IDEAS home Printed from https://ideas.repec.org/a/bla/finmgt/v52y2023i4p617-642.html
   My bibliography  Save this article

Diagnostics for asset pricing models

Author

Listed:
  • Ai He
  • Guofu Zhou

Abstract

The validity of asset pricing models implies white‐noise pricing errors (PEs). However, we find that the PEs of six well‐known factor models all exhibit a significant reversal pattern and are predictable by their lagged values up to 12 months. Moreover, the predictability of the PEs can produce substantial economic profits. Similar conclusions hold for recently developed machine learning models too. Additional analysis reveals that the significant PE profits cannot be explained by common behavioral biases. Our results imply that much remains to be done and there is a great need to develop new asset pricing models.

Suggested Citation

  • Ai He & Guofu Zhou, 2023. "Diagnostics for asset pricing models," Financial Management, Financial Management Association International, vol. 52(4), pages 617-642, December.
  • Handle: RePEc:bla:finmgt:v:52:y:2023:i:4:p:617-642
    DOI: 10.1111/fima.12436
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/fima.12436
    Download Restriction: no

    File URL: https://libkey.io/10.1111/fima.12436?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ang, Andrew & Liu, Jun & Schwarz, Krista, 2020. "Using Stocks or Portfolios in Tests of Factor Models," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 55(3), pages 709-750, May.
    2. Kelly, Bryan T. & Pruitt, Seth & Su, Yinan, 2019. "Characteristics are covariances: A unified model of risk and return," Journal of Financial Economics, Elsevier, vol. 134(3), pages 501-524.
    3. Lewellen, Jonathan & Nagel, Stefan & Shanken, Jay, 2010. "A skeptical appraisal of asset pricing tests," Journal of Financial Economics, Elsevier, vol. 96(2), pages 175-194, May.
    4. Svetlana Bryzgalova & Jiantao Huang & Christian Julliard, 2023. "Bayesian Solutions for the Factor Zoo: We Just Ran Two Quadrillion Models," Journal of Finance, American Finance Association, vol. 78(1), pages 487-557, February.
    5. Guanhao Feng & Stefano Giglio & Dacheng Xiu, 2020. "Taming the Factor Zoo: A Test of New Factors," Journal of Finance, American Finance Association, vol. 75(3), pages 1327-1370, June.
    6. Jegadeesh, Narasimhan, 1990. "Evidence of Predictable Behavior of Security Returns," Journal of Finance, American Finance Association, vol. 45(3), pages 881-898, July.
    7. Lo, Andrew W & MacKinlay, A Craig, 1990. "When Are Contrarian Profits Due to Stock Market Overreaction?," The Review of Financial Studies, Society for Financial Studies, vol. 3(2), pages 175-205.
    8. Hutchinson, James M & Lo, Andrew W & Poggio, Tomaso, 1994. "A Nonparametric Approach to Pricing and Hedging Derivative Securities via Learning Networks," Journal of Finance, American Finance Association, vol. 49(3), pages 851-889, July.
    9. Shihao Gu & Bryan Kelly & Dacheng Xiu, 2020. "Empirical Asset Pricing via Machine Learning," Review of Finance, European Finance Association, vol. 33(5), pages 2223-2273.
    10. Kozak, Serhiy & Nagel, Stefan & Santosh, Shrihari, 2020. "Shrinking the cross-section," Journal of Financial Economics, Elsevier, vol. 135(2), pages 271-292.
    11. Stefano Giglio & Yuan Liao & Dacheng Xiu, 2021. "Thousands of Alpha Tests," NBER Chapters, in: Big Data: Long-Term Implications for Financial Markets and Firms, pages 3456, National Bureau of Economic Research, Inc.
    12. Shanken, Jay & Zhou, Guofu, 2007. "Estimating and testing beta pricing models: Alternative methods and their performance in simulations," Journal of Financial Economics, Elsevier, vol. 84(1), pages 40-86, April.
    13. Kewei Hou & Chen Xue & Lu Zhang, 2015. "Editor's Choice Digesting Anomalies: An Investment Approach," The Review of Financial Studies, Society for Financial Studies, vol. 28(3), pages 650-705.
    14. Zhou, Guofu, 1991. "Small sample tests of portfolio efficiency," Journal of Financial Economics, Elsevier, vol. 30(1), pages 165-191, November.
    15. Joachim Freyberger & Andreas Neuhierl & Michael Weber, 2020. "Dissecting Characteristics Nonparametrically," The Review of Financial Studies, Society for Financial Studies, vol. 33(5), pages 2326-2377.
    16. Shihao Gu & Bryan Kelly & Dacheng Xiu, 2020. "Empirical Asset Pricing via Machine Learning," The Review of Financial Studies, Society for Financial Studies, vol. 33(5), pages 2223-2273.
    17. Gu, Shihao & Kelly, Bryan & Xiu, Dacheng, 2021. "Autoencoder asset pricing models," Journal of Econometrics, Elsevier, vol. 222(1), pages 429-450.
    18. Dahlquist, Magnus & Pénasse, Julien, 2022. "The missing risk premium in exchange rates," Journal of Financial Economics, Elsevier, vol. 143(2), pages 697-715.
    19. Fama, Eugene F. & French, Kenneth R., 1993. "Common risk factors in the returns on stocks and bonds," Journal of Financial Economics, Elsevier, vol. 33(1), pages 3-56, February.
    20. Weber, Michael, 2018. "Cash flow duration and the term structure of equity returns," Journal of Financial Economics, Elsevier, vol. 128(3), pages 486-503.
    21. Keloharju, Matti & Linnainmaa, Juhani T. & Nyberg, Peter, 2021. "Are return seasonalities due to risk or mispricing?," Journal of Financial Economics, Elsevier, vol. 139(1), pages 138-161.
    22. William F. Sharpe, 1964. "Capital Asset Prices: A Theory Of Market Equilibrium Under Conditions Of Risk," Journal of Finance, American Finance Association, vol. 19(3), pages 425-442, September.
    23. Nicholas Barberis & Abhiroop Mukherjee & Baolian Wang, 2016. "Prospect Theory and Stock Returns: An Empirical Test," The Review of Financial Studies, Society for Financial Studies, vol. 29(11), pages 3068-3107.
    24. Jeremiah Green & John R. M. Hand & X. Frank Zhang, 2017. "The Characteristics that Provide Independent Information about Average U.S. Monthly Stock Returns," The Review of Financial Studies, Society for Financial Studies, vol. 30(12), pages 4389-4436.
    25. Gibbons, Michael R & Ross, Stephen A & Shanken, Jay, 1989. "A Test of the Efficiency of a Given Portfolio," Econometrica, Econometric Society, vol. 57(5), pages 1121-1152, September.
    26. Alex R. Horenstein, 2021. "The Unintended Impact of Academic Research on Asset Returns: The Capital Asset Pricing Model Alpha," Management Science, INFORMS, vol. 67(6), pages 3655-3673, June.
    27. David E. Rapach & Jack K. Strauss & Guofu Zhou, 2013. "International Stock Return Predictability: What Is the Role of the United States?," Journal of Finance, American Finance Association, vol. 68(4), pages 1633-1662, August.
    28. Matti Keloharju & Juhani T. Linnainmaa & Peter Nyberg, 2016. "Return Seasonalities," Journal of Finance, American Finance Association, vol. 71(4), pages 1557-1590, August.
    29. Doron Avramov & Si Cheng & Lior Metzker & Stefan Voigt, 2023. "Integrating Factor Models," Journal of Finance, American Finance Association, vol. 78(3), pages 1593-1646, June.
    30. Joachim Freyberger & Andreas Neuhierl & Michael Weber & Andrew KarolyiEditor, 2020. "Dissecting Characteristics Nonparametrically," Review of Financial Studies, Society for Financial Studies, vol. 33(5), pages 2326-2377.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Söhnke M. Bartram & Harald Lohre & Peter F. Pope & Ananthalakshmi Ranganathan, 2021. "Navigating the factor zoo around the world: an institutional investor perspective," Journal of Business Economics, Springer, vol. 91(5), pages 655-703, July.
    2. Cakici, Nusret & Fieberg, Christian & Metko, Daniel & Zaremba, Adam, 2023. "Machine learning goes global: Cross-sectional return predictability in international stock markets," Journal of Economic Dynamics and Control, Elsevier, vol. 155(C).
    3. Ma, Tian & Leong, Wen Jun & Jiang, Fuwei, 2023. "A latent factor model for the Chinese stock market," International Review of Financial Analysis, Elsevier, vol. 87(C).
    4. Baba-Yara, Fahiz & Boons, Martijn & Tamoni, Andrea, 2024. "Persistent and transitory components of firm characteristics: Implications for asset pricing," Journal of Financial Economics, Elsevier, vol. 154(C).
    5. Svetlana Bryzgalova & Jiantao Huang & Christian Julliard, 2023. "Bayesian Solutions for the Factor Zoo: We Just Ran Two Quadrillion Models," Journal of Finance, American Finance Association, vol. 78(1), pages 487-557, February.
    6. Yan, Jingda & Yu, Jialin, 2023. "Cross-stock momentum and factor momentum," Journal of Financial Economics, Elsevier, vol. 150(2).
    7. Doron Avramov & Si Cheng & Lior Metzker, 2023. "Machine Learning vs. Economic Restrictions: Evidence from Stock Return Predictability," Management Science, INFORMS, vol. 69(5), pages 2587-2619, May.
    8. Bandi, Federico M. & Chaudhuri, Shomesh E. & Lo, Andrew W. & Tamoni, Andrea, 2021. "Spectral factor models," Journal of Financial Economics, Elsevier, vol. 142(1), pages 214-238.
    9. Doron Avramov & Si Cheng & Lior Metzker & Stefan Voigt, 2023. "Integrating Factor Models," Journal of Finance, American Finance Association, vol. 78(3), pages 1593-1646, June.
    10. Guanhao Feng & Stefano Giglio & Dacheng Xiu, 2020. "Taming the Factor Zoo: A Test of New Factors," Journal of Finance, American Finance Association, vol. 75(3), pages 1327-1370, June.
    11. Wolfgang Drobetz & Tizian Otto, 2021. "Empirical asset pricing via machine learning: evidence from the European stock market," Journal of Asset Management, Palgrave Macmillan, vol. 22(7), pages 507-538, December.
    12. Malakhov, Alexey & Riley, Timothy B. & Yan, Qing, 2024. "Do hedge funds bet against beta?," International Review of Economics & Finance, Elsevier, vol. 93(PA), pages 1507-1525.
    13. Clarke, Charles, 2022. "The level, slope, and curve factor model for stocks," Journal of Financial Economics, Elsevier, vol. 143(1), pages 159-187.
    14. Esfandiar Maasoumi & Jianqiu Wang & Zhuo Wang & Ke Wu, 2024. "Identifying factors via automatic debiased machine learning," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(3), pages 438-461, April.
    15. Ni, Xuanming & Zheng, Tiantian & Zhao, Huimin & Zhu, Shushang, 2023. "High-dimensional portfolio optimization based on tree-structured factor model," Pacific-Basin Finance Journal, Elsevier, vol. 81(C).
    16. Rubesam, Alexandre, 2022. "Machine learning portfolios with equal risk contributions: Evidence from the Brazilian market," Emerging Markets Review, Elsevier, vol. 51(PB).
    17. Constantinos Kardaras & Hyeng Keun Koo & Johannes Ruf, 2022. "Estimation of growth in fund models," Papers 2208.02573, arXiv.org.
    18. Pedro M. Mirete-Ferrer & Alberto Garcia-Garcia & Juan Samuel Baixauli-Soler & Maria A. Prats, 2022. "A Review on Machine Learning for Asset Management," Risks, MDPI, vol. 10(4), pages 1-46, April.
    19. Sun, Chuanping, 2024. "Factor correlation and the cross section of asset returns: A correlation-robust machine learning approach," Journal of Empirical Finance, Elsevier, vol. 77(C).
    20. Victor DeMiguel & Javier Gil-Bazo & Francisco J. Nogales & André A. P. Santos, 2021. "Can Machine Learning Help to Select Portfolios of Mutual Funds?," Working Papers 1245, Barcelona School of Economics.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:finmgt:v:52:y:2023:i:4:p:617-642. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/fmaaaea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.