IDEAS home Printed from https://ideas.repec.org/a/inm/ormnsc/v68y2022i10p7701-7741.html
   My bibliography  Save this article

Bimodal Characteristic Returns and Predictability Enhancement via Machine Learning

Author

Listed:
  • Chulwoo Han

    (Durham University Business School, Durham DH1 3LB, United Kingdom)

Abstract

This paper documents the bimodality of momentum stocks: both high- and low-momentum stocks have nontrivial probabilities for both high and low returns. The bimodality makes the momentum strategy fundamentally risky and can cause a large loss. To alleviate the bimodality and improve return predictability, this paper develops a novel cross-sectional prediction model via machine learning. By reclassifying stocks based on their predicted financial performance, the model significantly outperforms off-the-shelf machine learning models. Tested on the U.S. market, a value-weighted long-short portfolio earns a monthly alpha of 2.4% ( t -statistic = 6.63) when regressed against the Fama–French five factors plus the momentum and short-term reversal factors.

Suggested Citation

  • Chulwoo Han, 2022. "Bimodal Characteristic Returns and Predictability Enhancement via Machine Learning," Management Science, INFORMS, vol. 68(10), pages 7701-7741, October.
  • Handle: RePEc:inm:ormnsc:v:68:y:2022:i:10:p:7701-7741
    DOI: 10.1287/mnsc.2021.4189
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/mnsc.2021.4189
    Download Restriction: no

    File URL: https://libkey.io/10.1287/mnsc.2021.4189?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Joachim Freyberger & Andreas Neuhierl & Michael Weber & Andrew KarolyiEditor, 2020. "Dissecting Characteristics Nonparametrically," Review of Financial Studies, Society for Financial Studies, vol. 33(5), pages 2326-2377.
    2. Beaver, William & McNichols, Maureen & Price, Richard, 2007. "Delisting returns and their effect on accounting-based market anomalies," Journal of Accounting and Economics, Elsevier, vol. 43(2-3), pages 341-368, July.
    3. Shihao Gu & Bryan Kelly & Dacheng Xiu, 2020. "Empirical Asset Pricing via Machine Learning," The Review of Financial Studies, Society for Financial Studies, vol. 33(5), pages 2223-2273.
    4. Fama, Eugene F. & French, Kenneth R., 2015. "A five-factor asset pricing model," Journal of Financial Economics, Elsevier, vol. 116(1), pages 1-22.
    5. Jegadeesh, Narasimhan & Titman, Sheridan, 1993. "Returns to Buying Winners and Selling Losers: Implications for Stock Market Efficiency," Journal of Finance, American Finance Association, vol. 48(1), pages 65-91, March.
    6. Victor DeMiguel & Alberto Martín-Utrera & Francisco J Nogales & Raman Uppal & Andrew KarolyiEditor, 2020. "A Transaction-Cost Perspective on the Multitude of Firm Characteristics," Review of Financial Studies, Society for Financial Studies, vol. 33(5), pages 2180-2222.
    7. Shihao Gu & Bryan Kelly & Dacheng Xiu, 2020. "Empirical Asset Pricing via Machine Learning," Review of Finance, European Finance Association, vol. 33(5), pages 2223-2273.
    8. Gu, Shihao & Kelly, Bryan & Xiu, Dacheng, 2021. "Autoencoder asset pricing models," Journal of Econometrics, Elsevier, vol. 222(1), pages 429-450.
    9. Jeremiah Green & John R. M. Hand & X. Frank Zhang, 2017. "The Characteristics that Provide Independent Information about Average U.S. Monthly Stock Returns," The Review of Financial Studies, Society for Financial Studies, vol. 30(12), pages 4389-4436.
    10. Akhter Mohiuddin Rather & V. N. Sastry & Arun Agarwal, 2017. "Stock market prediction and Portfolio selection models: a survey," OPSEARCH, Springer;Operational Research Society of India, vol. 54(3), pages 558-579, September.
    11. Barroso, Pedro & Santa-Clara, Pedro, 2015. "Momentum has its moments," Journal of Financial Economics, Elsevier, vol. 116(1), pages 111-120.
    12. Ayodele Ariyo Adebiyi & Aderemi Oluyinka Adewumi & Charles Korede Ayo, 2014. "Comparison of ARIMA and Artificial Neural Networks Models for Stock Price Prediction," Journal of Applied Mathematics, Hindawi, vol. 2014, pages 1-7, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huang, Helen Hui & Sun, Jianchun & Zhang, Shunming, 2024. "Asset pricing for the lottery-like security under probability weighting: Based on generalized Wang transform," The North American Journal of Economics and Finance, Elsevier, vol. 71(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Caldeira, João F. & Santos, André A.P. & Torrent, Hudson S., 2023. "Semiparametric portfolios: Improving portfolio performance by exploiting non-linearities in firm characteristics," Economic Modelling, Elsevier, vol. 122(C).
    2. Guillaume Coqueret, 2022. "Characteristics-driven returns in equilibrium," Papers 2203.07865, arXiv.org.
    3. Chen, Andrew Y. & McCoy, Jack, 2024. "Missing values handling for machine learning portfolios," Journal of Financial Economics, Elsevier, vol. 155(C).
    4. Doron Avramov & Si Cheng & Lior Metzker, 2023. "Machine Learning vs. Economic Restrictions: Evidence from Stock Return Predictability," Management Science, INFORMS, vol. 69(5), pages 2587-2619, May.
    5. Baba-Yara, Fahiz & Boons, Martijn & Tamoni, Andrea, 2024. "Persistent and transitory components of firm characteristics: Implications for asset pricing," Journal of Financial Economics, Elsevier, vol. 154(C).
    6. Vitor Azevedo & Georg Sebastian Kaiser & Sebastian Mueller, 2023. "Stock market anomalies and machine learning across the globe," Journal of Asset Management, Palgrave Macmillan, vol. 24(5), pages 419-441, September.
    7. Söhnke M. Bartram & Harald Lohre & Peter F. Pope & Ananthalakshmi Ranganathan, 2021. "Navigating the factor zoo around the world: an institutional investor perspective," Journal of Business Economics, Springer, vol. 91(5), pages 655-703, July.
    8. Wolfgang Drobetz & Tizian Otto, 2021. "Empirical asset pricing via machine learning: evidence from the European stock market," Journal of Asset Management, Palgrave Macmillan, vol. 22(7), pages 507-538, December.
    9. Jiang, Hao & Li, Sophia Zhengzi & Wang, Hao, 2021. "Pervasive underreaction: Evidence from high-frequency data," Journal of Financial Economics, Elsevier, vol. 141(2), pages 573-599.
    10. Gianluca De Nard & Simon Hediger & Markus Leippold, 2022. "Subsampled factor models for asset pricing: The rise of Vasa," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(6), pages 1217-1247, September.
    11. Chen, Ding & Guo, Biao & Zhou, Guofu, 2023. "Firm fundamentals and the cross-section of implied volatility shapes," Journal of Financial Markets, Elsevier, vol. 63(C).
    12. Bakalli, Gaetan & Guerrier, Stéphane & Scaillet, Olivier, 2023. "A penalized two-pass regression to predict stock returns with time-varying risk premia," Journal of Econometrics, Elsevier, vol. 237(2).
    13. Christian Fieberg & Daniel Metko & Thorsten Poddig & Thomas Loy, 2023. "Machine learning techniques for cross-sectional equity returns’ prediction," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 45(1), pages 289-323, March.
    14. Clarke, Charles, 2022. "The level, slope, and curve factor model for stocks," Journal of Financial Economics, Elsevier, vol. 143(1), pages 159-187.
    15. Andrew Y. Chen & Jack McCoy, 2022. "Missing Values Handling for Machine Learning Portfolios," Papers 2207.13071, arXiv.org, revised Jan 2024.
    16. Ni, Xuanming & Zheng, Tiantian & Zhao, Huimin & Zhu, Shushang, 2023. "High-dimensional portfolio optimization based on tree-structured factor model," Pacific-Basin Finance Journal, Elsevier, vol. 81(C).
    17. Rubesam, Alexandre, 2022. "Machine learning portfolios with equal risk contributions: Evidence from the Brazilian market," Emerging Markets Review, Elsevier, vol. 51(PB).
    18. Guillaume Chevalier & Guillaume Coqueret & Thomas Raffinot, 2022. "Supervised portfolios," Post-Print hal-04144588, HAL.
    19. Tian Ma & Cunfei Liao & Fuwei Jiang, 2023. "Timing the factor zoo via deep learning: Evidence from China," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 63(1), pages 485-505, March.
    20. Tran, Vu Le, 2023. "Sentiment and covariance characteristics," International Review of Financial Analysis, Elsevier, vol. 86(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormnsc:v:68:y:2022:i:10:p:7701-7741. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.