IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v9y2016i8p587-d74847.html
   My bibliography  Save this article

Realizing the Intended Nationally Determined Contribution: The Role of Renewable Energies in Vietnam

Author

Listed:
  • Thanh Tu Tran

    (Regional Centre of Expertise on Education for Sustainable Development in Southern Vietnam, International University—Vietnam National University Ho Chi Minh City, Quarter 6, Linh Trung Ward, Thu Duc District, Ho Chi Minh City 700000, Vietnam)

  • Shinichiro Fujimori

    (National Institute for Environmental Studies, 16-2 Onogawa, Ibaraki, Tsukuba 305-8506, Japan)

  • Toshihiko Masui

    (National Institute for Environmental Studies, 16-2 Onogawa, Ibaraki, Tsukuba 305-8506, Japan)

Abstract

This study contributes to the realization of intended nationally determined contributions (INDCs) by analyzing their implications for the energy production system and the economy, and determines the role of renewable energies (RE) in reducing the challenge of committing to the INDCs. The Asia-Pacific Integrated Model/Computable General Equilibrium (AIM/CGE) model was used to assess seven scenarios having the same socioeconomic development but different shares of RE in power generation. By comparing different relative reductions caused by the emission constraints vis-a-vis the business-as-usual (BaU) scenario, the mitigation costs can be estimated. Results show that the economic impact could be reduced by around 55% in terms of welfare loss (from 6.0% to 2.7%) and by around 36% in terms of gross domestic product (GDP) loss (from 3.4% to 2.1%) through the incorporation of high levels of renewable energy. Furthermore, the additional double deployment of wind and SPV to 5.4% and 12.0%, respectively, which currently comprise 43.1% of the renewable energies used in electricity generation, could reduce the GDP loss from 2.1% to 1.9% and reduce the welfare loss from 2.7% to 1.5% in order to achieve a 25.0% GHG emissions reduction. These losses are less than those in the pricing-only scenario (2.1% and 2.3%, respectively).

Suggested Citation

  • Thanh Tu Tran & Shinichiro Fujimori & Toshihiko Masui, 2016. "Realizing the Intended Nationally Determined Contribution: The Role of Renewable Energies in Vietnam," Energies, MDPI, vol. 9(8), pages 1-17, July.
  • Handle: RePEc:gam:jeners:v:9:y:2016:i:8:p:587-:d:74847
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/9/8/587/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/9/8/587/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jenkins, Jesse D., 2014. "Political economy constraints on carbon pricing policies: What are the implications for economic efficiency, environmental efficacy, and climate policy design?," Energy Policy, Elsevier, vol. 69(C), pages 467-477.
    2. Gunnar Luderer & Volker Krey & Katherine Calvin & James Merrick & Silvana Mima & Robert Pietzcker & Jasper Vliet & Kenichi Wada, 2014. "The role of renewable energy in climate stabilization: results from the EMF27 scenarios," Climatic Change, Springer, vol. 123(3), pages 427-441, April.
    3. Vogt-Schilb, Adrien & Hallegatte, Stéphane, 2014. "Marginal abatement cost curves and the optimal timing of mitigation measures," Energy Policy, Elsevier, vol. 66(C), pages 645-653.
    4. Gunnar Luderer & Volker Krey & Katherine Calvin & James Merrick & Silvana Mima & Robert Pietzcker & Jasper van Vliet & Kenichi Wada, 2014. "The role of renewable energy in climate stabilization: results from the EMF27 scenarios," Post-Print halshs-00961843, HAL.
    5. Mathiesen, Brian Vad & Lund, Henrik & Karlsson, Kenneth, 2011. "100% Renewable energy systems, climate mitigation and economic growth," Applied Energy, Elsevier, vol. 88(2), pages 488-501, February.
    6. Fuss, Sabine & Szolgayová, Jana & Khabarov, Nikolay & Obersteiner, Michael, 2012. "Renewables and climate change mitigation: Irreversible energy investment under uncertainty and portfolio effects," Energy Policy, Elsevier, vol. 40(C), pages 59-68.
    7. Dai, Hancheng & Silva Herran, Diego & Fujimori, Shinichiro & Masui, Toshihiko, 2016. "Key factors affecting long-term penetration of global onshore wind energy integrating top-down and bottom-up approaches," Renewable Energy, Elsevier, vol. 85(C), pages 19-30.
    8. Connolly, D. & Lund, H. & Mathiesen, B.V. & Leahy, M., 2011. "The first step towards a 100% renewable energy-system for Ireland," Applied Energy, Elsevier, vol. 88(2), pages 502-507, February.
    9. Karki, Shankar K. & Mann, Michael D. & Salehfar, Hossein, 2005. "Energy and environment in the ASEAN: challenges and opportunities," Energy Policy, Elsevier, vol. 33(4), pages 499-509, March.
    10. Nguyen, Khanh Q., 2007. "Wind energy in Vietnam: Resource assessment, development status and future implications," Energy Policy, Elsevier, vol. 35(2), pages 1405-1413, February.
    11. Fujimori, Shinichiro & Masui, Toshihiko & Matsuoka, Yuzuru, 2015. "Gains from emission trading under multiple stabilization targets and technological constraints," Energy Economics, Elsevier, vol. 48(C), pages 306-315.
    12. Turton, Hal & Barreto, Leonardo, 2006. "Long-term security of energy supply and climate change," Energy Policy, Elsevier, vol. 34(15), pages 2232-2250, October.
    13. Christoph Bertram & Gunnar Luderer & Robert C. Pietzcker & Eva Schmid & Elmar Kriegler & Ottmar Edenhofer, 2015. "Complementing carbon prices with technology policies to keep climate targets within reach," Nature Climate Change, Nature, vol. 5(3), pages 235-239, March.
    14. Mittal, Shivika & Dai, Hancheng & Fujimori, Shinichiro & Masui, Toshihiko, 2016. "Bridging greenhouse gas emissions and renewable energy deployment target: Comparative assessment of China and India," Applied Energy, Elsevier, vol. 166(C), pages 301-313.
    15. Nguyen, Khanh Q., 2007. "Impacts of wind power generation and CO2 emission constraints on the future choice of fuels and technologies in the power sector of Vietnam," Energy Policy, Elsevier, vol. 35(4), pages 2305-2312, April.
    16. Fujimori, Shinichiro & Masui, Toshihiko & Matsuoka, Yuzuru, 2014. "Development of a global computable general equilibrium model coupled with detailed energy end-use technology," Applied Energy, Elsevier, vol. 128(C), pages 296-306.
    17. Kumar, Amit & Bhattacharya, S.C & Pham, H.L, 2003. "Greenhouse gas mitigation potential of biomass energy technologies in Vietnam using the long range energy alternative planning system model," Energy, Elsevier, vol. 28(7), pages 627-654.
    18. Nguyen, Nhan T. & Ha-Duong, Minh, 2009. "Economic potential of renewable energy in Vietnam's power sector," Energy Policy, Elsevier, vol. 37(5), pages 1601-1613, May.
    19. Ludig, Sylvie & Haller, Markus & Schmid, Eva & Bauer, Nico, 2011. "Fluctuating renewables in a long-term climate change mitigation strategy," Energy, Elsevier, vol. 36(11), pages 6674-6685.
    20. Fujimori, S. & Kainuma, M. & Masui, T. & Hasegawa, T. & Dai, H., 2014. "The effectiveness of energy service demand reduction: A scenario analysis of global climate change mitigation," Energy Policy, Elsevier, vol. 75(C), pages 379-391.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chunark, Puttipong & Limmeechokchai, Bundit & Fujimori, Shinichiro & Masui, Toshihiko, 2017. "Renewable energy achievements in CO2 mitigation in Thailand's NDCs," Renewable Energy, Elsevier, vol. 114(PB), pages 1294-1305.
    2. Shivika Mittal & Jing-Yu Liu & Shinichiro Fujimori & Priyadarshi Ramprasad Shukla, 2018. "An Assessment of Near-to-Mid-Term Economic Impacts and Energy Transitions under “2 °C” and “1.5 °C” Scenarios for India," Energies, MDPI, vol. 11(9), pages 1-17, August.
    3. Djoni Hartono & Ahmad Komarulzaman & Tony Irawan & Anda Nugroho, 2020. "Phasing out Energy Subsidies to Improve Energy Mix: A Dead End," Energies, MDPI, vol. 13(9), pages 1-15, May.
    4. Ucok W.R. Siagian & Bintang B. Yuwono & Shinichiro Fujimori & Toshihiko Masui, 2017. "Low-Carbon Energy Development in Indonesia in Alignment with Intended Nationally Determined Contribution (INDC) by 2030," Energies, MDPI, vol. 10(1), pages 1-15, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dai, Hancheng & Fujimori, Shinichiro & Silva Herran, Diego & Shiraki, Hiroto & Masui, Toshihiko & Matsuoka, Yuzuru, 2017. "The impacts on climate mitigation costs of considering curtailment and storage of variable renewable energy in a general equilibrium model," Energy Economics, Elsevier, vol. 64(C), pages 627-637.
    2. Ucok W.R. Siagian & Bintang B. Yuwono & Shinichiro Fujimori & Toshihiko Masui, 2017. "Low-Carbon Energy Development in Indonesia in Alignment with Intended Nationally Determined Contribution (INDC) by 2030," Energies, MDPI, vol. 10(1), pages 1-15, January.
    3. Dai, Hancheng & Silva Herran, Diego & Fujimori, Shinichiro & Masui, Toshihiko, 2016. "Key factors affecting long-term penetration of global onshore wind energy integrating top-down and bottom-up approaches," Renewable Energy, Elsevier, vol. 85(C), pages 19-30.
    4. Chunark, Puttipong & Limmeechokchai, Bundit & Fujimori, Shinichiro & Masui, Toshihiko, 2017. "Renewable energy achievements in CO2 mitigation in Thailand's NDCs," Renewable Energy, Elsevier, vol. 114(PB), pages 1294-1305.
    5. Dai, Hancheng & Xie, Xuxuan & Xie, Yang & Liu, Jian & Masui, Toshihiko, 2016. "Green growth: The economic impacts of large-scale renewable energy development in China," Applied Energy, Elsevier, vol. 162(C), pages 435-449.
    6. Avri Eitan, 2021. "Promoting Renewable Energy to Cope with Climate Change—Policy Discourse in Israel," Sustainability, MDPI, vol. 13(6), pages 1-17, March.
    7. Mittal, Shivika & Dai, Hancheng & Fujimori, Shinichiro & Masui, Toshihiko, 2016. "Bridging greenhouse gas emissions and renewable energy deployment target: Comparative assessment of China and India," Applied Energy, Elsevier, vol. 166(C), pages 301-313.
    8. Shivika Mittal & Jing-Yu Liu & Shinichiro Fujimori & Priyadarshi Ramprasad Shukla, 2018. "An Assessment of Near-to-Mid-Term Economic Impacts and Energy Transitions under “2 °C” and “1.5 °C” Scenarios for India," Energies, MDPI, vol. 11(9), pages 1-17, August.
    9. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    10. van der Zwaan, Bob & Kober, Tom & Calderon, Silvia & Clarke, Leon & Daenzer, Katie & Kitous, Alban & Labriet, Maryse & Lucena, André F.P. & Octaviano, Claudia & Di Sbroiavacca, Nicolas, 2016. "Energy technology roll-out for climate change mitigation: A multi-model study for Latin America," Energy Economics, Elsevier, vol. 56(C), pages 526-542.
    11. Fujimori, Shinichiro & Dai, Hancheng & Masui, Toshihiko & Matsuoka, Yuzuru, 2016. "Global energy model hindcasting," Energy, Elsevier, vol. 114(C), pages 293-301.
    12. Mu, Yaqian & Wang, Can & Cai, Wenjia, 2018. "The economic impact of China's INDC: Distinguishing the roles of the renewable energy quota and the carbon market," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2955-2966.
    13. Lund, Henrik & Mathiesen, Brian Vad, 2012. "The role of Carbon Capture and Storage in a future sustainable energy system," Energy, Elsevier, vol. 44(1), pages 469-476.
    14. Dai, Hancheng & Xie, Yang & Liu, Jingyu & Masui, Toshihiko, 2018. "Aligning renewable energy targets with carbon emissions trading to achieve China's INDCs: A general equilibrium assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 4121-4131.
    15. Zhang, Runsen & Fujimori, Shinichiro & Dai, Hancheng & Hanaoka, Tatsuya, 2018. "Contribution of the transport sector to climate change mitigation: Insights from a global passenger transport model coupled with a computable general equilibrium model," Applied Energy, Elsevier, vol. 211(C), pages 76-88.
    16. Agrawal, Nikhil & Ahiduzzaman, Md & Kumar, Amit, 2018. "The development of an integrated model for the assessment of water and GHG footprints for the power generation sector," Applied Energy, Elsevier, vol. 216(C), pages 558-575.
    17. Shuanghui Bao & Osamu Nishiura & Shinichiro Fujimori & Ken Oshiro & Runsen Zhang, 2020. "Identification of Key Factors to Reduce Transport-Related Air Pollutants and CO 2 Emissions in Asia," Sustainability, MDPI, vol. 12(18), pages 1-15, September.
    18. Nhan Thanh Nguyen & Minh Ha-Duong, 2009. "The potential for mitigation of CO2 emissions in Vietnam's power sector," Post-Print halshs-00441085, HAL.
    19. Luderer, Gunnar & Pietzcker, Robert C. & Carrara, Samuel & de Boer, Harmen Sytze & Fujimori, Shinichiro & Johnson, Nils & Mima, Silvana & Arent, Douglas, 2017. "Assessment of wind and solar power in global low-carbon energy scenarios: An introduction," Energy Economics, Elsevier, vol. 64(C), pages 542-551.
    20. Merrick, James H., 2016. "On representation of temporal variability in electricity capacity planning models," Energy Economics, Elsevier, vol. 59(C), pages 261-274.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:9:y:2016:i:8:p:587-:d:74847. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.