevšek, Anja & Cizelj, Leon & Petek, Janez & Pivec, Aleksandra, 2013. "A novel concept for a renewable network within municipal energy systems," Renewable Energy, Elsevier, vol. 60(C), pages 79-87.
  122. Loiy Al-Ghussain & Mohammad Abujubbeh & Adnan Darwish Ahmad & Ahmad M. Abubaker & Onur Taylan & Murat Fahrioglu & Nelson K. Akafuah, 2020. "100% Renewable Energy Grid for Rural Electrification of Remote Areas: A Case Study in Jordan," Energies, MDPI, vol. 13(18), pages 1-18, September.
  123. Alves, M. & Segurado, R. & Costa, M., 2020. "On the road to 100% renewable energy systems in isolated islands," Energy, Elsevier, vol. 198(C).
  124. Oguzhan Aslanturk & Goktug K pr zl, 2020. "The Role of Renewable Energy in Ensuring Energy Security of Supply and Reducing Energy-Related Import," International Journal of Energy Economics and Policy, Econjournals, vol. 10(2), pages 354-359.
  125. Gibellato, Simone & Ballestra, Luca Vincenzo & Fiano, Fabio & Graziano, Domenico & Luca Gregori, Gian, 2023. "The impact of education on the Energy Trilemma Index: A sustainable innovativeness perspective for resilient energy systems," Applied Energy, Elsevier, vol. 330(PB).
  126. Jacobson, Mark Z. & Delucchi, Mark A. & Bazouin, Guillaume & Dvorak, Michael J. & Arghandeh, Reza & Bauer, Zack A.F. & Cotte, Ariane & de Moor, Gerrit M.T.H. & Goldner, Elissa G. & Heier, Casey & Holm, 2016. "A 100% wind, water, sunlight (WWS) all-sector energy plan for Washington State," Renewable Energy, Elsevier, vol. 86(C), pages 75-88.
  127. Matteo Giacomo Prina & Giampaolo Manzolini & David Moser & Roberto Vaccaro & Wolfram Sparber, 2020. "Multi-Objective Optimization Model EPLANopt for Energy Transition Analysis and Comparison with Climate-Change Scenarios," Energies, MDPI, vol. 13(12), pages 1-22, June.
  128. Child, Michael & Breyer, Christian, 2016. "Vision and initial feasibility analysis of a recarbonised Finnish energy system for 2050," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 517-536.
  129. Oropeza-Perez, Ivan & Østergaard, Poul Alberg, 2014. "Potential of natural ventilation in temperate countries – A case study of Denmark," Applied Energy, Elsevier, vol. 114(C), pages 520-530.
  130. Wang, Junye, 2015. "Barriers of scaling-up fuel cells: Cost, durability and reliability," Energy, Elsevier, vol. 80(C), pages 509-521.
  131. Gils, Hans Christian & Simon, Sonja, 2017. "Carbon neutral archipelago – 100% renewable energy supply for the Canary Islands," Applied Energy, Elsevier, vol. 188(C), pages 342-355.
  132. Rodrigues, E.M.G. & Godina, R. & Santos, S.F. & Bizuayehu, A.W. & Contreras, J. & Catalão, J.P.S., 2014. "Energy storage systems supporting increased penetration of renewables in islanded systems," Energy, Elsevier, vol. 75(C), pages 265-280.
  133. Kwon, Pil Seok & Østergaard, Poul, 2014. "Assessment and evaluation of flexible demand in a Danish future energy scenario," Applied Energy, Elsevier, vol. 134(C), pages 309-320.
  134. Kyriakarakos, George & Dounis, Anastasios I. & Rozakis, Stelios & Arvanitis, Konstantinos G. & Papadakis, George, 2011. "Polygeneration microgrids: A viable solution in remote areas for supplying power, potable water and hydrogen as transportation fuel," Applied Energy, Elsevier, vol. 88(12), pages 4517-4526.
  135. Bačeković, Ivan & Østergaard, Poul Alberg, 2018. "Local smart energy systems and cross-system integration," Energy, Elsevier, vol. 151(C), pages 812-825.
  136. Caballero, F. & Sauma, E. & Yanine, F., 2013. "Business optimal design of a grid-connected hybrid PV (photovoltaic)-wind energy system without energy storage for an Easter Island's block," Energy, Elsevier, vol. 61(C), pages 248-261.
  137. Zakeri, Behnam & Syri, Sanna & Rinne, Samuli, 2015. "Higher renewable energy integration into the existing energy system of Finland – Is there any maximum limit?," Energy, Elsevier, vol. 92(P3), pages 244-259.
  138. Pfenninger, Stefan & Keirstead, James, 2015. "Renewables, nuclear, or fossil fuels? Scenarios for Great Britain’s power system considering costs, emissions and energy security," Applied Energy, Elsevier, vol. 152(C), pages 83-93.
  139. Jacobson, Mark Z. & Delucchi, Mark A. & Ingraffea, Anthony R. & Howarth, Robert W. & Bazouin, Guillaume & Bridgeland, Brett & Burkart, Karl & Chang, Martin & Chowdhury, Navid & Cook, Roy & Escher, Giu, 2014. "A roadmap for repowering California for all purposes with wind, water, and sunlight," Energy, Elsevier, vol. 73(C), pages 875-889.
  140. Zuo, Wei & E, Jiaqiang & Peng, Qingguo & Zhao, Xiaohuan & Zhang, Zhiqing, 2017. "Numerical investigations on a comparison between counterflow and coflow double-channel micro combustors for micro-thermophotovoltaic system," Energy, Elsevier, vol. 122(C), pages 408-419.
  141. Pukšec, Tomislav & Vad Mathiesen, Brian & Duić, Neven, 2013. "Potentials for energy savings and long term energy demand of Croatian households sector," Applied Energy, Elsevier, vol. 101(C), pages 15-25.
  142. Borasio, M. & Moret, S., 2022. "Deep decarbonisation of regional energy systems: A novel modelling approach and its application to the Italian energy transition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
  143. Elliston, Ben & MacGill, Iain & Diesendorf, Mark, 2013. "Least cost 100% renewable electricity scenarios in the Australian National Electricity Market," Energy Policy, Elsevier, vol. 59(C), pages 270-282.
  144. Assefa Hagos, Dejene & Gebremedhin, Alemayehu & Folsland Bolkesjø, Torjus, 2015. "Comparing the value of bioenergy in the heating and transport sectors of an electricity-intensive energy system in Norway," Energy Policy, Elsevier, vol. 85(C), pages 386-396.
  145. Cárdenas, Bruno & Swinfen-Styles, Lawrie & Rouse, James & Hoskin, Adam & Xu, Weiqing & Garvey, S.D., 2021. "Energy storage capacity vs. renewable penetration: A study for the UK," Renewable Energy, Elsevier, vol. 171(C), pages 849-867.
  146. Prina, Matteo Giacomo & Groppi, Daniele & Nastasi, Benedetto & Garcia, Davide Astiaso, 2021. "Bottom-up energy system models applied to sustainable islands," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
  147. Johnson, Samuel C. & Rhodes, Joshua D. & Webber, Michael E., 2020. "Understanding the impact of non-synchronous wind and solar generation on grid stability and identifying mitigation pathways," Applied Energy, Elsevier, vol. 262(C).
  148. Martin Robinius & Alexander Otto & Philipp Heuser & Lara Welder & Konstantinos Syranidis & David S. Ryberg & Thomas Grube & Peter Markewitz & Ralf Peters & Detlef Stolten, 2017. "Linking the Power and Transport Sectors—Part 1: The Principle of Sector Coupling," Energies, MDPI, vol. 10(7), pages 1-22, July.
  149. Bamisile, Olusola & Huang, Qi & Xu, Xiao & Hu, Weihao & Liu, Wen & Liu, Zhou & Chen, Zhe, 2020. "An approach for sustainable energy planning towards 100 % electrification of Nigeria by 2030," Energy, Elsevier, vol. 197(C).
  150. Keatley, P. & Shibli, A. & Hewitt, N.J., 2013. "Estimating power plant start costs in cyclic operation," Applied Energy, Elsevier, vol. 111(C), pages 550-557.
  151. Nižetić, S. & Duić, N. & Papadopulos, A.M. & Tina, G.M. & Grubišić-Čabo, F., 2015. "Energy efficiency evaluation of a hybrid energy system for building applications in a Mediterranean climate and its feasibility aspect," Energy, Elsevier, vol. 90(P1), pages 1171-1179.
  152. Connolly, D. & Lund, H. & Mathiesen, B.V. & Werner, S. & Möller, B. & Persson, U. & Boermans, T. & Trier, D. & Østergaard, P.A. & Nielsen, S., 2014. "Heat Roadmap Europe: Combining district heating with heat savings to decarbonise the EU energy system," Energy Policy, Elsevier, vol. 65(C), pages 475-489.
  153. Dominković, D.F. & Bin Abdul Rashid, K.A. & Romagnoli, A. & Pedersen, A.S. & Leong, K.C. & Krajačić, G. & Duić, N., 2017. "Potential of district cooling in hot and humid climates," Applied Energy, Elsevier, vol. 208(C), pages 49-61.
  154. Østergaard, Poul Alberg & Jantzen, Jan & Marczinkowski, Hannah Mareike & Kristensen, Michael, 2019. "Business and socioeconomic assessment of introducing heat pumps with heat storage in small-scale district heating systems," Renewable Energy, Elsevier, vol. 139(C), pages 904-914.
  155. Ma, Tao & Østergaard, Poul Alberg & Lund, Henrik & Yang, Hongxing & Lu, Lin, 2014. "An energy system model for Hong Kong in 2020," Energy, Elsevier, vol. 68(C), pages 301-310.
  156. Lund, Rasmus & Mathiesen, Brian Vad, 2015. "Large combined heat and power plants in sustainable energy systems," Applied Energy, Elsevier, vol. 142(C), pages 389-395.
  157. Moiseyev, Alexander & Solberg, Birger & Kallio, A. Maarit I., 2014. "The impact of subsidies and carbon pricing on the wood biomass use for energy in the EU," Energy, Elsevier, vol. 76(C), pages 161-167.
  158. Laslett, Dean & Carter, Craig & Creagh, Chris & Jennings, Philip, 2017. "A large-scale renewable electricity supply system by 2030: Solar, wind, energy efficiency, storage and inertia for the South West Interconnected System (SWIS) in Western Australia," Renewable Energy, Elsevier, vol. 113(C), pages 713-731.
  159. Md. Nasimul Islam Maruf, 2019. "Sector Coupling in the North Sea Region—A Review on the Energy System Modelling Perspective," Energies, MDPI, vol. 12(22), pages 1-35, November.
  160. Liu, Wen & Lund, Henrik & Mathiesen, Brian Vad, 2011. "Large-scale integration of wind power into the existing Chinese energy system," Energy, Elsevier, vol. 36(8), pages 4753-4760.
  161. Blanco, Herib & Faaij, André, 2018. "A review at the role of storage in energy systems with a focus on Power to Gas and long-term storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1049-1086.
  162. Jain, A. & Yamujala, S. & Gaur, A. & Das, P. & Bhakar, R. & Mathur, J., 2023. "Power sector decarbonization planning considering renewable resource variability and system operational constraints," Applied Energy, Elsevier, vol. 331(C).
  163. Anam Nadeem & Mosè Rossi & Erica Corradi & Lingkang Jin & Gabriele Comodi & Nadeem Ahmed Sheikh, 2022. "Energy-Environmental Planning of Electric Vehicles (EVs): A Case Study of the National Energy System of Pakistan," Energies, MDPI, vol. 15(9), pages 1-19, April.
  164. Welder, Lara & Ryberg, D.Severin & Kotzur, Leander & Grube, Thomas & Robinius, Martin & Stolten, Detlef, 2018. "Spatio-temporal optimization of a future energy system for power-to-hydrogen applications in Germany," Energy, Elsevier, vol. 158(C), pages 1130-1149.
  165. Yousefzadeh, Moslem & Lenzen, Manfred, 2019. "Performance of concentrating solar power plants in a whole-of-grid context," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
  166. Gabriela PICIU, 2018. "The Management Of Green Certificates In Romania," Contemporary Economy Journal, Constantin Brancoveanu University, vol. 3(1), pages 96-104.
  167. Eklas Hossain & Hossain Mansur Resalat Faruque & Md. Samiul Haque Sunny & Naeem Mohammad & Nafiu Nawar, 2020. "A Comprehensive Review on Energy Storage Systems: Types, Comparison, Current Scenario, Applications, Barriers, and Potential Solutions, Policies, and Future Prospects," Energies, MDPI, vol. 13(14), pages 1-127, July.
  168. Jenny Riesz, Joel Gilmore, Iain MacGill, 2016. "Assessing the viability of Energy-Only Markets with 100% Renewables," Economics of Energy & Environmental Policy, International Association for Energy Economics, vol. 0(Number 1).
  169. Dolara, Alberto & Lazaroiu, George Cristian & Leva, Sonia & Manzolini, Giampaolo, 2013. "Experimental investigation of partial shading scenarios on PV (photovoltaic) modules," Energy, Elsevier, vol. 55(C), pages 466-475.
  170. Dominković, D.F. & Bačeković, I. & Ćosić, B. & Krajačić, G. & Pukšec, T. & Duić, N. & Markovska, N., 2016. "Zero carbon energy system of South East Europe in 2050," Applied Energy, Elsevier, vol. 184(C), pages 1517-1528.
  171. Laugs, Gideon A.H. & Benders, René M.J. & Moll, Henri C., 2020. "Balancing responsibilities: Effects of growth of variable renewable energy, storage, and undue grid interaction," Energy Policy, Elsevier, vol. 139(C).
  172. Zwickl-Bernhard, Sebastian & Auer, Hans, 2022. "Demystifying natural gas distribution grid decommissioning: An open-source approach to local deep decarbonization of urban neighborhoods," Energy, Elsevier, vol. 238(PB).
  173. Hansen, Kenneth & Mathiesen, Brian Vad & Skov, Iva Ridjan, 2019. "Full energy system transition towards 100% renewable energy in Germany in 2050," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 1-13.
  174. Weiss, Olga & Bogdanov, Dmitry & Salovaara, Kaisa & Honkapuro, Samuli, 2017. "Market designs for a 100% renewable energy system: Case isolated power system of Israel," Energy, Elsevier, vol. 119(C), pages 266-277.
  175. Ridjan, Iva & Mathiesen, Brian Vad & Connolly, David, 2014. "Synthetic fuel production costs by means of solid oxide electrolysis cells," Energy, Elsevier, vol. 76(C), pages 104-113.
  176. Duenas, Pablo & Ramos, Andres & Tapia-Ahumada, Karen & Olmos, Luis & Rivier, Michel & Pérez-Arriaga, Jose-Ignacio, 2018. "Security of supply in a carbon-free electric power system: The case of Iceland," Applied Energy, Elsevier, vol. 212(C), pages 443-454.
  177. Arévalo, Paúl & Cano, Antonio & Jurado, Francisco, 2022. "Mitigation of carbon footprint with 100% renewable energy system by 2050: The case of Galapagos islands," Energy, Elsevier, vol. 245(C).
  178. Wiryadinata, Steven & Morejohn, Josh & Kornbluth, Kurt, 2019. "Pathways to carbon neutral energy systems at the University of California, Davis," Renewable Energy, Elsevier, vol. 130(C), pages 853-866.
  179. Richardson, David B. & Harvey, L.D. Danny, 2015. "Optimizing renewable energy, demand response and energy storage to replace conventional fuels in Ontario, Canada," Energy, Elsevier, vol. 93(P2), pages 1447-1455.
  180. Yue, Xiufeng & Patankar, Neha & Decarolis, Joseph & Chiodi, Alessandro & Rogan, Fionn & Deane, J.P. & O’Gallachoir, Brian, 2020. "Least cost energy system pathways towards 100% renewable energy in Ireland by 2050," Energy, Elsevier, vol. 207(C).
  181. Kanters, Jouri & Wall, Maria, 2016. "A planning process map for solar buildings in urban environments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 173-185.
  182. Vidal-Amaro, Juan José & Østergaard, Poul Alberg & Sheinbaum-Pardo, Claudia, 2015. "Optimal energy mix for transitioning from fossil fuels to renewable energy sources – The case of the Mexican electricity system," Applied Energy, Elsevier, vol. 150(C), pages 80-96.
  183. Vithayasrichareon, Peerapat & Riesz, Jenny & MacGill, Iain F., 2015. "Using renewables to hedge against future electricity industry uncertainties—An Australian case study," Energy Policy, Elsevier, vol. 76(C), pages 43-56.
  184. Victoria, Marta & Gallego-Castillo, Cristobal, 2019. "Hourly-resolution analysis of electricity decarbonization in Spain (2017–2030)," Applied Energy, Elsevier, vol. 233, pages 674-690.
  185. Baldini, Mattia & Klinge Jacobsen, Henrik, 2016. "Optimal trade-offs between energy efficiency improvements and additional renewable energy supply: A review of international experiences," MPRA Paper 102031, University Library of Munich, Germany.
  186. Wierzbowski, Michal & Filipiak, Izabela & Lyzwa, Wojciech, 2017. "Polish energy policy 2050 – An instrument to develop a diversified and sustainable electricity generation mix in coal-based energy system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 51-70.
  187. Guerra, Omar J. & Tejada, Diego A. & Reklaitis, Gintaras V., 2016. "An optimization framework for the integrated planning of generation and transmission expansion in interconnected power systems," Applied Energy, Elsevier, vol. 170(C), pages 1-21.
  188. Narbel, Patrick A. & Hansen, Jan Petter, 2014. "Estimating the cost of future global energy supply," Discussion Papers 2014/14, Norwegian School of Economics, Department of Business and Management Science.
  189. Santos-Alamillos, F.J. & Pozo-Vázquez, D. & Ruiz-Arias, J.A. & Lara-Fanego, V. & Tovar-Pescador, J., 2014. "A methodology for evaluating the spatial variability of wind energy resources: Application to assess the potential contribution of wind energy to baseload power," Renewable Energy, Elsevier, vol. 69(C), pages 147-156.
  190. Sovacool, Benjamin K. & Noel, Lance & Kester, Johannes & Zarazua de Rubens, Gerardo, 2018. "Reviewing Nordic transport challenges and climate policy priorities: Expert perceptions of decarbonisation in Denmark, Finland, Iceland, Norway, Sweden," Energy, Elsevier, vol. 165(PA), pages 532-542.
  191. Zappa, William & Junginger, Martin & van den Broek, Machteld, 2019. "Is a 100% renewable European power system feasible by 2050?," Applied Energy, Elsevier, vol. 233, pages 1027-1050.
  192. Višković, Alfredo & Franki, Vladimir & Valentić, Vladimir, 2014. "CCS (carbon capture and storage) investment possibility in South East Europe: A case study for Croatia," Energy, Elsevier, vol. 70(C), pages 325-337.
  193. Hong, Lixuan & Lund, Henrik & Mathiesen, Brian Vad & Möller, Bernd, 2013. "2050 pathway to an active renewable energy scenario for Jiangsu province," Energy Policy, Elsevier, vol. 53(C), pages 267-278.
  194. Sperling, K. & Arler, F., 2020. "Local government innovation in the energy sector: A study of key actors’ strategies and arguments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 126(C).
  195. Budzianowski, Wojciech M., 2012. "Target for national carbon intensity of energy by 2050: A case study of Poland's energy system," Energy, Elsevier, vol. 46(1), pages 575-581.
  196. Efstathios E. Michaelides, 2021. "Thermodynamics, Energy Dissipation, and Figures of Merit of Energy Storage Systems—A Critical Review," Energies, MDPI, vol. 14(19), pages 1-41, September.
  197. Okonkwo, Eric C. & Wole-Osho, Ifeoluwa & Bamisile, Olusola & Abid, Muhammad & Al-Ansari, Tareq, 2021. "Grid integration of renewable energy in Qatar: Potentials and limitations," Energy, Elsevier, vol. 235(C).
  198. Kiss, Viktor Miklós & Hetesi, Zsolt & Kiss, Tibor, 2016. "Issues and solutions relating to Hungary's electricity system," Energy, Elsevier, vol. 116(P1), pages 329-340.
  199. Mai, Trieu & Mulcahy, David & Hand, M. Maureen & Baldwin, Samuel F., 2014. "Envisioning a renewable electricity future for the United States," Energy, Elsevier, vol. 65(C), pages 374-386.
  200. Dinya, László, 2015. "Innovative Method Of Regional Sustainable Energy Strategies," Journal of Central European Green Innovation, Karoly Robert University College, vol. 3(Thematic ), pages 1-13.
  201. Poullikkas, Andreas, 2013. "A comparative overview of large-scale battery systems for electricity storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 778-788.
  202. Riesz, Jenny & Elliston, Ben, 2016. "Research and deployment priorities for renewable technologies: Quantifying the importance of various renewable technologies for low cost, high renewable electricity systems in an Australian case study," Energy Policy, Elsevier, vol. 98(C), pages 298-308.
  203. Kwon, Pil Seok & Østergaard, Poul Alberg, 2013. "Priority order in using biomass resources – Energy systems analyses of future scenarios for Denmark," Energy, Elsevier, vol. 63(C), pages 86-94.
  204. Wyttenbach, Joël & Bougard, Jacques & Descy, Gilbert & Skrylnyk, Oleksandr & Courbon, Emilie & Frère, Marc & Bruyat, Fabien, 2018. "Performances and modelling of a circular moving bed thermochemical reactor for seasonal storage," Applied Energy, Elsevier, vol. 230(C), pages 803-815.
  205. Lingfors, D. & Widén, J., 2016. "Development and validation of a wide-area model of hourly aggregate solar power generation," Energy, Elsevier, vol. 102(C), pages 559-566.
  206. Arent, Doug & Pless, Jacquelyn & Mai, Trieu & Wiser, Ryan & Hand, Maureen & Baldwin, Sam & Heath, Garvin & Macknick, Jordan & Bazilian, Morgan & Schlosser, Adam & Denholm, Paul, 2014. "Implications of high renewable electricity penetration in the U.S. for water use, greenhouse gas emissions, land-use, and materials supply," Applied Energy, Elsevier, vol. 123(C), pages 368-377.
  207. Vinagre Díaz, Juan José & Wilby, Mark Richard & Rodríguez González, Ana Belén, 2015. "The wasted energy: A metric to set up appropriate targets in our path towards fully renewable energy systems," Energy, Elsevier, vol. 90(P1), pages 900-909.
  208. David Maya-Drysdale & Louise Krog Jensen & Brian Vad Mathiesen, 2020. "Energy Vision Strategies for the EU Green New Deal: A Case Study of European Cities," Energies, MDPI, vol. 13(9), pages 1-20, May.
  209. Gustavsson, Leif & Truong, Nguyen Le, 2016. "Bioenergy pathways for cars: Effects on primary energy use, climate change and energy system integration," Energy, Elsevier, vol. 115(P3), pages 1779-1789.
  210. Han, Yilong & Taylor, John E. & Pisello, Anna Laura, 2017. "Exploring mutual shading and mutual reflection inter-building effects on building energy performance," Applied Energy, Elsevier, vol. 185(P2), pages 1556-1564.
  211. Ringkjøb, Hans-Kristian & Haugan, Peter M. & Solbrekke, Ida Marie, 2018. "A review of modelling tools for energy and electricity systems with large shares of variable renewables," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 440-459.
  212. Prina, Matteo Giacomo & Fanali, Lorenzo & Manzolini, Giampaolo & Moser, David & Sparber, Wolfram, 2018. "Incorporating combined cycle gas turbine flexibility constraints and additional costs into the EPLANopt model: The Italian case study," Energy, Elsevier, vol. 160(C), pages 33-43.
  213. Qëndresa Bresa & Ankica Kovač & Doria Marciuš, 2022. "Introduction of Hydrogen in the Kosovo Transportation Sector," Energies, MDPI, vol. 15(19), pages 1-12, October.
  214. Mark Z. Jacobson & Anna-Katharina von Krauland & Zachary F.M. Burton & Stephen J. Coughlin & Caitlin Jaeggli & Daniel Nelli & Alexander J. H. Nelson & Yanbo Shu & Miles Smith & Chor Tan & Connery D. W, 2020. "Transitioning All Energy in 74 Metropolitan Areas, Including 30 Megacities, to 100% Clean and Renewable Wind, Water, and Sunlight (WWS)," Energies, MDPI, vol. 13(18), pages 1-40, September.
  215. Yao Li & Liulin Yang & Tianlu Luo, 2023. "Energy System Low-Carbon Transition under Dual-Carbon Goals: The Case of Guangxi, China Using the EnergyPLAN Tool," Energies, MDPI, vol. 16(8), pages 1-16, April.
  216. Jacobson, Mark Z., 2021. "The cost of grid stability with 100 % clean, renewable energy for all purposes when countries are isolated versus interconnected," Renewable Energy, Elsevier, vol. 179(C), pages 1065-1075.
  217. Mulder, Machiel & Scholtens, Bert, 2016. "A plant-level analysis of the spill-over effects of the German Energiewende," Applied Energy, Elsevier, vol. 183(C), pages 1259-1271.
  218. Fernandes, Liliana & Ferreira, Paula, 2014. "Renewable energy scenarios in the Portuguese electricity system," Energy, Elsevier, vol. 69(C), pages 51-57.
  219. Turconi, Roberto & Tonini, Davide & Nielsen, Christian F.B. & Simonsen, Christian G. & Astrup, Thomas, 2014. "Environmental impacts of future low-carbon electricity systems: Detailed life cycle assessment of a Danish case study," Applied Energy, Elsevier, vol. 132(C), pages 66-73.
  220. Wu, Yunyang & Reedman, Luke J. & Barrett, Mark A. & Spataru, Catalina, 2018. "Comparison of CST with different hours of storage in the Australian National Electricity Market," Renewable Energy, Elsevier, vol. 122(C), pages 487-496.
  221. Portugal-Pereira, Joana & Esteban, Miguel, 2014. "Implications of paradigm shift in Japan’s electricity security of supply: A multi-dimensional indicator assessment," Applied Energy, Elsevier, vol. 123(C), pages 424-434.
  222. Jacobson, Mark Z. & Delucchi, Mark A. & Cameron, Mary A. & Mathiesen, Brian V., 2018. "Matching demand with supply at low cost in 139 countries among 20 world regions with 100% intermittent wind, water, and sunlight (WWS) for all purposes," Renewable Energy, Elsevier, vol. 123(C), pages 236-248.
  223. Bissiri, Mounirah & Moura, Pedro & Figueiredo, Nuno Carvalho & Pereira da Silva, Patrícia, 2020. "A geospatial approach towards defining cost-optimal electrification pathways in West Africa," Energy, Elsevier, vol. 200(C).
  224. Anis Radzi, 2015. "A survey of expert attitudes on understanding and governing energy autonomy at the local level," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 4(5), pages 397-405, September.
  225. Markovska, Natasa & Duić, Neven & Mathiesen, Brian Vad & Guzović, Zvonimir & Piacentino, Antonio & Schlör, Holger & Lund, Henrik, 2016. "Addressing the main challenges of energy security in the twenty-first century – Contributions of the conferences on Sustainable Development of Energy, Water and Environment Systems," Energy, Elsevier, vol. 115(P3), pages 1504-1512.
  226. Chen, Yue & Wei, Wei & Liu, Feng & Mei, Shengwei, 2016. "Distributionally robust hydro-thermal-wind economic dispatch," Applied Energy, Elsevier, vol. 173(C), pages 511-519.
  227. Suomalainen, K. & Silva, C. & Ferrão, P. & Connors, S., 2013. "Wind power design in isolated energy systems: Impacts of daily wind patterns," Applied Energy, Elsevier, vol. 101(C), pages 533-540.
  228. Hanley, Emma S. & Deane, JP & Gallachóir, BP Ó, 2018. "The role of hydrogen in low carbon energy futures–A review of existing perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3027-3045.
  229. Zafirakis, Dimitrios & Chalvatzis, Konstantinos J. & Baiocchi, Giovanni, 2015. "Embodied CO2 emissions and cross-border electricity trade in Europe: Rebalancing burden sharing with energy storage," Applied Energy, Elsevier, vol. 143(C), pages 283-300.
  230. Lund, Henrik & Mathiesen, Brian Vad, 2012. "The role of Carbon Capture and Storage in a future sustainable energy system," Energy, Elsevier, vol. 44(1), pages 469-476.
  231. Olivier, Pierre & Bourasseau, Cyril & Bouamama, Pr. Belkacem, 2017. "Low-temperature electrolysis system modelling: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 280-300.
  232. Ćosić, Boris & Krajačić, Goran & Duić, Neven, 2012. "A 100% renewable energy system in the year 2050: The case of Macedonia," Energy, Elsevier, vol. 48(1), pages 80-87.
  233. Mathiesen, B.V. & Lund, H. & Connolly, D. & Wenzel, H. & Østergaard, P.A. & Möller, B. & Nielsen, S. & Ridjan, I. & Karnøe, P. & Sperling, K. & Hvelplund, F.K., 2015. "Smart Energy Systems for coherent 100% renewable energy and transport solutions," Applied Energy, Elsevier, vol. 145(C), pages 139-154.
  234. Sillman, J. & Hynynen, K. & Dyukov, I. & Ahonen, T. & Jalas, M, 2023. "Emission reduction targets and electrification of the Finnish energy system with low-carbon Power-to-X technologies: Potentials, barriers, and innovations – A Delphi survey," Technological Forecasting and Social Change, Elsevier, vol. 193(C).
  235. Elliston, Ben & MacGill, Iain & Diesendorf, Mark, 2014. "Comparing least cost scenarios for 100% renewable electricity with low emission fossil fuel scenarios in the Australian National Electricity Market," Renewable Energy, Elsevier, vol. 66(C), pages 196-204.
  236. Perera, A.T.D. & Nik, Vahid M. & Mauree, Dasaraden & Scartezzini, Jean-Louis, 2017. "Electrical hubs: An effective way to integrate non-dispatchable renewable energy sources with minimum impact to the grid," Applied Energy, Elsevier, vol. 190(C), pages 232-248.
  237. Copp, David A. & Nguyen, Tu A. & Byrne, Raymond H. & Chalamala, Babu R., 2022. "Optimal sizing of distributed energy resources for planning 100% renewable electric power systems," Energy, Elsevier, vol. 239(PE).
  238. Tonini, Davide & Astrup, Thomas, 2012. "LCA of biomass-based energy systems: A case study for Denmark," Applied Energy, Elsevier, vol. 99(C), pages 234-246.
  239. Cosentino, Valentina & Favuzza, Salvatore & Graditi, Giorgio & Ippolito, Mariano Giuseppe & Massaro, Fabio & Riva Sanseverino, Eleonora & Zizzo, Gaetano, 2012. "Smart renewable generation for an islanded system. Technical and economic issues of future scenarios," Energy, Elsevier, vol. 39(1), pages 196-204.
  240. Arévalo, Paul & Cano, Antonio & Jurado, Francisco, 2024. "Large-scale integration of renewable energies by 2050 through demand prediction with ANFIS, Ecuador case study," Energy, Elsevier, vol. 286(C).
  241. Turner, Graham M. & Elliston, Ben & Diesendorf, Mark, 2013. "Impacts on the biophysical economy and environment of a transition to 100% renewable electricity in Australia," Energy Policy, Elsevier, vol. 54(C), pages 288-299.
  242. Raza, Muhammad Amir & Khatri, Krishan Lal & Hussain, Arslan, 2022. "Transition from fossilized to defossilized energy system in Pakistan," Renewable Energy, Elsevier, vol. 190(C), pages 19-29.
  243. Zeng, Qing & Fang, Jiakun & Li, Jinghua & Chen, Zhe, 2016. "Steady-state analysis of the integrated natural gas and electric power system with bi-directional energy conversion," Applied Energy, Elsevier, vol. 184(C), pages 1483-1492.
  244. Gorman, Will & Mills, Andrew & Wiser, Ryan, 2019. "Improving estimates of transmission capital costs for utility-scale wind and solar projects to inform renewable energy policy," Energy Policy, Elsevier, vol. 135(C).
  245. Makolo, Peter & Zamora, Ramon & Lie, Tek-Tjing, 2021. "The role of inertia for grid flexibility under high penetration of variable renewables - A review of challenges and solutions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
  246. Blumberga, Dagnija & Blumberga, Andra & Barisa, Aiga & Rosa, Marika & Lauka, Dace, 2016. "Modelling the Latvian power market to evaluate its environmental long-term performance," Applied Energy, Elsevier, vol. 162(C), pages 1593-1600.
  247. Morvaj, Boran & Evins, Ralph & Carmeliet, Jan, 2017. "Decarbonizing the electricity grid: The impact on urban energy systems, distribution grids and district heating potential," Applied Energy, Elsevier, vol. 191(C), pages 125-140.
  248. Muhammad Faizan Tahir & Haoyong Chen & Muhammad Sufyan Javed & Irfan Jameel & Asad Khan & Saifullah Adnan, 2019. "Integration of Different Individual Heating Scenarios and Energy Storages into Hybrid Energy System Model of China for 2030," Energies, MDPI, vol. 12(11), pages 1-20, May.
  249. Andreas, Jan-Justus & Burns, Charlotte & Touza, Julia, 2017. "Renewable Energy as a Luxury? A Qualitative Comparative Analysis of the Role of the Economy in the EU's Renewable Energy Transitions During the ‘Double Crisis’," Ecological Economics, Elsevier, vol. 142(C), pages 81-90.
  250. Komušanac, Ivan & Ćosić, Boris & Duić, Neven, 2016. "Impact of high penetration of wind and solar PV generation on the country power system load: The case study of Croatia," Applied Energy, Elsevier, vol. 184(C), pages 1470-1482.
  251. Tonmoy Choudhury & Muhammad Kamran & Hadrian Geri Djajadikerta & Tapan Sarker, 2023. "Can Banks Sustain the Growth in Renewable Energy Supply? An International Evidence," The European Journal of Development Research, Palgrave Macmillan;European Association of Development Research and Training Institutes (EADI), vol. 35(1), pages 20-50, February.
  252. Trutnevyte, Evelina, 2013. "EXPANSE methodology for evaluating the economic potential of renewable energy from an energy mix perspective," Applied Energy, Elsevier, vol. 111(C), pages 593-601.
  253. Lopez, Gabriel & Aghahosseini, Arman & Child, Michael & Khalili, Siavash & Fasihi, Mahdi & Bogdanov, Dmitrii & Breyer, Christian, 2022. "Impacts of model structure, framework, and flexibility on perspectives of 100% renewable energy transition decision-making," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
  254. Edmunds, R.K. & Cockerill, T.T. & Foxon, T.J. & Ingham, D.B. & Pourkashanian, M., 2014. "Technical benefits of energy storage and electricity interconnections in future British power systems," Energy, Elsevier, vol. 70(C), pages 577-587.
  255. Liu, Wen & Lund, Henrik & Mathiesen, Brian Vad & Zhang, Xiliang, 2011. "Potential of renewable energy systems in China," Applied Energy, Elsevier, vol. 88(2), pages 518-525, February.
  256. Mortensen, Anders Winther & Mathiesen, Brian Vad & Hansen, Anders Bavnhøj & Pedersen, Sigurd Lauge & Grandal, Rune Duban & Wenzel, Henrik, 2020. "The role of electrification and hydrogen in breaking the biomass bottleneck of the renewable energy system – A study on the Danish energy system," Applied Energy, Elsevier, vol. 275(C).
  257. Koltsaklis, Nikolaos E. & Georgiadis, Michael C., 2015. "A multi-period, multi-regional generation expansion planning model incorporating unit commitment constraints," Applied Energy, Elsevier, vol. 158(C), pages 310-331.
  258. Prebeg, Pero & Gasparovic, Goran & Krajacic, Goran & Duic, Neven, 2016. "Long-term energy planning of Croatian power system using multi-objective optimization with focus on renewable energy and integration of electric vehicles," Applied Energy, Elsevier, vol. 184(C), pages 1493-1507.
  259. Wang, Xiaokui & Bamisile, Olusola & Chen, Shuheng & Xu, Xiao & Luo, Shihua & Huang, Qi & Hu, Weihao, 2022. "Decarbonization of China's electricity systems with hydropower penetration and pumped-hydro storage: Comparing the policies with a techno-economic analysis," Renewable Energy, Elsevier, vol. 196(C), pages 65-83.
  260. Ramli, Makbul A.M. & Hiendro, Ayong & Twaha, Ssennoga, 2015. "Economic analysis of PV/diesel hybrid system with flywheel energy storage," Renewable Energy, Elsevier, vol. 78(C), pages 398-405.
  261. Lund, Henrik & Hvelplund, Frede, 2012. "The economic crisis and sustainable development: The design of job creation strategies by use of concrete institutional economics," Energy, Elsevier, vol. 43(1), pages 192-200.
  262. Maeder, Mattia & Weiss, Olga & Boulouchos, Konstantinos, 2021. "Assessing the need for flexibility technologies in decarbonized power systems: A new model applied to Central Europe," Applied Energy, Elsevier, vol. 282(PA).
  263. Gomes, R.P.F. & Henriques, J.C.C. & Gato, L.M.C. & Falcão, A.F.O., 2012. "Multi-point aerodynamic optimization of the rotor blade sections of an axial-flow impulse air turbine for wave energy conversion," Energy, Elsevier, vol. 45(1), pages 570-580.
  264. Jože Dimnik & Jelena Topić Božič & Ante Čikić & Simon Muhič, 2024. "Impacts of High PV Penetration on Slovenia’s Electricity Grid: Energy Modeling and Life Cycle Assessment," Energies, MDPI, vol. 17(13), pages 1-17, June.
  265. Jacobson, Mark Z. & Howarth, Robert W. & Delucchi, Mark A. & Scobie, Stan R. & Barth, Jannette M. & Dvorak, Michael J. & Klevze, Megan & Katkhuda, Hind & Miranda, Brian & Chowdhury, Navid A. & Jones, , 2013. "Examining the feasibility of converting New York State’s all-purpose energy infrastructure to one using wind, water, and sunlight," Energy Policy, Elsevier, vol. 57(C), pages 585-601.
  266. Dorsaf Azouz Ghachem & Nadia Basty & Qasim Zureigat, 2022. "Ownership Structure and Carbon Emissions of SMEs: Evidence from OECD Countries," Sustainability, MDPI, vol. 14(21), pages 1-16, November.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.