IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v165y2018ipap532-542.html
   My bibliography  Save this article

Reviewing Nordic transport challenges and climate policy priorities: Expert perceptions of decarbonisation in Denmark, Finland, Iceland, Norway, Sweden

Author

Listed:
  • Sovacool, Benjamin K.
  • Noel, Lance
  • Kester, Johannes
  • Zarazua de Rubens, Gerardo

Abstract

The five Nordic countries of Denmark, Finland, Iceland, Norway and Sweden have aggressive climate and energy policies in place and are largely on track in their decarbonisation of electricity, heat, and buildings. Transportation and mobility, however, remains a pressing challenge. This study asks: what are the greatest national and regional transport challenges facing Nordic countries? To provide an answer, the authors conducted 227 semi-structured interviews with participants from 201 institutions across seventeen cities within the Nordic region. Those interviewed represent a diverse array of stakeholders involved with transport technology, policy and practice. Although respondents identified 44 distinct transport challenges, the fossil fuel intensity of transport was by far the most frequently mentioned by more than two-fifths (42%) of the expert sample. Five other challenges were also mentioned the most frequently by respondents: long travel distances (17%), the state of public transport infrastructure (16%), congestion (15%), population density (10%), and electrification of transport (10%). Interestingly, items such as costs and affordability, energy or transport efficiency, consumer knowledge and awareness, and automobile accidents were mentioned by only 3% (or less). The article concludes by what this heterogeneity and prioritization of challenges means for future Nordic research and policy.

Suggested Citation

  • Sovacool, Benjamin K. & Noel, Lance & Kester, Johannes & Zarazua de Rubens, Gerardo, 2018. "Reviewing Nordic transport challenges and climate policy priorities: Expert perceptions of decarbonisation in Denmark, Finland, Iceland, Norway, Sweden," Energy, Elsevier, vol. 165(PA), pages 532-542.
  • Handle: RePEc:eee:energy:v:165:y:2018:i:pa:p:532-542
    DOI: 10.1016/j.energy.2018.09.110
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218318747
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.09.110?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Curkovic, Sime & Sroufe, Robert & Melnyk, Steve, 2005. "Identifying the factors which affect the decision to attain ISO 14000," Energy, Elsevier, vol. 30(8), pages 1387-1407.
    2. Usón, Alfonso Aranda & Capilla, Antonio Valero & Bribián, Ignacio Zabalza & Scarpellini, Sabina & Sastresa, Eva Llera, 2011. "Energy efficiency in transport and mobility from an eco-efficiency viewpoint," Energy, Elsevier, vol. 36(4), pages 1916-1923.
    3. Noel, Lance & Sovacool, Benjamin K., 2016. "Why Did Better Place Fail?: Range anxiety, interpretive flexibility, and electric vehicle promotion in Denmark and Israel," Energy Policy, Elsevier, vol. 94(C), pages 377-386.
    4. Weiller, C. & Neely, A., 2014. "Using electric vehicles for energy services: Industry perspectives," Energy, Elsevier, vol. 77(C), pages 194-200.
    5. Mohammadi, Neda & Taylor, John E., 2017. "Urban infrastructure-mobility energy flux," Energy, Elsevier, vol. 140(P1), pages 716-728.
    6. Sovacool, Benjamin K., 2007. "Solving the oil independence problem: Is it possible?," Energy Policy, Elsevier, vol. 35(11), pages 5505-5514, November.
    7. Sonmez, Mustafa & Akgüngör, Ali Payıdar & Bektaş, Salih, 2017. "Estimating transportation energy demand in Turkey using the artificial bee colony algorithm," Energy, Elsevier, vol. 122(C), pages 301-310.
    8. Connolly, D. & Mathiesen, B.V. & Ridjan, I., 2014. "A comparison between renewable transport fuels that can supplement or replace biofuels in a 100% renewable energy system," Energy, Elsevier, vol. 73(C), pages 110-125.
    9. Pan, Xunzhang & Wang, Hailin & Wang, Lining & Chen, Wenying, 2018. "Decarbonization of China's transportation sector: In light of national mitigation toward the Paris Agreement goals," Energy, Elsevier, vol. 155(C), pages 853-864.
    10. Mathiesen, Brian Vad & Lund, Henrik & Karlsson, Kenneth, 2011. "100% Renewable energy systems, climate mitigation and economic growth," Applied Energy, Elsevier, vol. 88(2), pages 488-501, February.
    11. Kester, Johannes & Noel, Lance & Zarazua de Rubens, Gerardo & Sovacool, Benjamin K., 2018. "Promoting Vehicle to Grid (V2G) in the Nordic region: Expert advice on policy mechanisms for accelerated diffusion," Energy Policy, Elsevier, vol. 116(C), pages 422-432.
    12. Sovacool, Benjamin K. & Kester, Johannes & de Rubens, Gerardo Zarazua & Noel, Lance, 2018. "Expert perceptions of low-carbon transitions: Investigating the challenges of electricity decarbonisation in the Nordic region," Energy, Elsevier, vol. 148(C), pages 1162-1172.
    13. Comodi, G. & Caresana, F. & Salvi, D. & Pelagalli, L. & Lorenzetti, M., 2016. "Local promotion of electric mobility in cities: Guidelines and real application case in Italy," Energy, Elsevier, vol. 95(C), pages 494-503.
    14. Ridjan, Iva & Mathiesen, Brian Vad & Connolly, David, 2014. "Synthetic fuel production costs by means of solid oxide electrolysis cells," Energy, Elsevier, vol. 76(C), pages 104-113.
    15. Malla, Sunil, 2014. "Assessment of mobility and its impact on energy use and air pollution in Nepal," Energy, Elsevier, vol. 69(C), pages 485-496.
    16. Nunes, Pedro & Brito, M.C., 2017. "Displacing natural gas with electric vehicles for grid stabilization," Energy, Elsevier, vol. 141(C), pages 87-96.
    17. Sovacool, Benjamin K., 2017. "Contestation, contingency, and justice in the Nordic low-carbon energy transition," Energy Policy, Elsevier, vol. 102(C), pages 569-582.
    18. Sangaramoorthy, Thurka & Jamison, Amelia M. & Boyle, Meleah D. & Payne-Sturges, Devon C. & Sapkota, Amir & Milton, Donald K. & Wilson, Sacoby M., 2016. "Place-based perceptions of the impacts of fracking along the Marcellus Shale," Social Science & Medicine, Elsevier, vol. 151(C), pages 27-37.
    19. Noel, Lance & Zarazua de Rubens, Gerardo & Sovacool, Benjamin K., 2018. "Optimizing innovation, carbon and health in transport: Assessing socially optimal electric mobility and vehicle-to-grid pathways in Denmark," Energy, Elsevier, vol. 153(C), pages 628-637.
    20. Connolly, D. & Lund, H. & Mathiesen, B.V. & Leahy, M., 2011. "The first step towards a 100% renewable energy-system for Ireland," Applied Energy, Elsevier, vol. 88(2), pages 502-507, February.
    21. Graabak, Ingeborg & Wu, Qiuwei & Warland, Leif & Liu, Zhaoxi, 2016. "Optimal planning of the Nordic transmission system with 100% electric vehicle penetration of passenger cars by 2050," Energy, Elsevier, vol. 107(C), pages 648-660.
    22. Kester, Johannes & Noel, Lance & Zarazua de Rubens, Gerardo & Sovacool, Benjamin K., 2018. "Policy mechanisms to accelerate electric vehicle adoption: A qualitative review from the Nordic region," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 719-731.
    23. Pirouzi, Sasan & Aghaei, Jamshid & Niknam, Taher & Farahmand, Hossein & Korpås, Magnus, 2018. "Exploring prospective benefits of electric vehicles for optimal energy conditioning in distribution networks," Energy, Elsevier, vol. 157(C), pages 679-689.
    24. Mathiesen, B.V. & Lund, H. & Connolly, D. & Wenzel, H. & Østergaard, P.A. & Möller, B. & Nielsen, S. & Ridjan, I. & Karnøe, P. & Sperling, K. & Hvelplund, F.K., 2015. "Smart Energy Systems for coherent 100% renewable energy and transport solutions," Applied Energy, Elsevier, vol. 145(C), pages 139-154.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ramachandran Kannan & Evangelos Panos & Stefan Hirschberg & Tom Kober, 2022. "A net‐zero Swiss energy system by 2050: Technological and policy options for the transition of the transportation sector," Futures & Foresight Science, John Wiley & Sons, vol. 4(3-4), September.
    2. Zhang, Junyi & Hayashi, Yoshitsugu & Frank, Lawrence D., 2021. "COVID-19 and transport: Findings from a world-wide expert survey," Transport Policy, Elsevier, vol. 103(C), pages 68-85.
    3. Raffaele Salvucci & Stefan Petrović & Kenneth Karlsson & Markus Wråke & Tanu Priya Uteng & Olexandr Balyk, 2019. "Energy Scenario Analysis for the Nordic Transport Sector: A Critical Review," Energies, MDPI, vol. 12(12), pages 1-19, June.
    4. Hagos, Dejene Assefa & Ahlgren, Erik O., 2020. "Exploring cost-effective transitions to fossil independent transportation in the future energy system of Denmark," Applied Energy, Elsevier, vol. 261(C).
    5. Jakub Kraciuk & Elżbieta Kacperska & Katarzyna Łukasiewicz & Piotr Pietrzak, 2022. "Innovative Energy Technologies in Road Transport in Selected EU Countries," Energies, MDPI, vol. 15(16), pages 1-18, August.
    6. Alina Georgiana Manta & Nicoleta Mihaela Doran & Gheorghe Hurduzeu & Roxana Maria Bădîrcea & Marius Dalian Doran & Florin Liviu Manta, 2024. "Is there a direct benefit of using electronic commerce and electronic banking in mitigating climate change?," Climatic Change, Springer, vol. 177(10), pages 1-22, October.
    7. Sovacool, Benjamin K. & Kester, Johannes & Noel, Lance & de Rubens, Gerardo Zarazua, 2019. "Energy Injustice and Nordic Electric Mobility: Inequality, Elitism, and Externalities in the Electrification of Vehicle-to-Grid (V2G) Transport," Ecological Economics, Elsevier, vol. 157(C), pages 205-217.
    8. Paulo J. G. Ribeiro & José F. G. Mendes, 2022. "Towards Zero CO 2 Emissions from Public Transport: The Pathway to the Decarbonization of the Portuguese Urban Bus Fleet," Sustainability, MDPI, vol. 14(15), pages 1-15, July.
    9. Juan A. Dominguez-Jimenez & Javier E. Campillo & Oscar Danilo Montoya & Enrique Delahoz & Jesus C. Hernández, 2020. "Seasonality Effect Analysis and Recognition of Charging Behaviors of Electric Vehicles: A Data Science Approach," Sustainability, MDPI, vol. 12(18), pages 1-18, September.
    10. Ruoso, Ana Cristina & Ribeiro, José Luis Duarte, 2022. "An assessment of barriers and solutions for the deployment of electric vehicles in the Brazilian market," Transport Policy, Elsevier, vol. 127(C), pages 218-229.
    11. Luin, Blaž & Petelin, Stojan & Al-Mansour, Fouad, 2019. "Microsimulation of electric vehicle energy consumption," Energy, Elsevier, vol. 174(C), pages 24-32.
    12. Kuznetsov, G.V. & Nigay, N.A. & Syrodoy, S.V. & Gutareva, N. Yu & Malyshev, D. Yu, 2022. "A comparative analysis of the characteristics of the water removal processes in preparation for incineration of typical wood waste and forest combustible materials," Energy, Elsevier, vol. 239(PE).
    13. Bramstoft, Rasmus & Pizarro-Alonso, Amalia & Jensen, Ida Græsted & Ravn, Hans & Münster, Marie, 2020. "Modelling of renewable gas and renewable liquid fuels in future integrated energy systems," Applied Energy, Elsevier, vol. 268(C).
    14. Noel, Lance & Zarazua de Rubens, Gerardo & Kester, Johannes & Sovacool, Benjamin K., 2019. "Navigating expert skepticism and consumer distrust: Rethinking the barriers to vehicle-to-grid (V2G) in the Nordic region," Transport Policy, Elsevier, vol. 76(C), pages 67-77.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sovacool, Benjamin K. & Kester, Johannes & Noel, Lance & de Rubens, Gerardo Zarazua, 2019. "Energy Injustice and Nordic Electric Mobility: Inequality, Elitism, and Externalities in the Electrification of Vehicle-to-Grid (V2G) Transport," Ecological Economics, Elsevier, vol. 157(C), pages 205-217.
    2. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    3. Hansen, Kenneth & Mathiesen, Brian Vad & Skov, Iva Ridjan, 2019. "Full energy system transition towards 100% renewable energy in Germany in 2050," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 1-13.
    4. Sovacool, Benjamin K. & Kester, Johannes & Noel, Lance & Zarazua de Rubens, Gerardo, 2020. "Actors, business models, and innovation activity systems for vehicle-to-grid (V2G) technology: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    5. Sperling, K. & Arler, F., 2020. "Local government innovation in the energy sector: A study of key actors’ strategies and arguments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 126(C).
    6. Mathiesen, B.V. & Lund, H. & Connolly, D. & Wenzel, H. & Østergaard, P.A. & Möller, B. & Nielsen, S. & Ridjan, I. & Karnøe, P. & Sperling, K. & Hvelplund, F.K., 2015. "Smart Energy Systems for coherent 100% renewable energy and transport solutions," Applied Energy, Elsevier, vol. 145(C), pages 139-154.
    7. Connolly, D. & Lund, H. & Mathiesen, B.V., 2016. "Smart Energy Europe: The technical and economic impact of one potential 100% renewable energy scenario for the European Union," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1634-1653.
    8. David Maya-Drysdale & Louise Krog Jensen & Brian Vad Mathiesen, 2020. "Energy Vision Strategies for the EU Green New Deal: A Case Study of European Cities," Energies, MDPI, vol. 13(9), pages 1-20, May.
    9. Hansen, Kenneth & Breyer, Christian & Lund, Henrik, 2019. "Status and perspectives on 100% renewable energy systems," Energy, Elsevier, vol. 175(C), pages 471-480.
    10. Lund, Henrik & Thellufsen, Jakob Zinck & Sorknæs, Peter & Mathiesen, Brian Vad & Chang, Miguel & Madsen, Poul Thøis & Kany, Mikkel Strunge & Skov, Iva Ridjan, 2022. "Smart energy Denmark. A consistent and detailed strategy for a fully decarbonized society," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    11. Wang, Yongli & Li, Jiapu & Wang, Shuo & Yang, Jiale & Qi, Chengyuan & Guo, Hongzhen & Liu, Ximei & Zhang, Hongqing, 2020. "Operational optimization of wastewater reuse integrated energy system," Energy, Elsevier, vol. 200(C).
    12. Maruf, Md. Nasimul Islam, 2021. "Open model-based analysis of a 100% renewable and sector-coupled energy system–The case of Germany in 2050," Applied Energy, Elsevier, vol. 288(C).
    13. Laslett, Dean & Carter, Craig & Creagh, Chris & Jennings, Philip, 2017. "A large-scale renewable electricity supply system by 2030: Solar, wind, energy efficiency, storage and inertia for the South West Interconnected System (SWIS) in Western Australia," Renewable Energy, Elsevier, vol. 113(C), pages 713-731.
    14. Sveinbjörnsson, Dadi & Ben Amer-Allam, Sara & Hansen, Anders Bavnhøj & Algren, Loui & Pedersen, Allan Schrøder, 2017. "Energy supply modelling of a low-CO2 emitting energy system: Case study of a Danish municipality," Applied Energy, Elsevier, vol. 195(C), pages 922-941.
    15. Jacobson, Mark Z., 2021. "The cost of grid stability with 100 % clean, renewable energy for all purposes when countries are isolated versus interconnected," Renewable Energy, Elsevier, vol. 179(C), pages 1065-1075.
    16. Shafiei, Ehsan & Davidsdottir, Brynhildur & Leaver, Jonathan & Stefansson, Hlynur & Asgeirsson, Eyjolfur Ingi, 2015. "Comparative analysis of hydrogen, biofuels and electricity transitional pathways to sustainable transport in a renewable-based energy system," Energy, Elsevier, vol. 83(C), pages 614-627.
    17. Djørup, Søren & Thellufsen, Jakob Zinck & Sorknæs, Peter, 2018. "The electricity market in a renewable energy system," Energy, Elsevier, vol. 162(C), pages 148-157.
    18. Vidal-Amaro, Juan José & Østergaard, Poul Alberg & Sheinbaum-Pardo, Claudia, 2015. "Optimal energy mix for transitioning from fossil fuels to renewable energy sources – The case of the Mexican electricity system," Applied Energy, Elsevier, vol. 150(C), pages 80-96.
    19. Jacobson, Mark Z. & von Krauland, Anna-Katharina & Coughlin, Stephen J. & Palmer, Frances C. & Smith, Miles M., 2022. "Zero air pollution and zero carbon from all energy at low cost and without blackouts in variable weather throughout the U.S. with 100% wind-water-solar and storage," Renewable Energy, Elsevier, vol. 184(C), pages 430-442.
    20. Tom Brown & Mirko Schäfer & Martin Greiner, 2019. "Sectoral Interactions as Carbon Dioxide Emissions Approach Zero in a Highly-Renewable European Energy System," Energies, MDPI, vol. 12(6), pages 1-16, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:165:y:2018:i:pa:p:532-542. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.