IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v9y2019i6p116-d236701.html
   My bibliography  Save this article

Novel Approaches to Optimise Early Growth in Willow Crops

Author

Listed:
  • Isabella Donnelly

    (School of Agriculture and Food Science, UCD, Belfield, Dublin 4 D04V1W8, Ireland
    Teagasc CELUP, Crops Research, Oak Park, Carlow R93XE12, Ireland)

  • Kevin McDonnell

    (School of Agriculture and Food Science, UCD, Belfield, Dublin 4 D04V1W8, Ireland
    Biosystems Engineering Ltd, NovaUCD, Belfield, Dublin 4, Ireland)

  • John Finnan

    (Teagasc CELUP, Crops Research, Oak Park, Carlow R93XE12, Ireland)

Abstract

Willow is a fast growing, high yielding biomass crop that can help reduce reliance on fossil fuels. However, long establishment times to get to profitability and sustainable yield may deter interest in planting the crop. A number of different approaches were investigated to optimise and accelerate early growth. These approaches were water immersion, plastic application, altering stem orientation at planting, altering coppicing timings and applying growth hormone. Glasshouse and field trials were used to test the different approaches. In this work, planting material was soaked for a varying number of days and plastic was applied or not applied in field trials. In the planting orientation approach, stems were planted diagonally or vertically with half of the planting material above the ground level or horizontally below ground level. Additionally, willow crops were coppiced at different times throughout their first growing season and a growth hormone trial was also incorporated in this work. Water soaking, plastic application, coppicing during the growing season or hormone application did not improve early growth or yield. However, early growth and yield were increased by manipulating the planting orientation of willow stems. Planting orientation treatments in which part of the stem was left above the ground increased early growth and yield significantly compared to the control without requiring extra inputs at planting. The beneficial effects of coppicing can be achieved by manipulating the planting procedure so that the first year’s growth is not disregarded.

Suggested Citation

  • Isabella Donnelly & Kevin McDonnell & John Finnan, 2019. "Novel Approaches to Optimise Early Growth in Willow Crops," Agriculture, MDPI, vol. 9(6), pages 1-15, June.
  • Handle: RePEc:gam:jagris:v:9:y:2019:i:6:p:116-:d:236701
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/9/6/116/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/9/6/116/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Connolly, D. & Lund, H. & Mathiesen, B.V. & Leahy, M., 2011. "The first step towards a 100% renewable energy-system for Ireland," Applied Energy, Elsevier, vol. 88(2), pages 502-507, February.
    2. Sosa, Amanda & Acuna, Mauricio & McDonnell, Kevin & Devlin, Ger, 2015. "Controlling moisture content and truck configurations to model and optimise biomass supply chain logistics in Ireland," Applied Energy, Elsevier, vol. 137(C), pages 338-351.
    3. Deane, J.P. & Dalton, G. & Ó Gallachóir, B.P., 2012. "Modelling the economic impacts of 500MW of wave power in Ireland," Energy Policy, Elsevier, vol. 45(C), pages 614-627.
    4. Murphy, Fionnuala & Sosa, Amanda & McDonnell, Kevin & Devlin, Ger, 2016. "Life cycle assessment of biomass-to-energy systems in Ireland modelled with biomass supply chain optimisation based on greenhouse gas emission reduction," Energy, Elsevier, vol. 109(C), pages 1040-1055.
    5. Bigerna, Simona & Bollino, Carlo Andrea & Micheli, Silvia, 2016. "Renewable energy scenarios for costs reductions in the European Union," Renewable Energy, Elsevier, vol. 96(PA), pages 80-90.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tonini, Davide & Vadenbo, Carl & Astrup, Thomas Fruergaard, 2017. "Priority of domestic biomass resources for energy: Importance of national environmental targets in a climate perspective," Energy, Elsevier, vol. 124(C), pages 295-309.
    2. Luigi Aldieri & Jonas Grafström & Kristoffer Sundström & Concetto Paolo Vinci, 2019. "Wind Power and Job Creation," Sustainability, MDPI, vol. 12(1), pages 1-23, December.
    3. Kyriakopoulos, Grigorios L. & Arabatzis, Garyfallos & Tsialis, Panagiotis & Ioannou, Konstantinos, 2018. "Electricity consumption and RES plants in Greece: Typologies of regional units," Renewable Energy, Elsevier, vol. 127(C), pages 134-144.
    4. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    5. Lund, Henrik & Thellufsen, Jakob Zinck & Sorknæs, Peter & Mathiesen, Brian Vad & Chang, Miguel & Madsen, Poul Thøis & Kany, Mikkel Strunge & Skov, Iva Ridjan, 2022. "Smart energy Denmark. A consistent and detailed strategy for a fully decarbonized society," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    6. Cerovac, Tin & Ćosić, Boris & Pukšec, Tomislav & Duić, Neven, 2014. "Wind energy integration into future energy systems based on conventional plants – The case study of Croatia," Applied Energy, Elsevier, vol. 135(C), pages 643-655.
    7. Chai, Li & Saffron, Christopher M., 2016. "Comparing pelletization and torrefaction depots: Optimization of depot capacity and biomass moisture to determine the minimum production cost," Applied Energy, Elsevier, vol. 163(C), pages 387-395.
    8. Wang, Yongli & Li, Jiapu & Wang, Shuo & Yang, Jiale & Qi, Chengyuan & Guo, Hongzhen & Liu, Ximei & Zhang, Hongqing, 2020. "Operational optimization of wastewater reuse integrated energy system," Energy, Elsevier, vol. 200(C).
    9. Calise, Francesco & Cipollina, Andrea & Dentice d’Accadia, Massimo & Piacentino, Antonio, 2014. "A novel renewable polygeneration system for a small Mediterranean volcanic island for the combined production of energy and water: Dynamic simulation and economic assessment," Applied Energy, Elsevier, vol. 135(C), pages 675-693.
    10. Maruf, Md. Nasimul Islam, 2021. "Open model-based analysis of a 100% renewable and sector-coupled energy system–The case of Germany in 2050," Applied Energy, Elsevier, vol. 288(C).
    11. Liu, Wen & Hu, Weihao & Lund, Henrik & Chen, Zhe, 2013. "Electric vehicles and large-scale integration of wind power – The case of Inner Mongolia in China," Applied Energy, Elsevier, vol. 104(C), pages 445-456.
    12. Liu, Liwei & Ye, Junhong & Zhao, Yufei & Zhao, Erdong, 2015. "The plight of the biomass power generation industry in China – A supply chain risk perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 680-692.
    13. Hayes, Liam & Stocks, Matthew & Blakers, Andrew, 2021. "Accurate long-term power generation model for offshore wind farms in Europe using ERA5 reanalysis," Energy, Elsevier, vol. 229(C).
    14. Moiseyev, Alexander & Solberg, Birger & Kallio, A. Maarit I., 2014. "The impact of subsidies and carbon pricing on the wood biomass use for energy in the EU," Energy, Elsevier, vol. 76(C), pages 161-167.
    15. Vinagre Díaz, Juan José & Wilby, Mark Richard & Rodríguez González, Ana Belén, 2015. "The wasted energy: A metric to set up appropriate targets in our path towards fully renewable energy systems," Energy, Elsevier, vol. 90(P1), pages 900-909.
    16. Fernandes, Liliana & Ferreira, Paula, 2014. "Renewable energy scenarios in the Portuguese electricity system," Energy, Elsevier, vol. 69(C), pages 51-57.
    17. Raza, Muhammad Amir & Khatri, Krishan Lal & Hussain, Arslan, 2022. "Transition from fossilized to defossilized energy system in Pakistan," Renewable Energy, Elsevier, vol. 190(C), pages 19-29.
    18. Le, Ngoc Anh & Bhattacharyya, Subhes C., 2011. "Integration of wind power into the British system in 2020," Energy, Elsevier, vol. 36(10), pages 5975-5983.
    19. Rui P. Borges & Flávia Franco & Fátima N. Serralha & Isabel Cabrita, 2024. "Green Hydrogen Production at the Gigawatt Scale in Portugal: A Technical and Economic Evaluation," Energies, MDPI, vol. 17(7), pages 1-21, March.
    20. Ji, Changwei & Wang, Shuofeng & Zhang, Bo, 2012. "Performance of a hybrid hydrogen–gasoline engine under various operating conditions," Applied Energy, Elsevier, vol. 97(C), pages 584-589.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:9:y:2019:i:6:p:116-:d:236701. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.