IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i23p8792-d980361.html
   My bibliography  Save this article

Energy Policy, Energy Research, and Energy Politics: An Analytical Review of the Current Situation

Author

Listed:
  • David Borge-Diez

    (Department of Electrical Automation and System Engineering, University of León, 24004 León, Spain)

Abstract

Energy policy is becoming a key aspect of the everyday worldwide agenda, and the decisions in this field are directly affecting many aspects, such as energy security, energy supply, and consumer final prices, as well as environmental aspects, among others, and will also affect conditions in the coming years with regard to aspects such as energy resource availability decay, climate change effects, or air contamination. During the last decades, many specific efforts in energy planning research have been carried out by different scientists around the world, but very few of their scientifically based conclusions and recommendations have been transferred into energy planning and energy policy. As a consequence, the energy availability and the environmental situation of the world are worsening; the objectives which aim to achieve a maximum of a 1.5 °C increase are far from being achieved, and many different regions are suffering energy supply disruptions and lack of accessible and secure energy access. This paper analyzes how current energy policy is based more on the direct influence of stakeholders, energy politics, and citizens’ beliefs or preferences than on a scientific approach. It also proposes a different approach that would combine scientific energy planning as a driver for stakeholders and the political decisions which are necessary to consider as soon as possible; this is the only possible way to ensure a sustainable future.

Suggested Citation

  • David Borge-Diez, 2022. "Energy Policy, Energy Research, and Energy Politics: An Analytical Review of the Current Situation," Energies, MDPI, vol. 15(23), pages 1-13, November.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:23:p:8792-:d:980361
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/23/8792/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/23/8792/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rosales-Tristancho, Abel & Brey, Raúl & Carazo, Ana F. & Brey, J. Javier, 2022. "Analysis of the barriers to the adoption of zero-emission vehicles in Spain," Transportation Research Part A: Policy and Practice, Elsevier, vol. 158(C), pages 19-43.
    2. Nishant Narayan & Victor Vega-Garita & Zian Qin & Jelena Popovic-Gerber & Pavol Bauer & Miro Zeman, 2020. "The Long Road to Universal Electrification: A Critical Look at Present Pathways and Challenges," Energies, MDPI, vol. 13(3), pages 1-20, January.
    3. Patrick Moriarty & Damon Honnery, 2020. "Feasibility of a 100% Global Renewable Energy System," Energies, MDPI, vol. 13(21), pages 1-16, October.
    4. Lund, Henrik, 2018. "Renewable heating strategies and their consequences for storage and grid infrastructures comparing a smart grid to a smart energy systems approach," Energy, Elsevier, vol. 151(C), pages 94-102.
    5. Dominković, D.F. & Bačeković, I. & Ćosić, B. & Krajačić, G. & Pukšec, T. & Duić, N. & Markovska, N., 2016. "Zero carbon energy system of South East Europe in 2050," Applied Energy, Elsevier, vol. 184(C), pages 1517-1528.
    6. Ruhnau, Oliver & Bannik, Sergej & Otten, Sydney & Praktiknjo, Aaron & Robinius, Martin, 2019. "Direct or indirect electrification? A review of heat generation and road transport decarbonisation scenarios for Germany 2050," Energy, Elsevier, vol. 166(C), pages 989-999.
    7. Lund, H., 2006. "Large-scale integration of optimal combinations of PV, wind and wave power into the electricity supply," Renewable Energy, Elsevier, vol. 31(4), pages 503-515.
    8. Icaza, Daniel & Borge-Diez, David & Galindo, Santiago Pulla, 2022. "Analysis and proposal of energy planning and renewable energy plans in South America: Case study of Ecuador," Renewable Energy, Elsevier, vol. 182(C), pages 314-342.
    9. Lund, H & Münster, E, 2003. "Modelling of energy systems with a high percentage of CHP and wind power," Renewable Energy, Elsevier, vol. 28(14), pages 2179-2193.
    10. Michael Child & Alexander Nordling & Christian Breyer, 2018. "The Impacts of High V2G Participation in a 100% Renewable Åland Energy System," Energies, MDPI, vol. 11(9), pages 1-19, August.
    11. Connolly, D. & Lund, H. & Mathiesen, B.V. & Leahy, M., 2011. "The first step towards a 100% renewable energy-system for Ireland," Applied Energy, Elsevier, vol. 88(2), pages 502-507, February.
    12. Chalal, Moulay Larbi & Benachir, Medjdoub & White, Michael & Shrahily, Raid, 2016. "Energy planning and forecasting approaches for supporting physical improvement strategies in the building sector: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 761-776.
    13. Talavera, D.L. & Muñoz-Cerón, E. & de la Casa, J. & Ortega, M.J. & Almonacid, G., 2011. "Energy and economic analysis for large-scale integration of small photovoltaic systems in buildings: The case of a public location in Southern Spain," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4310-4319.
    14. Almona Tani & Piergiuseppe Morone, 2020. "Policy Implications for the Clean Energy Transition: The Case of the Boston Area," Energies, MDPI, vol. 13(10), pages 1-15, May.
    15. Icaza, Daniel & Borge-Diez, David & Galindo, Santiago Pulla, 2021. "Proposal of 100% renewable energy production for the City of Cuenca- Ecuador by 2050," Renewable Energy, Elsevier, vol. 170(C), pages 1324-1341.
    16. Ren, Haoshan & Ma, Zhenjun & Chan, Antoni B. & Sun, Yongjun, 2023. "Optimal planning of municipal-scale distributed rooftop photovoltaic systems with maximized solar energy generation under constraints in high-density cities," Energy, Elsevier, vol. 263(PA).
    17. Hvelplund, Frede & Djørup, Søren, 2019. "Consumer ownership, natural monopolies and transition to 100% renewable energy systems," Energy, Elsevier, vol. 181(C), pages 440-449.
    18. Ćosić, Boris & Krajačić, Goran & Duić, Neven, 2012. "A 100% renewable energy system in the year 2050: The case of Macedonia," Energy, Elsevier, vol. 48(1), pages 80-87.
    19. Lund, H. & Münster, E., 2003. "Management of surplus electricity-production from a fluctuating renewable-energy source," Applied Energy, Elsevier, vol. 76(1-3), pages 65-74, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    2. Lopez, Gabriel & Aghahosseini, Arman & Child, Michael & Khalili, Siavash & Fasihi, Mahdi & Bogdanov, Dmitrii & Breyer, Christian, 2022. "Impacts of model structure, framework, and flexibility on perspectives of 100% renewable energy transition decision-making," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    3. Hansen, Kenneth & Breyer, Christian & Lund, Henrik, 2019. "Status and perspectives on 100% renewable energy systems," Energy, Elsevier, vol. 175(C), pages 471-480.
    4. Lund, Henrik & Thellufsen, Jakob Zinck & Sorknæs, Peter & Mathiesen, Brian Vad & Chang, Miguel & Madsen, Poul Thøis & Kany, Mikkel Strunge & Skov, Iva Ridjan, 2022. "Smart energy Denmark. A consistent and detailed strategy for a fully decarbonized society," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    5. Ma, Tao & Østergaard, Poul Alberg & Lund, Henrik & Yang, Hongxing & Lu, Lin, 2014. "An energy system model for Hong Kong in 2020," Energy, Elsevier, vol. 68(C), pages 301-310.
    6. Arévalo, Paul & Cano, Antonio & Jurado, Francisco, 2024. "Large-scale integration of renewable energies by 2050 through demand prediction with ANFIS, Ecuador case study," Energy, Elsevier, vol. 286(C).
    7. Henning, Hans-Martin & Palzer, Andreas, 2014. "A comprehensive model for the German electricity and heat sector in a future energy system with a dominant contribution from renewable energy technologies—Part I: Methodology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 1003-1018.
    8. Gota, Dan-Ioan & Lund, Henrik & Miclea, Liviu, 2011. "A Romanian energy system model and a nuclear reduction strategy," Energy, Elsevier, vol. 36(11), pages 6413-6419.
    9. Salehin, Sayedus & Ferdaous, M. Tanvirul & Chowdhury, Ridhwan M. & Shithi, Sumaia Shahid & Rofi, M.S.R. Bhuiyan & Mohammed, Mahir Asif, 2016. "Assessment of renewable energy systems combining techno-economic optimization with energy scenario analysis," Energy, Elsevier, vol. 112(C), pages 729-741.
    10. Hong, Lixuan & Zhou, Nan & Fridley, David & Raczkowski, Chris, 2013. "Assessment of China's renewable energy contribution during the 12th Five Year Plan," Energy Policy, Elsevier, vol. 62(C), pages 1533-1543.
    11. Hong, Lixuan & Lund, Henrik & Möller, Bernd, 2012. "The importance of flexible power plant operation for Jiangsu's wind integration," Energy, Elsevier, vol. 41(1), pages 499-507.
    12. Ma, Weiwu & Xue, Xinpei & Liu, Gang, 2018. "Techno-economic evaluation for hybrid renewable energy system: Application and merits," Energy, Elsevier, vol. 159(C), pages 385-409.
    13. Duquette, Jean & Wild, Peter & Rowe, Andrew, 2014. "The potential benefits of widespread combined heat and power based district energy networks in the province of Ontario," Energy, Elsevier, vol. 67(C), pages 41-51.
    14. Zakeri, Behnam & Syri, Sanna & Rinne, Samuli, 2015. "Higher renewable energy integration into the existing energy system of Finland – Is there any maximum limit?," Energy, Elsevier, vol. 92(P3), pages 244-259.
    15. Bamisile, Olusola & Huang, Qi & Xu, Xiao & Hu, Weihao & Liu, Wen & Liu, Zhou & Chen, Zhe, 2020. "An approach for sustainable energy planning towards 100 % electrification of Nigeria by 2030," Energy, Elsevier, vol. 197(C).
    16. Østergaard, Poul Alberg & Andersen, Anders N., 2021. "Variable taxes promoting district heating heat pump flexibility," Energy, Elsevier, vol. 221(C).
    17. Lund, Henrik & Mathiesen, Brian Vad, 2012. "The role of Carbon Capture and Storage in a future sustainable energy system," Energy, Elsevier, vol. 44(1), pages 469-476.
    18. Duic, Neven & Krajacic, Goran & da Graça Carvalho, Maria, 2008. "RenewIslands methodology for sustainable energy and resource planning for islands," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(4), pages 1032-1062, May.
    19. Caballero, F. & Sauma, E. & Yanine, F., 2013. "Business optimal design of a grid-connected hybrid PV (photovoltaic)-wind energy system without energy storage for an Easter Island's block," Energy, Elsevier, vol. 61(C), pages 248-261.
    20. Yao Li & Liulin Yang & Tianlu Luo, 2023. "Energy System Low-Carbon Transition under Dual-Carbon Goals: The Case of Guangxi, China Using the EnergyPLAN Tool," Energies, MDPI, vol. 16(8), pages 1-16, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:23:p:8792-:d:980361. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.