IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i7p2014-d220069.html
   My bibliography  Save this article

Towards a Neutral North—The Urban Low Carbon Transitions of Akureyri, Iceland

Author

Listed:
  • Rakel Kristjansdottir

    (Department for Designation of Nature Protection Areas and Pollution Permits, The Environment Agency of Iceland (Umhverfisstofnun), Reykjavik 108, Iceland)

  • Henner Busch

    (Department of Human Geography, Lund University & Lund University Centre for Sustainability Studies, Lund 22362, Sweden)

Abstract

Climate change has made urban decarbonisation a global imperative. Cities are both a source of emissions and a leverage-point for the necessary transformation processes. Iceland is blessed with an ample supply of renewable energy sources. Hydropower and geothermal are widespread in the country and they dominate the country’s electricity and district heating systems. Despite this huge potential, per capita emissions in Iceland are still way above levels required to meet the 2 degrees target. This is because decarbonisation processes have, so far, fallen short of addressing emissions from sectors such as waste and transportation. Against this background, this paper investigates the low carbon transition in the northern Icelandic municipality of Akureyri. With roughly 18,000 inhabitants, the town of Akureyri is the biggest urban centre in the north of the country. Here, a number of key actors have initiated an ambitious urban transformation process of local carbon flows. Based on 19 semi-structured interviews, we analysed the role of key actors and their resources and strategies. To better explore the transition’s underlying mechanisms, we analysed the dynamics through the lens of the multi-level perspective (MLP), applied in a descriptive context. We found that a key factor for success of the urban transition was a strategy that integrated several previously disconnected carbon flows of the community. Important success factors were close community connections, public-private partnerships, the enthusiasm of multiple individuals who drove the process, the establishment of a strong intermediary organisation, and stable political support. The case can teach us about the challenges of transitions that integrate disconnected carbon flows in an urban context. Furthermore, it provides valuable findings on the role intermediary organisations play in these processes.

Suggested Citation

  • Rakel Kristjansdottir & Henner Busch, 2019. "Towards a Neutral North—The Urban Low Carbon Transitions of Akureyri, Iceland," Sustainability, MDPI, vol. 11(7), pages 1-16, April.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:7:p:2014-:d:220069
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/7/2014/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/7/2014/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lund, Henrik & Østergaard, Poul Alberg & Stadler, Ingo, 2011. "Towards 100% renewable energy systems," Applied Energy, Elsevier, vol. 88(2), pages 419-421, February.
    2. Frank W. Geels & Frans Berkhout & Detlef P. van Vuuren, 2016. "Bridging analytical approaches for low-carbon transitions," Nature Climate Change, Nature, vol. 6(6), pages 576-583, June.
    3. Beau Warbroek & Thomas Hoppe & Frans Coenen & Hans Bressers, 2018. "The Role of Intermediaries in Supporting Local Low-Carbon Energy Initiatives," Sustainability, MDPI, vol. 10(7), pages 1-28, July.
    4. Lamia Kamal-Chaoui & Alexis Robert, 2009. "Competitive Cities and Climate Change," OECD Regional Development Working Papers 2009/2, OECD Publishing.
    5. Connolly, D. & Lund, H. & Mathiesen, B.V. & Leahy, M., 2011. "The first step towards a 100% renewable energy-system for Ireland," Applied Energy, Elsevier, vol. 88(2), pages 502-507, February.
    6. Geels, Frank W., 2002. "Technological transitions as evolutionary reconfiguration processes: a multi-level perspective and a case-study," Research Policy, Elsevier, vol. 31(8-9), pages 1257-1274, December.
    7. Haris Doukas & Alexandros Nikas & Mikel González-Eguino & Iñaki Arto & Annela Anger-Kraavi, 2018. "From Integrated to Integrative: Delivering on the Paris Agreement," Sustainability, MDPI, vol. 10(7), pages 1-10, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ruggiero, S. & Busch, H. & Hansen, T. & Isakovic, A., 2021. "Context and agency in urban community energy initiatives: An analysis of six case studies from the Baltic Sea Region," Energy Policy, Elsevier, vol. 148(PA).
    2. Liu, Jicheng & Lu, Yunyuan, 2022. "Research on the evaluation of China's photovoltaic policy driving ability under the background of carbon neutrality," Energy, Elsevier, vol. 250(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Calise, Francesco & Cipollina, Andrea & Dentice d’Accadia, Massimo & Piacentino, Antonio, 2014. "A novel renewable polygeneration system for a small Mediterranean volcanic island for the combined production of energy and water: Dynamic simulation and economic assessment," Applied Energy, Elsevier, vol. 135(C), pages 675-693.
    2. Liu, Wen & Hu, Weihao & Lund, Henrik & Chen, Zhe, 2013. "Electric vehicles and large-scale integration of wind power – The case of Inner Mongolia in China," Applied Energy, Elsevier, vol. 104(C), pages 445-456.
    3. Maswabi, Mareledi Gina & Chun, Jungwoo & Chung, Suh-Yong, 2021. "Barriers to energy transition: A case of Botswana," Energy Policy, Elsevier, vol. 158(C).
    4. Oropeza-Perez, Ivan & Østergaard, Poul Alberg, 2014. "Potential of natural ventilation in temperate countries – A case study of Denmark," Applied Energy, Elsevier, vol. 114(C), pages 520-530.
    5. Ma, Tao & Østergaard, Poul Alberg & Lund, Henrik & Yang, Hongxing & Lu, Lin, 2014. "An energy system model for Hong Kong in 2020," Energy, Elsevier, vol. 68(C), pages 301-310.
    6. Federica Rotondo & Francesca Abastante & Giancarlo Cotella & Isabella Maria Lami, 2020. "Questioning Low-Carbon Transition Governance: A Comparative Analysis of European Case Studies," Sustainability, MDPI, vol. 12(24), pages 1-17, December.
    7. Chang, Miguel & Lund, Henrik & Thellufsen, Jakob Zinck & Østergaard, Poul Alberg, 2023. "Perspectives on purpose-driven coupling of energy system models," Energy, Elsevier, vol. 265(C).
    8. Gabriela PICIU, 2018. "The Management Of Green Certificates In Romania," Contemporary Economy Journal, Constantin Brancoveanu University, vol. 3(1), pages 96-104.
    9. Modhurima Dey Amin & Syed Badruddoza & Jill J. McCluskey, 2021. "Does conventional energy pricing induce innovation in renewable energy? New evidence from a nonlinear approach," Applied Economic Perspectives and Policy, John Wiley & Sons, vol. 43(2), pages 659-679, June.
    10. Tokimatsu, Koji & Höök, Mikael & McLellan, Benjamin & Wachtmeister, Henrik & Murakami, Shinsuke & Yasuoka, Rieko & Nishio, Masahiro, 2018. "Energy modeling approach to the global energy-mineral nexus: Exploring metal requirements and the well-below 2 °C target with 100 percent renewable energy," Applied Energy, Elsevier, vol. 225(C), pages 1158-1175.
    11. Henriques, J.C.C. & Portillo, J.C.C. & Gato, L.M.C. & Gomes, R.P.F. & Ferreira, D.N. & Falcão, A.F.O., 2016. "Design of oscillating-water-column wave energy converters with an application to self-powered sensor buoys," Energy, Elsevier, vol. 112(C), pages 852-867.
    12. Rodrigues, E.M.G. & Godina, R. & Santos, S.F. & Bizuayehu, A.W. & Contreras, J. & Catalão, J.P.S., 2014. "Energy storage systems supporting increased penetration of renewables in islanded systems," Energy, Elsevier, vol. 75(C), pages 265-280.
    13. Olivier, Pierre & Bourasseau, Cyril & Bouamama, Pr. Belkacem, 2017. "Low-temperature electrolysis system modelling: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 280-300.
    14. Muhammad Faizan Tahir & Haoyong Chen & Muhammad Sufyan Javed & Irfan Jameel & Asad Khan & Saifullah Adnan, 2019. "Integration of Different Individual Heating Scenarios and Energy Storages into Hybrid Energy System Model of China for 2030," Energies, MDPI, vol. 12(11), pages 1-20, May.
    15. Prebeg, Pero & Gasparovic, Goran & Krajacic, Goran & Duic, Neven, 2016. "Long-term energy planning of Croatian power system using multi-objective optimization with focus on renewable energy and integration of electric vehicles," Applied Energy, Elsevier, vol. 184(C), pages 1493-1507.
    16. Gomes, R.P.F. & Henriques, J.C.C. & Gato, L.M.C. & Falcão, A.F.O., 2012. "Multi-point aerodynamic optimization of the rotor blade sections of an axial-flow impulse air turbine for wave energy conversion," Energy, Elsevier, vol. 45(1), pages 570-580.
    17. Haris Doukas & Alexandros Nikas & Giorgos Stamtsis & Ioannis Tsipouridis, 2020. "The Green Versus Green Trap and a Way Forward," Energies, MDPI, vol. 13(20), pages 1-6, October.
    18. Geels, F.W. & McMeekin, A. & Pfluger, B., 2020. "Socio-technical scenarios as a methodological tool to explore social and political feasibility in low-carbon transitions: Bridging computer models and the multi-level perspective in UK electricity gen," Technological Forecasting and Social Change, Elsevier, vol. 151(C).
    19. Sam Wilkinson & Michele John & Gregory M. Morrison, 2021. "Rooftop PV and the Renewable Energy Transition; a Review of Driving Forces and Analytical Frameworks," Sustainability, MDPI, vol. 13(10), pages 1-25, May.
    20. Knobloch, Florian & Pollitt, Hector & Chewpreecha, Unnada & Lewney, Richard & Huijbregts, Mark A.J. & Mercure, Jean-Francois, 2021. "FTT:Heat — A simulation model for technological change in the European residential heating sector," Energy Policy, Elsevier, vol. 153(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:7:p:2014-:d:220069. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.