IDEAS home Printed from https://ideas.repec.org/a/bla/jecsur/v38y2024i1p27-56.html
   My bibliography  Save this article

Asset Pricing and Machine Learning: A critical review

Author

Listed:
  • Matteo Bagnara

Abstract

The latest development in empirical Asset Pricing is the use of Machine Learning methods to address the problem of the factor zoo. These techniques offer great flexibility and prediction accuracy but require special care as they strongly depart from traditional Econometrics. We review and critically assess the most recent and relevant contributions in the literature grouping them into five categories defined by the Machine Learning (ML) approach they employ: regularization, dimension reduction, regression trees/random forest (RF), neural networks (NNs), and comparative analyses. We summarize the empirical findings with particular attention to their economic interpretation providing hints for future developments.

Suggested Citation

  • Matteo Bagnara, 2024. "Asset Pricing and Machine Learning: A critical review," Journal of Economic Surveys, Wiley Blackwell, vol. 38(1), pages 27-56, February.
  • Handle: RePEc:bla:jecsur:v:38:y:2024:i:1:p:27-56
    DOI: 10.1111/joes.12532
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/joes.12532
    Download Restriction: no

    File URL: https://libkey.io/10.1111/joes.12532?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jecsur:v:38:y:2024:i:1:p:27-56. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0950-0804 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.