Grid integration of renewable energy in Qatar: Potentials and limitations
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2021.121310
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Wang, Kexin & Chen, Shang & Liu, Liuchen & Zhu, Tong & Gan, Zhongxue, 2018. "Enhancement of renewable energy penetration through energy storage technologies in a CHP-based energy system for Chongming, China," Energy, Elsevier, vol. 162(C), pages 988-1002.
- Lund, H & Münster, E, 2003. "Modelling of energy systems with a high percentage of CHP and wind power," Renewable Energy, Elsevier, vol. 28(14), pages 2179-2193.
- Connolly, D. & Lund, H. & Mathiesen, B.V., 2016. "Smart Energy Europe: The technical and economic impact of one potential 100% renewable energy scenario for the European Union," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1634-1653.
- Ramedani, Zeynab & Omid, Mahmoud & Keyhani, Alireza & Shamshirband, Shahaboddin & Khoshnevisan, Benyamin, 2014. "Potential of radial basis function based support vector regression for global solar radiation prediction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 1005-1011.
- Chen, Min & Lund, Henrik & Rosendahl, Lasse A. & Condra, Thomas J., 2010. "Energy efficiency analysis and impact evaluation of the application of thermoelectric power cycle to today's CHP systems," Applied Energy, Elsevier, vol. 87(4), pages 1231-1238, April.
- Prina, Matteo Giacomo & Cozzini, Marco & Garegnani, Giulia & Manzolini, Giampaolo & Moser, David & Filippi Oberegger, Ulrich & Pernetti, Roberta & Vaccaro, Roberto & Sparber, Wolfram, 2018. "Multi-objective optimization algorithm coupled to EnergyPLAN software: The EPLANopt model," Energy, Elsevier, vol. 149(C), pages 213-221.
- Liu, Wen & Hu, Weihao & Lund, Henrik & Chen, Zhe, 2013. "Electric vehicles and large-scale integration of wind power – The case of Inner Mongolia in China," Applied Energy, Elsevier, vol. 104(C), pages 445-456.
- Connolly, D. & Lund, H. & Mathiesen, B.V. & Leahy, M., 2011. "The first step towards a 100% renewable energy-system for Ireland," Applied Energy, Elsevier, vol. 88(2), pages 502-507, February.
- Mararakanye, Ndamulelo & Bekker, Bernard, 2019. "Renewable energy integration impacts within the context of generator type, penetration level and grid characteristics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 441-451.
- Abid, Hamza & Thakur, Jagruti & Khatiwada, Dilip & Bauner, David, 2021. "Energy storage integration with solar PV for increased electricity access: A case study of Burkina Faso," Energy, Elsevier, vol. 230(C).
- Huang, Xiaodan & Zhang, Hongyu & Zhang, Xiliang, 2020. "Decarbonising electricity systems in major cities through renewable cooperation – A case study of Beijing and Zhangjiakou," Energy, Elsevier, vol. 190(C).
- Bissiri, M. & Moura, P. & Figueiredo, N.C. & Silva, P.P., 2020. "Towards a renewables-based future for West African States: A review of power systems planning approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
- Noorollahi, Younes & Golshanfard, Aminabbas & Ansaripour, Shiva & Khaledi, Arian & Shadi, Mehdi, 2021. "Solar energy for sustainable heating and cooling energy system planning in arid climates," Energy, Elsevier, vol. 218(C).
- Fernandes, Liliana & Ferreira, Paula, 2014. "Renewable energy scenarios in the Portuguese electricity system," Energy, Elsevier, vol. 69(C), pages 51-57.
- Marafia, A-Hamid & Ashour, Hamdy A., 2003. "Economics of off-shore/on-shore wind energy systems in Qatar," Renewable Energy, Elsevier, vol. 28(12), pages 1953-1963.
- Martín-Pomares, Luis & Martínez, Diego & Polo, Jesús & Perez-Astudillo, Daniel & Bachour, Dunia & Sanfilippo, Antonio, 2017. "Analysis of the long-term solar potential for electricity generation in Qatar," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1231-1246.
- Bellocchi, Sara & Gambini, Marco & Manno, Michele & Stilo, Tommaso & Vellini, Michela, 2018. "Positive interactions between electric vehicles and renewable energy sources in CO2-reduced energy scenarios: The Italian case," Energy, Elsevier, vol. 161(C), pages 172-182.
- Oshiro, Ken & Fujimori, Shinichiro & Ochi, Yuki & Ehara, Tomoki, 2021. "Enabling energy system transition toward decarbonization in Japan through energy service demand reduction," Energy, Elsevier, vol. 227(C).
- Lund, Henrik & Clark, Woodrow W., 2002. "Management of fluctuations in wind power and CHP comparing two possible Danish strategies," Energy, Elsevier, vol. 27(5), pages 471-483.
- Dranka, Géremi Gilson & Ferreira, Paula, 2018. "Planning for a renewable future in the Brazilian power system," Energy, Elsevier, vol. 164(C), pages 496-511.
- Xu, Xiaofeng & Wei, Zhifei & Ji, Qiang & Wang, Chenglong & Gao, Guowei, 2019. "Global renewable energy development: Influencing factors, trend predictions and countermeasures," Resources Policy, Elsevier, vol. 63(C), pages 1-1.
- Lund, Henrik, 2005. "Large-scale integration of wind power into different energy systems," Energy, Elsevier, vol. 30(13), pages 2402-2412.
- Bamisile, Olusola & Huang, Qi & Xu, Xiao & Hu, Weihao & Liu, Wen & Liu, Zhou & Chen, Zhe, 2020. "An approach for sustainable energy planning towards 100 % electrification of Nigeria by 2030," Energy, Elsevier, vol. 197(C).
- Carlos V. Miguel & Adélio Mendes & Luís M. Madeira, 2018. "An Overview of the Portuguese Energy Sector and Perspectives for Power-to-Gas Implementation," Energies, MDPI, vol. 11(12), pages 1-20, November.
- Omar, Amr & Nashed, Amir & Li, Qiyuan & Leslie, Greg & Taylor, Robert A., 2020. "Pathways for integrated concentrated solar power - Desalination: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
- Aliyu, Abubakar Sadiq & Ramli, Ahmad Termizi & Saleh, Muneer Aziz, 2013. "Nigeria electricity crisis: Power generation capacity expansion and environmental ramifications," Energy, Elsevier, vol. 61(C), pages 354-367.
- Batas Bjelić, Ilija & Rajaković, Nikola & Krajačić, Goran & Duić, Neven, 2016. "Two methods for decreasing the flexibility gap in national energy systems," Energy, Elsevier, vol. 115(P3), pages 1701-1709.
- De Rosa, Luca & Castro, Rui, 2020. "Forecasting and assessment of the 2030 australian electricity mix paths towards energy transition," Energy, Elsevier, vol. 205(C).
- Pupo-Roncallo, Oscar & Campillo, Javier & Ingham, Derek & Hughes, Kevin & Pourkashanian, Mohammed, 2019. "Large scale integration of renewable energy sources (RES) in the future Colombian energy system," Energy, Elsevier, vol. 186(C).
- Bonati, A. & De Luca, G. & Fabozzi, S. & Massarotti, N. & Vanoli, L., 2019. "The integration of exergy criterion in energy planning analysis for 100% renewable system," Energy, Elsevier, vol. 174(C), pages 749-767.
- Lund, H., 2006. "Large-scale integration of optimal combinations of PV, wind and wave power into the electricity supply," Renewable Energy, Elsevier, vol. 31(4), pages 503-515.
- Menapace, Andrea & Thellufsen, Jakob Zinck & Pernigotto, Giovanni & Roberti, Francesca & Gasparella, Andrea & Righetti, Maurizio & Baratieri, Marco & Lund, Henrik, 2020. "The design of 100 % renewable smart urb an energy systems: The case of Bozen-Bolzano," Energy, Elsevier, vol. 207(C).
- Okonkwo, Eric C. & Abdullatif, Yasser M. & AL-Ansari, Tareq, 2021. "A nanomaterial integrated technology approach to enhance the energy-water-food nexus," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
- Pfeifer, Antun & Dobravec, Viktorija & Pavlinek, Luka & Krajačić, Goran & Duić, Neven, 2018. "Integration of renewable energy and demand response technologies in interconnected energy systems," Energy, Elsevier, vol. 161(C), pages 447-455.
- Carlos Méndez & Yusuf Bicer, 2019. "Qatar’s Wind Energy Potential with Associated Financial and Environmental Benefits for the Natural Gas Industry," Energies, MDPI, vol. 12(17), pages 1-19, August.
- Bogdanov, Dmitrii & Ram, Manish & Aghahosseini, Arman & Gulagi, Ashish & Oyewo, Ayobami Solomon & Child, Michael & Caldera, Upeksha & Sadovskaia, Kristina & Farfan, Javier & De Souza Noel Simas Barbos, 2021. "Low-cost renewable electricity as the key driver of the global energy transition towards sustainability," Energy, Elsevier, vol. 227(C).
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Roudari, Soheil & Sadeghi, Abdorasoul & Gholami, Samad & Mensi, Walid & Al-Yahyaee, Khamis Hamed, 2023. "Dynamic spillovers among natural gas, liquid natural gas, trade policy uncertainty, and stock market," Resources Policy, Elsevier, vol. 83(C).
- Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
- Vaziri Rad, Mohammad Amin & Kasaeian, Alibakhsh & Niu, Xiaofeng & Zhang, Kai & Mahian, Omid, 2023. "Excess electricity problem in off-grid hybrid renewable energy systems: A comprehensive review from challenges to prevalent solutions," Renewable Energy, Elsevier, vol. 212(C), pages 538-560.
- Renzo Seminario-Córdova & Raúl Rojas-Ortega, 2023. "Renewable Energy Sources and Energy Production: A Bibliometric Analysis of the Last Five Years," Sustainability, MDPI, vol. 15(13), pages 1-22, July.
- Zapata, Sebastian & Castaneda, Monica & Herrera, Milton M. & Dyner, Isaac, 2023. "Investigating the concurrence of transmission grid expansion and the dissemination of renewables," Energy, Elsevier, vol. 276(C).
- Ayed Banibaqash & Ziad Hunaiti & Maysam Abbod, 2022. "An Analytical Feasibility Study for Solar Panel Installation in Qatar Based on Generated to Consumed Electrical Energy Indicator," Energies, MDPI, vol. 15(24), pages 1-16, December.
- Ahmed K. Nassar, 2022. "Identifying and Explaining Public Preferences for Renewable Energy Sources in Qatar," Sustainability, MDPI, vol. 14(21), pages 1-17, October.
- Masood, Nahid-Al- & Mahmud, Sajjad Uddin & Ansary, Md Nazmuddoha & Deeba, Shohana Rahman, 2022. "Improvement of system strength under high wind penetration: A techno-economic assessment using synchronous condenser and SVC," Energy, Elsevier, vol. 246(C).
- Yao Li & Liulin Yang & Tianlu Luo, 2023. "Energy System Low-Carbon Transition under Dual-Carbon Goals: The Case of Guangxi, China Using the EnergyPLAN Tool," Energies, MDPI, vol. 16(8), pages 1-16, April.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
- Bamisile, Olusola & Huang, Qi & Xu, Xiao & Hu, Weihao & Liu, Wen & Liu, Zhou & Chen, Zhe, 2020. "An approach for sustainable energy planning towards 100 % electrification of Nigeria by 2030," Energy, Elsevier, vol. 197(C).
- Wang, Xiaokui & Bamisile, Olusola & Chen, Shuheng & Xu, Xiao & Luo, Shihua & Huang, Qi & Hu, Weihao, 2022. "Decarbonization of China's electricity systems with hydropower penetration and pumped-hydro storage: Comparing the policies with a techno-economic analysis," Renewable Energy, Elsevier, vol. 196(C), pages 65-83.
- Laha, Priyanka & Chakraborty, Basab, 2021. "Low carbon electricity system for India in 2030 based on multi-objective multi-criteria assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
- Arévalo, Paúl & Cano, Antonio & Jurado, Francisco, 2022. "Mitigation of carbon footprint with 100% renewable energy system by 2050: The case of Galapagos islands," Energy, Elsevier, vol. 245(C).
- Hong, Lixuan & Zhou, Nan & Fridley, David & Raczkowski, Chris, 2013. "Assessment of China's renewable energy contribution during the 12th Five Year Plan," Energy Policy, Elsevier, vol. 62(C), pages 1533-1543.
- Hong, Lixuan & Lund, Henrik & Möller, Bernd, 2012. "The importance of flexible power plant operation for Jiangsu's wind integration," Energy, Elsevier, vol. 41(1), pages 499-507.
- Ma, Weiwu & Xue, Xinpei & Liu, Gang, 2018. "Techno-economic evaluation for hybrid renewable energy system: Application and merits," Energy, Elsevier, vol. 159(C), pages 385-409.
- Meha, Drilon & Pfeifer, Antun & Sahiti, Naser & Rolph Schneider, Daniel & Duić, Neven, 2021. "Sustainable transition pathways with high penetration of variable renewable energy in the coal-based energy systems," Applied Energy, Elsevier, vol. 304(C).
- Ma, Tao & Østergaard, Poul Alberg & Lund, Henrik & Yang, Hongxing & Lu, Lin, 2014. "An energy system model for Hong Kong in 2020," Energy, Elsevier, vol. 68(C), pages 301-310.
- Connolly, D. & Lund, H. & Mathiesen, B.V. & Leahy, M., 2010. "A review of computer tools for analysing the integration of renewable energy into various energy systems," Applied Energy, Elsevier, vol. 87(4), pages 1059-1082, April.
- Hansen, Kenneth & Breyer, Christian & Lund, Henrik, 2019. "Status and perspectives on 100% renewable energy systems," Energy, Elsevier, vol. 175(C), pages 471-480.
- Zakeri, Behnam & Syri, Sanna & Rinne, Samuli, 2015. "Higher renewable energy integration into the existing energy system of Finland – Is there any maximum limit?," Energy, Elsevier, vol. 92(P3), pages 244-259.
- Lund, Henrik & Mathiesen, Brian Vad, 2012. "The role of Carbon Capture and Storage in a future sustainable energy system," Energy, Elsevier, vol. 44(1), pages 469-476.
- Yao Li & Liulin Yang & Tianlu Luo, 2023. "Energy System Low-Carbon Transition under Dual-Carbon Goals: The Case of Guangxi, China Using the EnergyPLAN Tool," Energies, MDPI, vol. 16(8), pages 1-16, April.
- Muhammad Faizan Tahir & Haoyong Chen & Muhammad Sufyan Javed & Irfan Jameel & Asad Khan & Saifullah Adnan, 2019. "Integration of Different Individual Heating Scenarios and Energy Storages into Hybrid Energy System Model of China for 2030," Energies, MDPI, vol. 12(11), pages 1-20, May.
- Prasad, Ravita D. & Bansal, R.C. & Raturi, Atul, 2014. "Multi-faceted energy planning: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 686-699.
- Henning, Hans-Martin & Palzer, Andreas, 2014. "A comprehensive model for the German electricity and heat sector in a future energy system with a dominant contribution from renewable energy technologies—Part I: Methodology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 1003-1018.
- Gota, Dan-Ioan & Lund, Henrik & Miclea, Liviu, 2011. "A Romanian energy system model and a nuclear reduction strategy," Energy, Elsevier, vol. 36(11), pages 6413-6419.
- Thellufsen, Jakob Zinck & Lund, Henrik, 2017. "Cross-border versus cross-sector interconnectivity in renewable energy systems," Energy, Elsevier, vol. 124(C), pages 492-501.
More about this item
Keywords
Renewable energy sources; Wind; PV; CSP; EnergyPLAN; Carbon emissions;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:235:y:2021:i:c:s0360544221015589. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.