IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v11y2014i7p6856-6870d37785.html
   My bibliography  Save this article

Toxicity Evaluation of Pig Slurry Using Luminescent Bacteria and Zebrafish

Author

Listed:
  • Wenyan Chen

    (School of Environmental and Safety Engineering, Changzhou University, No. 1 GeHu Road, Wu Jin District, Changzhou 213164, Jiangsu,China
    Yangtze Delta Region Institute of Tsinghua University, No. 705, Yatai Road, Nanhu District, Jiaxing 314006, Zhejiang, China)

  • Qiang Cai

    (Yangtze Delta Region Institute of Tsinghua University, No. 705, Yatai Road, Nanhu District, Jiaxing 314006, Zhejiang, China
    Water Science and Technology Lab, No. 705, Yatai Road, Nanhu District, Jiaxing 314006, Zhejiang, China)

  • Yuan Zhao

    (School of Environmental and Safety Engineering, Changzhou University, No. 1 GeHu Road, Wu Jin District, Changzhou 213164, Jiangsu,China)

  • Guojuan Zheng

    (Yangtze Delta Region Institute of Tsinghua University, No. 705, Yatai Road, Nanhu District, Jiaxing 314006, Zhejiang, China)

  • Yuting Liang

    (Institute of Soil Science, Chinese Academy of Science, No. 71, Beijing East Road, Nanjing 210008, Jiangsu, China)

Abstract

Biogas slurry has become a serious pollution problem and anaerobic digestion is widely applied to pig manure treatment for environmental protection and energy recovery. To evaluate environmental risk of the emission of biogas slurry, luminescent bacteria ( Vibrio fischeri ), larvae and embryos of zebrafish ( Danio rerio ) were used to detect the acute and development toxicity of digested and post-treated slurry. Then the ability of treatment process was evaluated. The results showed that digested slurry displayed strong toxicity to both zebrafish and luminescent bacteria, while the EC 50 for luminescent bacteria and the LC 50 for larvae were only 6.81% ( v/v ) and 1.95% ( v/v ) respectively, and embryonic development was inhibited at just 1% ( v/v ). Slurry still maintained a high level of toxicity although it had been treated by membrane bioreactor (MBR), while the LC 50 of larvae was 75.23% ( v/v ) and there was a little effect on the development of embryos and V . fischeri ; the results also revealed that the zebrafish larvae are more sensitive than embryos and luminescent bacteria to pig slurry. Finally, we also found the toxicity removal rate was higher than 90% after the treatment of MBR according to toxicity tests. In conclusion, further treatment should be used in pig slurry disposal or reused of final effluent.

Suggested Citation

  • Wenyan Chen & Qiang Cai & Yuan Zhao & Guojuan Zheng & Yuting Liang, 2014. "Toxicity Evaluation of Pig Slurry Using Luminescent Bacteria and Zebrafish," IJERPH, MDPI, vol. 11(7), pages 1-15, July.
  • Handle: RePEc:gam:jijerp:v:11:y:2014:i:7:p:6856-6870:d:37785
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/11/7/6856/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/11/7/6856/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chandra, R. & Vijay, V.K. & Subbarao, P.M.V. & Khura, T.K., 2011. "Performance evaluation of a constant speed IC engine on CNG, methane enriched biogas and biogas," Applied Energy, Elsevier, vol. 88(11), pages 3969-3977.
    2. Mathiesen, Brian Vad & Lund, Henrik & Karlsson, Kenneth, 2011. "100% Renewable energy systems, climate mitigation and economic growth," Applied Energy, Elsevier, vol. 88(2), pages 488-501, February.
    3. Abubaker, J. & Risberg, K. & Pell, M., 2012. "Biogas residues as fertilisers – Effects on wheat growth and soil microbial activities," Applied Energy, Elsevier, vol. 99(C), pages 126-134.
    4. Connolly, D. & Lund, H. & Mathiesen, B.V. & Leahy, M., 2011. "The first step towards a 100% renewable energy-system for Ireland," Applied Energy, Elsevier, vol. 88(2), pages 502-507, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lund, Henrik & Thellufsen, Jakob Zinck & Sorknæs, Peter & Mathiesen, Brian Vad & Chang, Miguel & Madsen, Poul Thøis & Kany, Mikkel Strunge & Skov, Iva Ridjan, 2022. "Smart energy Denmark. A consistent and detailed strategy for a fully decarbonized society," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    2. Wang, Yongli & Li, Jiapu & Wang, Shuo & Yang, Jiale & Qi, Chengyuan & Guo, Hongzhen & Liu, Ximei & Zhang, Hongqing, 2020. "Operational optimization of wastewater reuse integrated energy system," Energy, Elsevier, vol. 200(C).
    3. Liu, Wen & Hu, Weihao & Lund, Henrik & Chen, Zhe, 2013. "Electric vehicles and large-scale integration of wind power – The case of Inner Mongolia in China," Applied Energy, Elsevier, vol. 104(C), pages 445-456.
    4. Klinge Jacobsen, Henrik & Pade, Lise Lotte & Schröder, Sascha Thorsten & Kitzing, Lena, 2014. "Cooperation mechanisms to achieve EU renewable targets," Renewable Energy, Elsevier, vol. 63(C), pages 345-352.
    5. Laslett, Dean & Carter, Craig & Creagh, Chris & Jennings, Philip, 2017. "A large-scale renewable electricity supply system by 2030: Solar, wind, energy efficiency, storage and inertia for the South West Interconnected System (SWIS) in Western Australia," Renewable Energy, Elsevier, vol. 113(C), pages 713-731.
    6. Sperling, K. & Arler, F., 2020. "Local government innovation in the energy sector: A study of key actors’ strategies and arguments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 126(C).
    7. Lund, Henrik & Mathiesen, Brian Vad, 2012. "The role of Carbon Capture and Storage in a future sustainable energy system," Energy, Elsevier, vol. 44(1), pages 469-476.
    8. Mathiesen, B.V. & Lund, H. & Connolly, D. & Wenzel, H. & Østergaard, P.A. & Möller, B. & Nielsen, S. & Ridjan, I. & Karnøe, P. & Sperling, K. & Hvelplund, F.K., 2015. "Smart Energy Systems for coherent 100% renewable energy and transport solutions," Applied Energy, Elsevier, vol. 145(C), pages 139-154.
    9. Connolly, D. & Lund, H. & Mathiesen, B.V., 2016. "Smart Energy Europe: The technical and economic impact of one potential 100% renewable energy scenario for the European Union," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1634-1653.
    10. Thanh Tu Tran & Shinichiro Fujimori & Toshihiko Masui, 2016. "Realizing the Intended Nationally Determined Contribution: The Role of Renewable Energies in Vietnam," Energies, MDPI, vol. 9(8), pages 1-17, July.
    11. Caballero, F. & Sauma, E. & Yanine, F., 2013. "Business optimal design of a grid-connected hybrid PV (photovoltaic)-wind energy system without energy storage for an Easter Island's block," Energy, Elsevier, vol. 61(C), pages 248-261.
    12. Santos-Alamillos, F.J. & Pozo-Vázquez, D. & Ruiz-Arias, J.A. & Lara-Fanego, V. & Tovar-Pescador, J., 2014. "A methodology for evaluating the spatial variability of wind energy resources: Application to assess the potential contribution of wind energy to baseload power," Renewable Energy, Elsevier, vol. 69(C), pages 147-156.
    13. Loiy Al-Ghussain & Mohammad Abujubbeh & Adnan Darwish Ahmad & Ahmad M. Abubaker & Onur Taylan & Murat Fahrioglu & Nelson K. Akafuah, 2020. "100% Renewable Energy Grid for Rural Electrification of Remote Areas: A Case Study in Jordan," Energies, MDPI, vol. 13(18), pages 1-18, September.
    14. Vidal-Amaro, Juan José & Østergaard, Poul Alberg & Sheinbaum-Pardo, Claudia, 2015. "Optimal energy mix for transitioning from fossil fuels to renewable energy sources – The case of the Mexican electricity system," Applied Energy, Elsevier, vol. 150(C), pages 80-96.
    15. Gorman, Will & Mills, Andrew & Wiser, Ryan, 2019. "Improving estimates of transmission capital costs for utility-scale wind and solar projects to inform renewable energy policy," Energy Policy, Elsevier, vol. 135(C).
    16. van Kooten, G. Cornelis & Withey, Patrick & Duan, Jon, 2020. "How big a battery?," Renewable Energy, Elsevier, vol. 146(C), pages 196-204.
    17. Noor Muhammad Abd Rahman & Lim Chin Haw & Ahmad Fazlizan, 2021. "A Literature Review of Naturally Ventilated Public Hospital Wards in Tropical Climate Countries for Thermal Comfort and Energy Saving Improvements," Energies, MDPI, vol. 14(2), pages 1-22, January.
    18. Dolara, Alberto & Lazaroiu, George Cristian & Leva, Sonia & Manzolini, Giampaolo, 2013. "Experimental investigation of partial shading scenarios on PV (photovoltaic) modules," Energy, Elsevier, vol. 55(C), pages 466-475.
    19. Ridjan, Iva & Mathiesen, Brian Vad & Connolly, David, 2014. "Synthetic fuel production costs by means of solid oxide electrolysis cells," Energy, Elsevier, vol. 76(C), pages 104-113.
    20. Andreas, Jan-Justus & Burns, Charlotte & Touza, Julia, 2017. "Renewable Energy as a Luxury? A Qualitative Comparative Analysis of the Role of the Economy in the EU's Renewable Energy Transitions During the ‘Double Crisis’," Ecological Economics, Elsevier, vol. 142(C), pages 81-90.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:11:y:2014:i:7:p:6856-6870:d:37785. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.