My bibliography
Save this item
Dissecting Characteristics Nonparametrically
Citations
RePEc Biblio mentions
As found on the RePEc Biblio, the curated bibliography for Economics:- > Econometrics > Big Data
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Guanhao Feng & Stefano Giglio & Dacheng Xiu, 2020.
"Taming the Factor Zoo: A Test of New Factors,"
Journal of Finance, American Finance Association, vol. 75(3), pages 1327-1370, June.
- Guanhao Feng & Stefano Giglio & Dacheng Xiu, 2019. "Taming the Factor Zoo: A Test of New Factors," NBER Working Papers 25481, National Bureau of Economic Research, Inc.
- Giglio, Stefano & Feng, Guanhao & Xiu, Dacheng, 2020. "Taming the Factor Zoo: A Test of New Factors," CEPR Discussion Papers 14266, C.E.P.R. Discussion Papers.
- Bandi, Federico M. & Chaudhuri, Shomesh E. & Lo, Andrew W. & Tamoni, Andrea, 2021. "Spectral factor models," Journal of Financial Economics, Elsevier, vol. 142(1), pages 214-238.
- Pan, Zhiyuan & Zhong, Hao & Wang, Yudong & Huang, Juan, 2024. "Forecasting oil futures returns with news," Energy Economics, Elsevier, vol. 134(C).
- Andreas Neuhierl & Michael Weber & Michael Weber, 2017.
"Monetary Momentum,"
CESifo Working Paper Series
6648, CESifo.
- Andreas Neuhierl & Michael Weber, 2020. "Monetary Momentum," Working Papers 2020-39, Becker Friedman Institute for Research In Economics.
- Andreas Neuhierl & Michael Weber, 2018. "Monetary Momentum," NBER Working Papers 24748, National Bureau of Economic Research, Inc.
- Carl Remlinger & Bri`ere Marie & Alasseur Cl'emence & Joseph Mikael, 2021. "Expert Aggregation for Financial Forecasting," Papers 2111.15365, arXiv.org, revised Jul 2023.
- Alex Chinco & Samuel M. Hartzmark & Abigail B. Sussman, 2022. "A New Test of Risk Factor Relevance," Journal of Finance, American Finance Association, vol. 77(4), pages 2183-2238, August.
- Cheng, Mingmian & Liao, Yuan & Yang, Xiye, 2023. "Uniform predictive inference for factor models with instrumental and idiosyncratic betas," Journal of Econometrics, Elsevier, vol. 237(2).
- Cakici, Nusret & Fieberg, Christian & Metko, Daniel & Zaremba, Adam, 2023. "Machine learning goes global: Cross-sectional return predictability in international stock markets," Journal of Economic Dynamics and Control, Elsevier, vol. 155(C).
- Molero-González, L. & Trinidad-Segovia, J.E. & Sánchez-Granero, M.A. & García-Medina, A., 2023. "Market Beta is not dead: An approach from Random Matrix Theory," Finance Research Letters, Elsevier, vol. 55(PA).
- Jorge Guijarro-Ordonez & Markus Pelger & Greg Zanotti, 2021. "Deep Learning Statistical Arbitrage," Papers 2106.04028, arXiv.org, revised Oct 2022.
- Kent Daniel & David Hirshleifer & Lin Sun, 2020.
"Short- and Long-Horizon Behavioral Factors,"
The Review of Financial Studies, Society for Financial Studies, vol. 33(4), pages 1673-1736.
- Kent Daniel & David Hirshleifer & Lin Sun, 2017. "Short- and Long-Horizon Behavioral Factors," NBER Working Papers 24163, National Bureau of Economic Research, Inc.
- James, Robert & Leung, Henry & Leung, Jessica Wai Yin & Prokhorov, Artem, 2023. "Forecasting tail risk measures for financial time series: An extreme value approach with covariates," Journal of Empirical Finance, Elsevier, vol. 71(C), pages 29-50.
- Maysam Khodayari Gharanchaei & Prabhu Prasad Panda & Xilin Chen, 2024. "Quantitative Investment Diversification Strategies via Various Risk Models," Papers 2407.01550, arXiv.org.
- Christian Fieberg & Lars Hornuf & Gerrit Liedtke & Thorsten Poddig, 2020. "Are Characteristics Covariances? A Comment on Instrumented Principal Component Analysis," CESifo Working Paper Series 8377, CESifo.
- David A. Mascio & Marat Molyboga & Frank J. Fabozzi, 2023. "The battle of the factors: Macroeconomic variables or investor sentiment?," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(8), pages 2280-2291, December.
- Victor DeMiguel & Javier Gil-Bazo & Francisco J. Nogales & André A. P. Santos, 2021.
"Can Machine Learning Help to Select Portfolios of Mutual Funds?,"
Working Papers
1245, Barcelona School of Economics.
- Victor DeMiguel & Javier Gil-Bazo & Francisco J. Nogales & André A. P. Santos, 2021. "Can machine learning help to select portfolios of mutual funds?," Economics Working Papers 1772, Department of Economics and Business, Universitat Pompeu Fabra.
- Bakalli, Gaetan & Guerrier, Stéphane & Scaillet, Olivier, 2023.
"A penalized two-pass regression to predict stock returns with time-varying risk premia,"
Journal of Econometrics, Elsevier, vol. 237(2).
- Gaetan Bakalli & Stéphane Guerrier & Olivier Scaillet, 2021. "A penalized two-pass regression to predict stock returns with time-varying risk premia," Swiss Finance Institute Research Paper Series 21-09, Swiss Finance Institute.
- Gaetan Bakalli & Stéphane Guerrier & Olivier Scaillet, 2023. "A penalized two-pass regression to predict stock returns with time-varying risk premia," Post-Print hal-04325655, HAL.
- Gaetan Bakalli & St'ephane Guerrier & Olivier Scaillet, 2022. "A penalized two-pass regression to predict stock returns with time-varying risk premia," Papers 2208.00972, arXiv.org.
- Alain-Philippe Fortin & Patrick Gagliardini & O. Scaillet, 2022.
"Eigenvalue tests for the number of latent factors in short panels,"
Swiss Finance Institute Research Paper Series
22-81, Swiss Finance Institute.
- Alain-Philippe Fortin & Patrick Gagliardini & Olivier Scaillet, 2022. "Eigenvalue tests for the number of latent factors in short panels," Papers 2210.16042, arXiv.org.
- Martin Lettau & Markus Pelger & Stijn Van Nieuwerburgh, 2020.
"Factors That Fit the Time Series and Cross-Section of Stock Returns,"
The Review of Financial Studies, Society for Financial Studies, vol. 33(5), pages 2274-2325.
- Martin Lettau & Markus Pelger, 2018. "Factors that Fit the Time Series and Cross-Section of Stock Returns," NBER Working Papers 24858, National Bureau of Economic Research, Inc.
- Lettau, Martin & Pelger, Markus, 2018. "Factors that Fit the Time Series and Cross-Section of Stock Returns," CEPR Discussion Papers 13049, C.E.P.R. Discussion Papers.
- Chinco, Alex & Neuhierl, Andreas & Weber, Michael, 2021.
"Estimating the anomaly base rate,"
Journal of Financial Economics, Elsevier, vol. 140(1), pages 101-126.
- Alexander M. Chinco & Andreas Neuhierl & Michael Weber, 2019. "Estimating The Anomaly Base Rate," NBER Working Papers 26493, National Bureau of Economic Research, Inc.
- Weber, Michael, 2018.
"Cash flow duration and the term structure of equity returns,"
Journal of Financial Economics, Elsevier, vol. 128(3), pages 486-503.
- Michael Weber & Michael Weber, 2016. "Cash Flow Duration and the Term Structure of Equity Returns," CESifo Working Paper Series 6043, CESifo.
- Michael Weber, 2016. "Cash Flow Duration and the Term Structure of Equity Returns," NBER Working Papers 22520, National Bureau of Economic Research, Inc.
- Thomas Conlon & John Cotter & Iason Kynigakis, 2021.
"Machine Learning and Factor-Based Portfolio Optimization,"
Working Papers
202111, Geary Institute, University College Dublin.
- Thomas Conlon & John Cotter & Iason Kynigakis, 2021. "Machine Learning and Factor-Based Portfolio Optimization," Papers 2107.13866, arXiv.org.
- Svetlana Bryzgalova & Jiantao Huang & Christian Julliard, 2023.
"Bayesian Solutions for the Factor Zoo: We Just Ran Two Quadrillion Models,"
Journal of Finance, American Finance Association, vol. 78(1), pages 487-557, February.
- Bryzgalova, Svetlana & Huang, Jiantao & Julliard, Christian, 2020. "Bayesian solutions for the factor zoo: we just ran two quadrillion models," LSE Research Online Documents on Economics 118924, London School of Economics and Political Science, LSE Library.
- Chris Florackis & Christodoulos Louca & Roni Michaely & Michael Weber, 2023.
"Cybersecurity Risk,"
The Review of Financial Studies, Society for Financial Studies, vol. 36(1), pages 351-407.
- Chris Florakis & Christodoulos Louca & Roni Michaely & Michael Weber, 2020. "Cybersecurity Risk," Working Papers 2020-178, Becker Friedman Institute for Research In Economics.
- Chris Florackis & Christodoulos Louca & Roni Michaely & Michael Weber, 2020. "Cybersecurity Risk," NBER Working Papers 28196, National Bureau of Economic Research, Inc.
- Chris Florackis & Christodoulos Louca & Roni Michaely & Michael Weber, 2020. "Cybersecurity Risk," Swiss Finance Institute Research Paper Series 20-108, Swiss Finance Institute.
- Chris Florackis & Christodoulos Louca & Roni Michaely & Michael Weber & Michael Weber, 2020. "Cybersecurity Risk," CESifo Working Paper Series 8760, CESifo.
- Dong, C. & Li, S., 2021. "Specification Lasso and an Application in Financial Markets," Cambridge Working Papers in Economics 2139, Faculty of Economics, University of Cambridge.
- Dashan Huang & Fuwei Jiang & Kunpeng Li & Guoshi Tong & Guofu Zhou, 2022.
"Scaled PCA: A New Approach to Dimension Reduction,"
Management Science, INFORMS, vol. 68(3), pages 1678-1695, March.
- Dashan Huang & Fuwei Jiang & Kunpeng Li & Guoshi Tong & Guofu Zhou, 2022. "Scaled PCA: A New Approach to Dimension Reduction," CEMA Working Papers 678, China Economics and Management Academy, Central University of Finance and Economics.
- Daniel Borup & Philippe Goulet Coulombe & Erik Christian Montes Schütte & David E. Rapach & Sander Schwenk-Nebbe, 2022.
"The Anatomy of Out-of-Sample Forecasting Accuracy,"
FRB Atlanta Working Paper
2022-16, Federal Reserve Bank of Atlanta.
- Daniel Borup & Philippe Goulet Coulombe & Erik Christian Montes Schütte & David E. Rapach & Sander Schwenk-Nebbe, 2024. "The Anatomy of Out-of-Sample Forecasting Accuracy," FRB Atlanta Working Paper 2022-16b, Federal Reserve Bank of Atlanta.
- Gagliardini, Patrick & Ossola, Elisa & Scaillet, Olivier, 2019.
"A diagnostic criterion for approximate factor structure,"
Journal of Econometrics, Elsevier, vol. 212(2), pages 503-521.
- Patrick Gagliardini & Elisa Ossola & O. Scaillet, 2016. "A Diagnostic Criterion for Approximate Factor Structure," Swiss Finance Institute Research Paper Series 16-51, Swiss Finance Institute, revised Dec 2016.
- Patrick Gagliardini & Elisa Ossola & Olivier Scaillet, 2016. "A diagnostic criterion for approximate factor structure," Papers 1612.04990, arXiv.org, revised Aug 2017.
- Shihao Gu & Bryan Kelly & Dacheng Xiu, 2020.
"Empirical Asset Pricing via Machine Learning,"
The Review of Financial Studies, Society for Financial Studies, vol. 33(5), pages 2223-2273.
- Shihao Gu & Bryan T. Kelly & Dacheng Xiu, 2018. "Empirical Asset Pricing via Machine Learning," Swiss Finance Institute Research Paper Series 18-71, Swiss Finance Institute.
- Shihao Gu & Bryan Kelly & Dacheng Xiu, 2018. "Empirical Asset Pricing via Machine Learning," NBER Working Papers 25398, National Bureau of Economic Research, Inc.
- Pedro M. Mirete-Ferrer & Alberto Garcia-Garcia & Juan Samuel Baixauli-Soler & Maria A. Prats, 2022. "A Review on Machine Learning for Asset Management," Risks, MDPI, vol. 10(4), pages 1-46, April.
- Sun, Chuanping, 2024. "Factor correlation and the cross section of asset returns: A correlation-robust machine learning approach," Journal of Empirical Finance, Elsevier, vol. 77(C).
- Malakhov, Alexey & Riley, Timothy B. & Yan, Qing, 2024. "Do hedge funds bet against beta?," International Review of Economics & Finance, Elsevier, vol. 93(PA), pages 1507-1525.
- Langlois, Hugues, 2023. "What matters in a characteristic?," Journal of Financial Economics, Elsevier, vol. 149(1), pages 52-72.
- Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022.
"Forecasting: theory and practice,"
International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
- Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
- Croux, Christophe & Jagtiani, Julapa & Korivi, Tarunsai & Vulanovic, Milos, 2020.
"Important factors determining Fintech loan default: Evidence from a lendingclub consumer platform,"
Journal of Economic Behavior & Organization, Elsevier, vol. 173(C), pages 270-296.
- Christophe Croux & Julapa Jagtiani & Tarunsai Korivi & Milos Vulanovic, 2020. "Important Factors Determining Fintech Loan Default: Evidence from the LendingClub Consumer Platform," Working Papers 20-15, Federal Reserve Bank of Philadelphia.
- Li, Bo & Liu, Zhenya & Teka, Hanen & Wang, Shixuan, 2023. "The evolvement of momentum effects in China: Evidence from functional data analysis," Research in International Business and Finance, Elsevier, vol. 64(C).
- Shirui Wang & Tianyang Zhang, 2024. "Predictability of commodity futures returns with machine learning models," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 44(2), pages 302-322, February.
- Wang, Jianqiu & Wu, Ke & Tong, Guoshi & Chen, Dongxu, 2023. "Nonlinearity in the cross-section of stock returns: Evidence from China," International Review of Economics & Finance, Elsevier, vol. 85(C), pages 174-205.
- Fallahgoul, Hasan & Franstianto, Vincentius & Lin, Xin, 2024. "Asset pricing with neural networks: Significance tests," Journal of Econometrics, Elsevier, vol. 238(1).
- Domenico Giannone & Michele Lenza & Giorgio E. Primiceri, 2021.
"Economic Predictions With Big Data: The Illusion of Sparsity,"
Econometrica, Econometric Society, vol. 89(5), pages 2409-2437, September.
- Giannone, Domenico & Lenza, Michele & Primiceri, Giorgio, 2017. "Economic Predictions with Big Data: The Illusion Of Sparsity," CEPR Discussion Papers 12256, C.E.P.R. Discussion Papers.
- Domenico Giannone & Michele Lenza & Giorgio E. Primiceri, 2018. "Economic Predictions with Big Data: The Illusion of Sparsity," Liberty Street Economics 20180521, Federal Reserve Bank of New York.
- Domenico Giannone & Michele Lenza & Giorgio E. Primiceri, 2018. "Economic predictions with big data: the illusion of sparsity," Staff Reports 847, Federal Reserve Bank of New York.
- Giannone, Domenico & Lenza, Michele & Primiceri, Giorgio E., 2021. "Economic predictions with big data: the illusion of sparsity," Working Paper Series 2542, European Central Bank.
- Li, Zhiyong & Wan, Yifan & Wang, Tianyi & Yu, Mei, 2023. "Factor-timing in the Chinese factor zoo: The role of economic policy uncertainty," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 85(C).
- Ni, Xuanming & Zheng, Tiantian & Zhao, Huimin & Zhu, Shushang, 2023. "High-dimensional portfolio optimization based on tree-structured factor model," Pacific-Basin Finance Journal, Elsevier, vol. 81(C).
- Stadtmüller, Immo & Auer, Benjamin R. & Schuhmacher, Frank, 2022. "On the benefits of active stock selection strategies for diversified investors," The Quarterly Review of Economics and Finance, Elsevier, vol. 85(C), pages 342-354.
- Guo, Li & Sang, Bo & Tu, Jun & Wang, Yu, 2024. "Cross-cryptocurrency return predictability," Journal of Economic Dynamics and Control, Elsevier, vol. 163(C).
- Jules H van Binsbergen & Xiao Han & Alejandro Lopez-Lira, 2023. "Man versus Machine Learning: The Term Structure of Earnings Expectations and Conditional Biases," The Review of Financial Studies, Society for Financial Studies, vol. 36(6), pages 2361-2396.
- Yonghe Lu & Yanrong Yang & Terry Zhang, 2024. "Double Descent in Portfolio Optimization: Dance between Theoretical Sharpe Ratio and Estimation Accuracy," Papers 2411.18830, arXiv.org.
- Daniele Bianchi & Kenichiro McAlinn, 2018. "Large-Scale Dynamic Predictive Regressions," Papers 1803.06738, arXiv.org.
- Deshui Yu & Yayi Yan, 2023. "Joint dynamics of stock returns and cash flows: A time‐varying present‐value framework," Financial Management, Financial Management Association International, vol. 52(3), pages 513-541, September.
- Cakici, Nusret & Shahzad, Syed Jawad Hussain & Będowska-Sójka, Barbara & Zaremba, Adam, 2024. "Machine learning and the cross-section of cryptocurrency returns," International Review of Financial Analysis, Elsevier, vol. 94(C).
- Celso Brunetti & Marc Joëts & Valérie Mignon, 2023.
"Reasons Behind Words: OPEC Narratives and the Oil Market,"
Working Papers
2023-19, CEPII research center.
- Celso Brunetti & Marc Joëts & Valérie Mignon, 2024. "Reasons Behind Words: OPEC Narratives and the Oil Market," Finance and Economics Discussion Series 2024-003, Board of Governors of the Federal Reserve System (U.S.).
- Celso Brunetti & Marc Joëts & Valérie Mignon, 2023. "Reasons Behind Words: OPEC Narratives and the Oil Market," Working Papers hal-04196053, HAL.
- Valérie Mignon & Celso Brunetti & Marc Joëts, 2023. "Reasons Behind Words: OPEC Narratives and the Oil Market," EconomiX Working Papers 2023-24, University of Paris Nanterre, EconomiX.
- Raymond C. W. Leung & Yu-Man Tam, 2021. "Statistical Arbitrage Risk Premium by Machine Learning," Papers 2103.09987, arXiv.org.
- Hanauer, Matthias X. & Kalsbach, Tobias, 2023. "Machine learning and the cross-section of emerging market stock returns," Emerging Markets Review, Elsevier, vol. 55(C).
- Rubesam, Alexandre, 2022.
"Machine learning portfolios with equal risk contributions: Evidence from the Brazilian market,"
Emerging Markets Review, Elsevier, vol. 51(PB).
- Alexandre Rubesam, 2022. "Machine learning portfolios with equal risk contributions: Evidence from the Brazilian market," Post-Print hal-03707365, HAL.
- Siddhartha Chib & Simon C. Smith, 2024. "Factor Selection and Structural Breaks," Finance and Economics Discussion Series 2024-037, Board of Governors of the Federal Reserve System (U.S.).
- Chen, Andrew Y. & McCoy, Jack, 2024. "Missing values handling for machine learning portfolios," Journal of Financial Economics, Elsevier, vol. 155(C).
- Firoozye, Nikan & Tan, Vincent & Zohren, Stefan, 2023.
"Canonical portfolios: Optimal asset and signal combination,"
Journal of Banking & Finance, Elsevier, vol. 154(C).
- Nikan Firoozye & Vincent Tan & Stefan Zohren, 2022. "Canonical Portfolios: Optimal Asset and Signal Combination," Papers 2202.10817, arXiv.org, revised Jul 2023.
- Alessi, Lucia & Balduzzi, Pierluigi & Savona, Roberto, 2019. "Anatomy of a Sovereign Debt Crisis: CDS Spreads and Real-Time Macroeconomic Data," JRC Working Papers in Economics and Finance 2019-03, Joint Research Centre, European Commission.
- Hoang, Daniel & Wiegratz, Kevin, 2022. "Machine learning methods in finance: Recent applications and prospects," Working Paper Series in Economics 158, Karlsruhe Institute of Technology (KIT), Department of Economics and Management.
- Langlois, Hugues, 2020. "Measuring skewness premia," Journal of Financial Economics, Elsevier, vol. 135(2), pages 399-424.
- Kozak, Serhiy & Nagel, Stefan & Santosh, Shrihari, 2020.
"Shrinking the cross-section,"
Journal of Financial Economics, Elsevier, vol. 135(2), pages 271-292.
- Nagel, Stefan & Santosh, Shrihari & Kozak, Serhiy, 2017. "Shrinking the Cross Section," CEPR Discussion Papers 12463, C.E.P.R. Discussion Papers.
- Serhiy Kozak & Stefan Nagel & Shrihari Santosh, 2017. "Shrinking the Cross Section," NBER Working Papers 24070, National Bureau of Economic Research, Inc.
- Ge, S. & Li, S. & Linton, O., 2020. "A Dynamic Network of Arbitrage Characteristics," Cambridge Working Papers in Economics 2060, Faculty of Economics, University of Cambridge.
- Christopher G. Lamoureux & Huacheng Zhang, 2021. "An Empirical Assessment of Characteristics and Optimal Portfolios," Papers 2104.12975, arXiv.org, revised Feb 2024.
- Chaieb, Ines & Langlois, Hugues & Scaillet, Olivier, 2021. "Factors and risk premia in individual international stock returns," Journal of Financial Economics, Elsevier, vol. 141(2), pages 669-692.
- Eric Andr'e & Guillaume Coqueret, 2020. "Dirichlet policies for reinforced factor portfolios," Papers 2011.05381, arXiv.org, revised Jun 2021.
- Alois Weigand, 2019. "Machine learning in empirical asset pricing," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 33(1), pages 93-104, March.
- O’Sullivan, Conall & Papavassiliou, Vassilios G. & Wafula, Ronald Wekesa & Boubaker, Sabri, 2024.
"New insights into liquidity resiliency,"
Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 90(C).
- Conall O'Sullivan & Vassilios G. Papavassiliou & Ronald Wekesa Wafula & Sabri Boubaker, 2024. "New Insights into Liquidity Resiliency," Post-Print hal-04432411, HAL.
- Madhura Dasgupta & Samarth Gupta, 2024. "What Determines Enterprise Borrowing from Self Help Groups? An Interpretable Supervised Machine Learning Approach," Journal of Financial Services Research, Springer;Western Finance Association, vol. 66(1), pages 77-99, August.
- Hanauer, Matthias X. & Kononova, Marina & Rapp, Marc Steffen, 2022. "Boosting agnostic fundamental analysis: Using machine learning to identify mispricing in European stock markets," Finance Research Letters, Elsevier, vol. 48(C).
- Wan, Runzhe & Li, Yingying & Lu, Wenbin & Song, Rui, 2024. "Mining the factor zoo: Estimation of latent factor models with sufficient proxies," Journal of Econometrics, Elsevier, vol. 239(2).
- Ko, Hyungjin & Byun, Junyoung & Lee, Jaewook, 2023. "A privacy-preserving robo-advisory system with the Black-Litterman portfolio model: A new framework and insights into investor behavior," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 89(C).
- Mohrschladt, Hannes & Nolte, Sven, 2018. "A new risk factor based on equity duration," Journal of Banking & Finance, Elsevier, vol. 96(C), pages 126-135.
- Ma, Tian & Leong, Wen Jun & Jiang, Fuwei, 2023. "A latent factor model for the Chinese stock market," International Review of Financial Analysis, Elsevier, vol. 87(C).
- Bo Li & Sabri Boubaker & Zhenya Liu & Waël Louhichi & Yao Yao, 2023.
"Exploring the Nonlinear Idiosyncratic Volatility Puzzle: Evidence from China,"
Computational Economics, Springer;Society for Computational Economics, vol. 62(2), pages 527-559, August.
- B. Li & S. Boubaker & Z. Liu & W. Louhichi & Y. Yao, 2023. "Exploring the Nonlinear Idiosyncratic Volatility Puzzle: Evidence from China," Post-Print hal-04435519, HAL.
- G Andrew Karolyi & Stijn Van Nieuwerburgh, 2020.
"New Methods for the Cross-Section of Returns,"
Review of Financial Studies, Society for Financial Studies, vol. 33(5), pages 1879-1890.
- G Andrew Karolyi & Stijn Van Nieuwerburgh, 2020. "New Methods for the Cross-Section of Returns," Review of Finance, European Finance Association, vol. 33(5), pages 1879-1890.
- Luyang Chen & Markus Pelger & Jason Zhu, 2024.
"Deep Learning in Asset Pricing,"
Management Science, INFORMS, vol. 70(2), pages 714-750, February.
- Luyang Chen & Markus Pelger & Jason Zhu, 2019. "Deep Learning in Asset Pricing," Papers 1904.00745, arXiv.org, revised Aug 2021.
- Simon, Frederik & Weibels, Sebastian & Zimmermann, Tom, 2023. "Deep parametric portfolio policies," CFR Working Papers 23-01, University of Cologne, Centre for Financial Research (CFR).
- Guillaume Chevalier & Guillaume Coqueret & Thomas Raffinot, 2022. "Supervised portfolios," Post-Print hal-04144588, HAL.
- Gu, Shihao & Kelly, Bryan & Xiu, Dacheng, 2021. "Autoencoder asset pricing models," Journal of Econometrics, Elsevier, vol. 222(1), pages 429-450.
- Tu, Xueyong & Li, Bin, 2024. "Robust portfolio selection with smart return prediction," Economic Modelling, Elsevier, vol. 135(C).
- Chen, Ding & Guo, Biao & Zhou, Guofu, 2023. "Firm fundamentals and the cross-section of implied volatility shapes," Journal of Financial Markets, Elsevier, vol. 63(C).
- Kaniel, Ron & Lin, Zihan & Pelger, Markus & Van Nieuwerburgh, Stijn, 2023.
"Machine-learning the skill of mutual fund managers,"
Journal of Financial Economics, Elsevier, vol. 150(1), pages 94-138.
- Ron Kaniel & Zihan Lin & Markus Pelger & Stijn Van Nieuwerburgh, 2022. "Machine-Learning the Skill of Mutual Fund Managers," NBER Working Papers 29723, National Bureau of Economic Research, Inc.
- Kaniel, Ron & Lin, Zihan & Pelger, Markus & Van Nieuwerburgh, Stijn, 2023. "Machine-Learning the Skill of Mutual Fund Managers," CEPR Discussion Papers 18129, C.E.P.R. Discussion Papers.
- Francisco Peñaranda & Enrique Sentana, 2024.
"Portfolio management with big data,"
Working Papers
wp2024_2411, CEMFI.
- Penaranda, Francisco & Sentana, Enrique, 2024. "Portfolio management with big data," CEPR Discussion Papers 19314, C.E.P.R. Discussion Papers.
- Kelly, Bryan T. & Moskowitz, Tobias J. & Pruitt, Seth, 2021. "Understanding momentum and reversal," Journal of Financial Economics, Elsevier, vol. 140(3), pages 726-743.
- Tian Ma & Cunfei Liao & Fuwei Jiang, 2023. "Timing the factor zoo via deep learning: Evidence from China," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 63(1), pages 485-505, March.
- Jing-Zhi Huang & Zhan Shi, 2023. "Machine-Learning-Based Return Predictors and the Spanning Controversy in Macro-Finance," Management Science, INFORMS, vol. 69(3), pages 1780-1804, March.
- Clarke, Charles, 2022. "The level, slope, and curve factor model for stocks," Journal of Financial Economics, Elsevier, vol. 143(1), pages 159-187.
- Bagnara, Matteo, 2024. "The economic value of cross-predictability: A performance-based measure," SAFE Working Paper Series 424, Leibniz Institute for Financial Research SAFE.
- Lu, Zhongjin & Malliaris, Steven & Qin, Zhongling, 2023. "Heterogeneous liquidity providers and night-minus-day return predictability," Journal of Financial Economics, Elsevier, vol. 148(3), pages 175-200.
- Baba-Yara, Fahiz & Boons, Martijn & Tamoni, Andrea, 2024. "Persistent and transitory components of firm characteristics: Implications for asset pricing," Journal of Financial Economics, Elsevier, vol. 154(C).
- Yan, Jingda & Yu, Jialin, 2023. "Cross-stock momentum and factor momentum," Journal of Financial Economics, Elsevier, vol. 150(2).
- Paul Schneider & Christian Wagner & Josef Zechner, 2020.
"Low‐Risk Anomalies?,"
Journal of Finance, American Finance Association, vol. 75(5), pages 2673-2718, October.
- Schneider, Paul & Wagner, Christian & Zechner, Josef, 2016. "Low risk anomalies?," CFS Working Paper Series 550, Center for Financial Studies (CFS).
- Paul Schneider & Christian Wagner & Josef Zechner, 2019. "Low Risk Anomalies?," Swiss Finance Institute Research Paper Series 19-50, Swiss Finance Institute.
- Alexander M. Chinco & Adam D. Clark-Joseph & Mao Ye, 2017. "Sparse Signals in the Cross-Section of Returns," NBER Working Papers 23933, National Bureau of Economic Research, Inc.
- Doron Avramov & Si Cheng & Lior Metzker & Stefan Voigt, 2023. "Integrating Factor Models," Journal of Finance, American Finance Association, vol. 78(3), pages 1593-1646, June.
- Oleg Rytchkov & Xun Zhong, 2020. "Information Aggregation and P-Hacking," Management Science, INFORMS, vol. 66(4), pages 1605-1626, April.
- Lee, Ji Hyung & Shi, Zhentao & Gao, Zhan, 2022.
"On LASSO for predictive regression,"
Journal of Econometrics, Elsevier, vol. 229(2), pages 322-349.
- Ji Hyung Lee & Zhentao Shi & Zhan Gao, 2018. "On LASSO for Predictive Regression," Papers 1810.03140, arXiv.org, revised Feb 2021.
- Jiang, Hao & Li, Sophia Zhengzi & Wang, Hao, 2021. "Pervasive underreaction: Evidence from high-frequency data," Journal of Financial Economics, Elsevier, vol. 141(2), pages 573-599.
- Söhnke M. Bartram & Harald Lohre & Peter F. Pope & Ananthalakshmi Ranganathan, 2021. "Navigating the factor zoo around the world: an institutional investor perspective," Journal of Business Economics, Springer, vol. 91(5), pages 655-703, July.
- Smith, Simon C., 2022. "Time-variation, multiple testing, and the factor zoo," International Review of Financial Analysis, Elsevier, vol. 84(C).
- Connor, G. & Li, S. & Linton, O., 2020. "A Dynamic Semiparametric Characteristics-based Model for Optimal Portfolio Selection," Cambridge Working Papers in Economics 20103, Faculty of Economics, University of Cambridge.
- Michaely, Roni & Rossi, Stefano & Weber, Michael, 2021.
"Signaling safety,"
Journal of Financial Economics, Elsevier, vol. 139(2), pages 405-427.
- Roni Michaely & Stefano Rossi & Michael Weber, 2018. "Signaling Safety," NBER Working Papers 24237, National Bureau of Economic Research, Inc.
- Rossi, Stefano & Weber, Michael & Michaely, Roni, 2019. "Signaling Safety," CEPR Discussion Papers 14174, C.E.P.R. Discussion Papers.
- Feng, Guanhao & He, Jingyu, 2022. "Factor investing: A Bayesian hierarchical approach," Journal of Econometrics, Elsevier, vol. 230(1), pages 183-200.
- Atif Ellahie, 2021. "Earnings beta," Review of Accounting Studies, Springer, vol. 26(1), pages 81-122, March.
- Kang, Yong Joo & Park, Dojoon & Eom, Young Ho, 2024. "Global contagion of US COVID-19 panic news," Emerging Markets Review, Elsevier, vol. 59(C).
- Dreher, Sandra & Eichfelder, Sebastian & Noth, Felix, 2022. "Does IFRS information on tax loss carryforwards and negative performance improve predictions of earnings and cash flows?," arqus Discussion Papers in Quantitative Tax Research 276, arqus - Arbeitskreis Quantitative Steuerlehre.
- van Binsbergen, Jules H. & Boons, Martijn & Opp, Christian C. & Tamoni, Andrea, 2023. "Dynamic asset (mis)pricing: Build-up versus resolution anomalies," Journal of Financial Economics, Elsevier, vol. 147(2), pages 406-431.
- Carter Davis, 2023. "The Elasticity of Quantitative Investment," Papers 2303.14533, arXiv.org, revised Sep 2024.
- De Nard, Gianluca & Zhao, Zhao, 2022. "A large-dimensional test for cross-sectional anomalies:Efficient sorting revisited," International Review of Economics & Finance, Elsevier, vol. 80(C), pages 654-676.
- Damir Filipovic & Paul Schneider, 2024. "Fundamental properties of linear factor models," Papers 2409.02521, arXiv.org, revised Oct 2024.
- Andrew Y. Chen & Jack McCoy, 2022. "Missing Values Handling for Machine Learning Portfolios," Papers 2207.13071, arXiv.org, revised Jan 2024.
- Kristoffer Pons Bertelsen, 2022. "The Prior Adaptive Group Lasso and the Factor Zoo," CREATES Research Papers 2022-05, Department of Economics and Business Economics, Aarhus University.
- Valentin Haddad & Serhiy Kozak & Shrihari Santosh & Stijn Van Nieuwerburgh, 2020.
"Factor Timing,"
The Review of Financial Studies, Society for Financial Studies, vol. 33(5), pages 1980-2018.
- Valentin Haddad & Serhiy Kozak & Shrihari Santosh, 2020. "Factor Timing," NBER Working Papers 26708, National Bureau of Economic Research, Inc.
- Cong, Lin William & George, Nathan Darden & Wang, Guojun, 2023.
"RIM-based value premium and factor pricing using value-price divergence,"
Journal of Banking & Finance, Elsevier, vol. 149(C).
- Lin William Cong & Nathan Darden George & Guojun Wang, 2023. "RIM-Based Value Premium and Factor Pricing Using Value-Price Divergence," NBER Working Papers 30967, National Bureau of Economic Research, Inc.
- Andrew Y. Chen & Tom Zimmermann, 2022.
"Open Source Cross-Sectional Asset Pricing,"
Critical Finance Review, now publishers, vol. 11(2), pages 207-264, May.
- Chen, Andrew Y. & Zimmermann, Tom, 2020. "Open source cross-sectional asset pricing," CFR Working Papers 20-04, University of Cologne, Centre for Financial Research (CFR).
- Andrew Y. Chen & Tom Zimmermann, 2021. "Open Source Cross-Sectional Asset Pricing," Finance and Economics Discussion Series 2021-037, Board of Governors of the Federal Reserve System (U.S.).
- Xi Dong & Yan Li & David E. Rapach & Guofu Zhou, 2022. "Anomalies and the Expected Market Return," Journal of Finance, American Finance Association, vol. 77(1), pages 639-681, February.
- Caldeira, João F. & Santos, André A.P. & Torrent, Hudson S., 2023. "Semiparametric portfolios: Improving portfolio performance by exploiting non-linearities in firm characteristics," Economic Modelling, Elsevier, vol. 122(C).
- Chulwoo Han, 2022. "Bimodal Characteristic Returns and Predictability Enhancement via Machine Learning," Management Science, INFORMS, vol. 68(10), pages 7701-7741, October.
- Kelly, Bryan T. & Pruitt, Seth & Su, Yinan, 2019.
"Characteristics are covariances: A unified model of risk and return,"
Journal of Financial Economics, Elsevier, vol. 134(3), pages 501-524.
- Bryan Kelly & Seth Pruitt & Yinan Su, 2018. "Characteristics Are Covariances: A Unified Model of Risk and Return," NBER Working Papers 24540, National Bureau of Economic Research, Inc.
- Vigo Pereira, Caio, 2021.
"Portfolio efficiency with high-dimensional data as conditioning information,"
International Review of Financial Analysis, Elsevier, vol. 77(C).
- Caio Vigo Pereira, 2020. "Portfolio Efficiency with High-Dimensional Data as Conditioning Information," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 202015, University of Kansas, Department of Economics, revised Sep 2020.
- Bagnara, Matteo & Goodarzi, Milad, 2023. "Clustering-based sector investing," SAFE Working Paper Series 397, Leibniz Institute for Financial Research SAFE.
- Neuhierl, Andreas & Varneskov, Rasmus T., 2021. "Frequency dependent risk," Journal of Financial Economics, Elsevier, vol. 140(2), pages 644-675.
- Mykola Babiak & Jozef Barunik, 2020.
"Deep Learning, Predictability, and Optimal Portfolio Returns,"
Papers
2009.03394, arXiv.org, revised Jul 2021.
- Mykola Babiak & Jozef Barunik, 2020. "Deep Learning, Predictability, and Optimal Portfolio Returns," CERGE-EI Working Papers wp677, The Center for Economic Research and Graduate Education - Economics Institute, Prague.
- Auer, Benjamin R. & Schuhmacher, Frank & Niemann, Sebastian, 2023. "Cloning mutual fund returns," The Quarterly Review of Economics and Finance, Elsevier, vol. 90(C), pages 31-37.
- Guillaume Coqueret, 2022. "Characteristics-driven returns in equilibrium," Papers 2203.07865, arXiv.org.
- Gianluca De Nard & Simon Hediger & Markus Leippold, 2022. "Subsampled factor models for asset pricing: The rise of Vasa," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(6), pages 1217-1247, September.
- Huang, Dashan & Li, Jiangyuan & Wang, Liyao, 2021. "Are disagreements agreeable? Evidence from information aggregation," Journal of Financial Economics, Elsevier, vol. 141(1), pages 83-101.
- Ai He & Guofu Zhou, 2023. "Diagnostics for asset pricing models," Financial Management, Financial Management Association International, vol. 52(4), pages 617-642, December.
- Jia, Yuecheng & Wu, Yangru & Yan, Shu & Liu, Yuzheng, 2023. "A seesaw effect in the cryptocurrency market: Understanding the return cross predictability of cryptocurrencies," Journal of Empirical Finance, Elsevier, vol. 74(C).
- Liu, Tingting & Lu, Zhongjin (Gene) & Shu, Tao & Wei, Fengrong, 2022. "Unique bidder-target relatedness and synergies creation in mergers and acquisitions," Journal of Corporate Finance, Elsevier, vol. 73(C).
- Esfandiar Maasoumi & Jianqiu Wang & Zhuo Wang & Ke Wu, 2024. "Identifying factors via automatic debiased machine learning," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(3), pages 438-461, April.
- Wolfgang Drobetz & Tizian Otto, 2021. "Empirical asset pricing via machine learning: evidence from the European stock market," Journal of Asset Management, Palgrave Macmillan, vol. 22(7), pages 507-538, December.
- De Nard, Gianluca & Zhao, Zhao, 2023. "Using, taming or avoiding the factor zoo? A double-shrinkage estimator for covariance matrices," Journal of Empirical Finance, Elsevier, vol. 72(C), pages 23-35.
- Smith, Simon C. & Timmermann, Allan, 2022. "Have risk premia vanished?," Journal of Financial Economics, Elsevier, vol. 145(2), pages 553-576.
- Doron Avramov & Si Cheng & Lior Metzker, 2023. "Machine Learning vs. Economic Restrictions: Evidence from Stock Return Predictability," Management Science, INFORMS, vol. 69(5), pages 2587-2619, May.
- Akbari, Amir & Ng, Lilian & Solnik, Bruno, 2021. "Drivers of economic and financial integration: A machine learning approach," Journal of Empirical Finance, Elsevier, vol. 61(C), pages 82-102.
- DeMiguel, Victor & Martin-Utrera, Alberto & Nogales, Francisco J. & Uppal, Raman, 2017. "A Portfolio Perspective on the Multitude of Firm Characteristics," CEPR Discussion Papers 12417, C.E.P.R. Discussion Papers.
- Zheng Tracy Ke & Bryan T. Kelly & Dacheng Xiu, 2019. "Predicting Returns With Text Data," NBER Working Papers 26186, National Bureau of Economic Research, Inc.
- Andrew Y. Chen & Mihail Velikov, 2020. "Zeroing in on the Expected Returns of Anomalies," Finance and Economics Discussion Series 2020-039, Board of Governors of the Federal Reserve System (U.S.).
- Dichtl, Hubert & Drobetz, Wolfgang & Otto, Tizian, 2023. "Forecasting Stock Market Crashes via Machine Learning," Journal of Financial Stability, Elsevier, vol. 65(C).
- Haixiang Yao & Shenghao Xia & Hao Liu, 2024. "Return predictability via an long short‐term memory‐based cross‐section factor model: Evidence from Chinese stock market," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(6), pages 1770-1794, September.
- Lioui, Abraham & Tarelli, Andrea, 2022. "Chasing the ESG factor," Journal of Banking & Finance, Elsevier, vol. 139(C).