IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v173y2016icp511-519.html
   My bibliography  Save this article

Distributionally robust hydro-thermal-wind economic dispatch

Author

Listed:
  • Chen, Yue
  • Wei, Wei
  • Liu, Feng
  • Mei, Shengwei

Abstract

With the penetration of wind energy increasing, uncertainty has become a major challenge in power system dispatch. Hydro power can change rapidly and is regarded as one promising complementary energy resource to mitigate wind power fluctuation. Joint scheduling of hydro, thermal, and wind energy is attracting more and more attention nowadays. This paper proposes a distributionally robust hydro-thermal-wind economic dispatch (DR-HTW-ED) method to enhance the flexibility and reliability of power system operation. In contrast to the traditional stochastic optimization (SO) and adjustable robust optimization (ARO) method, distributionally robust optimization (DRO) method describes the uncertain wind power output by all possible probability distribution functions (PDFs) with the same mean and variance recovered from the forecast data, and optimizes the expected operation cost in the worst distribution. Traditional DRO optimized the random parameter in entire space, which is sometimes contradict to the actual situation. In this paper, we restrict the wind power uncertainty in a bounded set, and derive an equivalent semi-definite programming (SDP) for the DR-HTW-ED using S-lemma. A delayed constraint generation algorithm is suggested to solve it in a tractable manner. The proposed DR-HTW-ED is compared with the existing ARO based hydro-thermal-wind economic dispatch (AR-HTW-ED). Their respective features are shown from the perspective of computational efficiency and conservativeness of dispatch strategies.

Suggested Citation

  • Chen, Yue & Wei, Wei & Liu, Feng & Mei, Shengwei, 2016. "Distributionally robust hydro-thermal-wind economic dispatch," Applied Energy, Elsevier, vol. 173(C), pages 511-519.
  • Handle: RePEc:eee:appene:v:173:y:2016:i:c:p:511-519
    DOI: 10.1016/j.apenergy.2016.04.060
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261916305153
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2016.04.060?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Connolly, D. & Lund, H. & Mathiesen, B.V. & Leahy, M., 2010. "A review of computer tools for analysing the integration of renewable energy into various energy systems," Applied Energy, Elsevier, vol. 87(4), pages 1059-1082, April.
    2. Wang, Jiadong & Wang, Jianhui & Liu, Cong & Ruiz, Juan P., 2013. "Stochastic unit commitment with sub-hourly dispatch constraints," Applied Energy, Elsevier, vol. 105(C), pages 418-422.
    3. Mathiesen, Brian Vad & Lund, Henrik & Karlsson, Kenneth, 2011. "100% Renewable energy systems, climate mitigation and economic growth," Applied Energy, Elsevier, vol. 88(2), pages 488-501, February.
    4. Aghaei, J. & Shayanfar, H.A. & Amjady, N., 2009. "Joint market clearing in a stochastic framework considering power system security," Applied Energy, Elsevier, vol. 86(9), pages 1675-1682, September.
    5. F. Borrelli & A. Bemporad & M. Morari, 2003. "Geometric Algorithm for Multiparametric Linear Programming," Journal of Optimization Theory and Applications, Springer, vol. 118(3), pages 515-540, September.
    6. Connolly, D. & Lund, H. & Mathiesen, B.V. & Leahy, M., 2011. "The first step towards a 100% renewable energy-system for Ireland," Applied Energy, Elsevier, vol. 88(2), pages 502-507, February.
    7. Dimitris Bertsimas & Xuan Vinh Doan & Karthik Natarajan & Chung-Piaw Teo, 2010. "Models for Minimax Stochastic Linear Optimization Problems with Risk Aversion," Mathematics of Operations Research, INFORMS, vol. 35(3), pages 580-602, August.
    8. Wang, J. & Botterud, A. & Bessa, R. & Keko, H. & Carvalho, L. & Issicaba, D. & Sumaili, J. & Miranda, V., 2011. "Wind power forecasting uncertainty and unit commitment," Applied Energy, Elsevier, vol. 88(11), pages 4014-4023.
    9. González-Aparicio, I. & Zucker, A., 2015. "Impact of wind power uncertainty forecasting on the market integration of wind energy in Spain," Applied Energy, Elsevier, vol. 159(C), pages 334-349.
    10. Lund, Henrik & Østergaard, Poul Alberg & Stadler, Ingo, 2011. "Towards 100% renewable energy systems," Applied Energy, Elsevier, vol. 88(2), pages 419-421, February.
    11. Dallinger, David & Gerda, Schubert & Wietschel, Martin, 2013. "Integration of intermittent renewable power supply using grid-connected vehicles – A 2030 case study for California and Germany," Applied Energy, Elsevier, vol. 104(C), pages 666-682.
    12. Liu, Wen & Lund, Henrik & Mathiesen, Brian Vad & Zhang, Xiliang, 2011. "Potential of renewable energy systems in China," Applied Energy, Elsevier, vol. 88(2), pages 518-525, February.
    13. Erick Delage & Yinyu Ye, 2010. "Distributionally Robust Optimization Under Moment Uncertainty with Application to Data-Driven Problems," Operations Research, INFORMS, vol. 58(3), pages 595-612, June.
    14. Purvins, Arturs & Zubaryeva, Alyona & Llorente, Maria & Tzimas, Evangelos & Mercier, Arnaud, 2011. "Challenges and options for a large wind power uptake by the European electricity system," Applied Energy, Elsevier, vol. 88(5), pages 1461-1469, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Wen & Hu, Weihao & Lund, Henrik & Chen, Zhe, 2013. "Electric vehicles and large-scale integration of wind power – The case of Inner Mongolia in China," Applied Energy, Elsevier, vol. 104(C), pages 445-456.
    2. Lund, Henrik & Mathiesen, Brian Vad, 2012. "The role of Carbon Capture and Storage in a future sustainable energy system," Energy, Elsevier, vol. 44(1), pages 469-476.
    3. Lund, Henrik & Hvelplund, Frede, 2012. "The economic crisis and sustainable development: The design of job creation strategies by use of concrete institutional economics," Energy, Elsevier, vol. 43(1), pages 192-200.
    4. Tokimatsu, Koji & Höök, Mikael & McLellan, Benjamin & Wachtmeister, Henrik & Murakami, Shinsuke & Yasuoka, Rieko & Nishio, Masahiro, 2018. "Energy modeling approach to the global energy-mineral nexus: Exploring metal requirements and the well-below 2 °C target with 100 percent renewable energy," Applied Energy, Elsevier, vol. 225(C), pages 1158-1175.
    5. Pina, André & Silva, Carlos A. & Ferrão, Paulo, 2013. "High-resolution modeling framework for planning electricity systems with high penetration of renewables," Applied Energy, Elsevier, vol. 112(C), pages 215-223.
    6. Dominković, D.F. & Bačeković, I. & Ćosić, B. & Krajačić, G. & Pukšec, T. & Duić, N. & Markovska, N., 2016. "Zero carbon energy system of South East Europe in 2050," Applied Energy, Elsevier, vol. 184(C), pages 1517-1528.
    7. Višković, Alfredo & Franki, Vladimir & Valentić, Vladimir, 2014. "CCS (carbon capture and storage) investment possibility in South East Europe: A case study for Croatia," Energy, Elsevier, vol. 70(C), pages 325-337.
    8. Md. Nasimul Islam Maruf, 2019. "Sector Coupling in the North Sea Region—A Review on the Energy System Modelling Perspective," Energies, MDPI, vol. 12(22), pages 1-35, November.
    9. Fernandes, Liliana & Ferreira, Paula, 2014. "Renewable energy scenarios in the Portuguese electricity system," Energy, Elsevier, vol. 69(C), pages 51-57.
    10. Ma, Tao & Østergaard, Poul Alberg & Lund, Henrik & Yang, Hongxing & Lu, Lin, 2014. "An energy system model for Hong Kong in 2020," Energy, Elsevier, vol. 68(C), pages 301-310.
    11. Mathiesen, B.V. & Lund, H. & Connolly, D. & Wenzel, H. & Østergaard, P.A. & Möller, B. & Nielsen, S. & Ridjan, I. & Karnøe, P. & Sperling, K. & Hvelplund, F.K., 2015. "Smart Energy Systems for coherent 100% renewable energy and transport solutions," Applied Energy, Elsevier, vol. 145(C), pages 139-154.
    12. Connolly, D. & Lund, H. & Mathiesen, B.V., 2016. "Smart Energy Europe: The technical and economic impact of one potential 100% renewable energy scenario for the European Union," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1634-1653.
    13. You, Wei & Geng, Yong & Dong, Huijuan & Wilson, Jeffrey & Pan, Hengyu & Wu, Rui & Sun, Lu & Zhang, Xi & Liu, Zhiqing, 2018. "Technical and economic assessment of RES penetration by modelling China's existing energy system," Energy, Elsevier, vol. 165(PB), pages 900-910.
    14. Caballero, F. & Sauma, E. & Yanine, F., 2013. "Business optimal design of a grid-connected hybrid PV (photovoltaic)-wind energy system without energy storage for an Easter Island's block," Energy, Elsevier, vol. 61(C), pages 248-261.
    15. Modhurima Dey Amin & Syed Badruddoza & Jill J. McCluskey, 2021. "Does conventional energy pricing induce innovation in renewable energy? New evidence from a nonlinear approach," Applied Economic Perspectives and Policy, John Wiley & Sons, vol. 43(2), pages 659-679, June.
    16. Verzijlbergh, Remco & Brancucci Martínez-Anido, Carlo & Lukszo, Zofia & de Vries, Laurens, 2014. "Does controlled electric vehicle charging substitute cross-border transmission capacity?," Applied Energy, Elsevier, vol. 120(C), pages 169-180.
    17. Xiong, Weiming & Wang, Yu & Mathiesen, Brian Vad & Lund, Henrik & Zhang, Xiliang, 2015. "Heat roadmap China: New heat strategy to reduce energy consumption towards 2030," Energy, Elsevier, vol. 81(C), pages 274-285.
    18. Olivier, Pierre & Bourasseau, Cyril & Bouamama, Pr. Belkacem, 2017. "Low-temperature electrolysis system modelling: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 280-300.
    19. Gorman, Will & Mills, Andrew & Wiser, Ryan, 2019. "Improving estimates of transmission capital costs for utility-scale wind and solar projects to inform renewable energy policy," Energy Policy, Elsevier, vol. 135(C).
    20. Prebeg, Pero & Gasparovic, Goran & Krajacic, Goran & Duic, Neven, 2016. "Long-term energy planning of Croatian power system using multi-objective optimization with focus on renewable energy and integration of electric vehicles," Applied Energy, Elsevier, vol. 184(C), pages 1493-1507.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:173:y:2016:i:c:p:511-519. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.