Direct absorption nanofluid-based solar collectors for low and medium temperatures. A review
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2022.124916
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Amjad, Muhammad & Raza, Ghulam & Xin, Yan & Pervaiz, Shahid & Xu, Jinliang & Du, Xiaoze & Wen, Dongsheng, 2017. "Volumetric solar heating and steam generation via gold nanofluids," Applied Energy, Elsevier, vol. 206(C), pages 393-400.
- Otanicar, Todd & Dale, John & Orosz, Matthew & Brekke, Nick & DeJarnette, Drew & Tunkara, Ebrima & Roberts, Kenneth & Harikumar, Parameswar, 2018. "Experimental evaluation of a prototype hybrid CPV/T system utilizing a nanoparticle fluid absorber at elevated temperatures," Applied Energy, Elsevier, vol. 228(C), pages 1531-1539.
- Garg, Kapil & Khullar, Vikrant & Das, Sarit K. & Tyagi, Himanshu, 2018. "Performance evaluation of a brine-recirculation multistage flash desalination system coupled with nanofluid-based direct absorption solar collector," Renewable Energy, Elsevier, vol. 122(C), pages 140-151.
- Cui, Yuanlong & Zhu, Jie & Zoras, Stamatis & Zhang, Jizhe, 2021. "Comprehensive review of the recent advances in PV/T system with loop-pipe configuration and nanofluid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
- Kasaeian, Alibakhsh & Eshghi, Amin Toghi & Sameti, Mohammad, 2015. "A review on the applications of nanofluids in solar energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 584-598.
- Mallah, Abdul Rahman & Kazi, S.N. & Zubir, Mohd Nashrul Mohd & Badarudin, A., 2018. "Blended morphologies of plasmonic nanofluids for direct absorption applications," Applied Energy, Elsevier, vol. 229(C), pages 505-521.
- Raj, Pankaj & Subudhi, Sudhakar, 2018. "A review of studies using nanofluids in flat-plate and direct absorption solar collectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 84(C), pages 54-74.
- Mehrali, Mohammad & Ghatkesar, Murali Krishna & Pecnik, Rene, 2018. "Full-spectrum volumetric solar thermal conversion via graphene/silver hybrid plasmonic nanofluids," Applied Energy, Elsevier, vol. 224(C), pages 103-115.
- Ahbabi Saray, Jabraeil & Heyhat, Mohammad Mahdi, 2022. "Modeling of a direct absorption parabolic trough collector based on using nanofluid: 4E assessment and water-energy nexus analysis," Energy, Elsevier, vol. 244(PB).
- Gorji, Tahereh B. & Ranjbar, A.A., 2017. "Thermal and exergy optimization of a nanofluid-based direct absorption solar collector," Renewable Energy, Elsevier, vol. 106(C), pages 274-287.
- An, Wei & Wu, Jinrui & Zhu, Tong & Zhu, Qunzhi, 2016. "Experimental investigation of a concentrating PV/T collector with Cu9S5 nanofluid spectral splitting filter," Applied Energy, Elsevier, vol. 184(C), pages 197-206.
- Fernández-García, A. & Zarza, E. & Valenzuela, L. & Pérez, M., 2010. "Parabolic-trough solar collectors and their applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(7), pages 1695-1721, September.
- Ashley Toppin-Hector & Harjit Singh, 2016. "Development of a nano-heat transfer fluid carrying direct absorbing receiver for concentrating solar collectors," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 11(2), pages 199-204.
- Yazdanifard, Farideh & Ameri, Mehran & Ebrahimnia-Bajestan, Ehsan, 2017. "Performance of nanofluid-based photovoltaic/thermal systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 323-352.
- Ktistis, Panayiotis K. & Agathokleous, Rafaela A. & Kalogirou, Soteris A., 2021. "Experimental performance of a parabolic trough collector system for an industrial process heat application," Energy, Elsevier, vol. 215(PA).
- Joseph, Albin & Sreekumar, Sreehari & Thomas, Shijo, 2020. "Energy and exergy analysis of SiO2/Ag-CuO plasmonic nanofluid on direct absorption parabolic solar collector," Renewable Energy, Elsevier, vol. 162(C), pages 1655-1664.
- Delfani, S. & Karami, M. & Behabadi, M.A. Akhavan-, 2016. "Performance characteristics of a residential-type direct absorption solar collector using MWCNT nanofluid," Renewable Energy, Elsevier, vol. 87(P1), pages 754-764.
- Dugaria, Simone & Bortolato, Matteo & Del Col, Davide, 2018. "Modelling of a direct absorption solar receiver using carbon based nanofluids under concentrated solar radiation," Renewable Energy, Elsevier, vol. 128(PB), pages 495-508.
- Kumar, Anil & Prakash, Om & Kaviti, Ajay Kumar, 2017. "A comprehensive review of Scheffler solar collector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 890-898.
- Khanafer, Khalil & Vafai, Kambiz, 2018. "A review on the applications of nanofluids in solar energy field," Renewable Energy, Elsevier, vol. 123(C), pages 398-406.
- Li, Haoran & He, Yurong & Wang, Changhong & Wang, Xinzhi & Hu, Yanwei, 2019. "Tunable thermal and electricity generation enabled by spectrally selective absorption nanoparticles for photovoltaic/thermal applications," Applied Energy, Elsevier, vol. 236(C), pages 117-126.
- Heyhat, M.M. & Valizade, M. & Abdolahzade, Sh. & Maerefat, M., 2020. "Thermal efficiency enhancement of direct absorption parabolic trough solar collector (DAPTSC) by using nanofluid and metal foam," Energy, Elsevier, vol. 192(C).
- Gorji, Tahereh B. & Ranjbar, A.A., 2017. "A review on optical properties and application of nanofluids in direct absorption solar collectors (DASCs)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 10-32.
- An, Wei & Zhang, Jie & Zhu, Tong & Gao, Naiping, 2016. "Investigation on a spectral splitting photovoltaic/thermal hybrid system based on polypyrrole nanofluid: Preliminary test," Renewable Energy, Elsevier, vol. 86(C), pages 633-642.
- Goel, Nipun & Taylor, Robert A. & Otanicar, Todd, 2020. "A review of nanofluid-based direct absorption solar collectors: Design considerations and experiments with hybrid PV/Thermal and direct steam generation collectors," Renewable Energy, Elsevier, vol. 145(C), pages 903-913.
- Elsheikh, A.H. & Sharshir, S.W. & Mostafa, Mohamed E. & Essa, F.A. & Ahmed Ali, Mohamed Kamal, 2018. "Applications of nanofluids in solar energy: A review of recent advances," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3483-3502.
- Tong, Yijie & Kim, Jinhyun & Cho, Honghyun, 2015. "Effects of thermal performance of enclosed-type evacuated U-tube solar collector with multi-walled carbon nanotube/water nanofluid," Renewable Energy, Elsevier, vol. 83(C), pages 463-473.
- Alirezaie, Ali & Hajmohammad, Mohammad Hadi & Alipour, Ali & salari, Mahmoud, 2018. "Do nanofluids affect the future of heat transfer?“A benchmark study on the efficiency of nanofluids”," Energy, Elsevier, vol. 157(C), pages 979-989.
- Potenza, Marco & Milanese, Marco & Colangelo, Gianpiero & de Risi, Arturo, 2017. "Experimental investigation of transparent parabolic trough collector based on gas-phase nanofluid," Applied Energy, Elsevier, vol. 203(C), pages 560-570.
- Crisostomo, Felipe & Hjerrild, Natasha & Mesgari, Sara & Li, Qiyuan & Taylor, Robert A., 2017. "A hybrid PV/T collector using spectrally selective absorbing nanofluids," Applied Energy, Elsevier, vol. 193(C), pages 1-14.
- Chen, Meijie & He, Yurong & Zhu, Jiaqi & Wen, Dongsheng, 2016. "Investigating the collector efficiency of silver nanofluids based direct absorption solar collectors," Applied Energy, Elsevier, vol. 181(C), pages 65-74.
- Farjana, Shahjadi Hisan & Huda, Nazmul & Mahmud, M.A. Parvez & Saidur, R., 2018. "Solar process heat in industrial systems – A global review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2270-2286.
- Lee, Seung-Hyun & Choi, Tae Jong & Jang, Seok Pil, 2016. "Thermal efficiency comparison: Surface-based solar receivers with conventional fluids and volumetric solar receivers with nanofluids," Energy, Elsevier, vol. 115(P1), pages 404-417.
- Widyolar, Bennett K. & Abdelhamid, Mahmoud & Jiang, Lun & Winston, Roland & Yablonovitch, Eli & Scranton, Gregg & Cygan, David & Abbasi, Hamid & Kozlov, Aleksandr, 2017. "Design, simulation and experimental characterization of a novel parabolic trough hybrid solar photovoltaic/thermal (PV/T) collector," Renewable Energy, Elsevier, vol. 101(C), pages 1379-1389.
- Brekke, Nick & Dale, John & DeJarnette, Drew & Hari, Parameswar & Orosz, Matthew & Roberts, Kenneth & Tunkara, Ebrima & Otanicar, Todd, 2018. "Detailed performance model of a hybrid photovoltaic/thermal system utilizing selective spectral nanofluid absorption," Renewable Energy, Elsevier, vol. 123(C), pages 683-693.
- Ahmad, S.H.A. & Saidur, R. & Mahbubul, I.M. & Al-Sulaiman, F.A., 2017. "Optical properties of various nanofluids used in solar collector: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1014-1030.
- Ham, Jeonggyun & Shin, Yunchan & Cho, Honghyun, 2022. "Comparison of thermal performance between a surface and a volumetric absorption solar collector using water and Fe3O4 nanofluid," Energy, Elsevier, vol. 239(PC).
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Chen, Yanjun & Zhang, Yalei & Lan, Huiyong & Li, Changzheng & Liu, Xiuliang & He, Deqiang, 2023. "Electric field combined nanofluid to enhance photothermal efficiency of the direct absorption solar collector," Renewable Energy, Elsevier, vol. 215(C).
- Xu, Bin & Gan, Wen-tao & Wang, Yang-liang & Chen, Xing-ni & Fei, Yue & Pei, Gang, 2023. "Thermal performance of a novel Trombe wall integrated with direct absorption solar collector based on phase change slurry in winter," Renewable Energy, Elsevier, vol. 213(C), pages 246-258.
- Liu, Haotuo & Ma, Zenghong & Zhang, Chenggui & Ai, Qing & Xie, Ming & Wu, Xiaohu, 2023. "Optical properties of hollow plasmonic nanopillars for efficient solar photothermal conversion," Renewable Energy, Elsevier, vol. 208(C), pages 251-262.
- Shang-Pang Yu & Tun-Ping Teng & Chia-Cing Huang & Hsiang-Kai Hsieh & Yi-Jia Wei, 2023. "Performance Evaluation of Carbon-Based Nanofluids for Direct Absorption Solar Collector," Energies, MDPI, vol. 16(3), pages 1-17, January.
- Mojumder, Juwel C. & Aminossadati, Saiied M. & Leonardi, Christopher R., 2023. "Performance analysis of a concentrated direct absorption solar collector (DASC) with nanofluids using computational fluid dynamics and discrete ordinates radiation modelling (CFD-DORM)," Renewable Energy, Elsevier, vol. 205(C), pages 30-52.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Sharaf, Omar Z. & Al-Khateeb, Ashraf N. & Kyritsis, Dimitrios C. & Abu-Nada, Eiyad, 2018. "Direct absorption solar collector (DASC) modeling and simulation using a novel Eulerian-Lagrangian hybrid approach: Optical, thermal, and hydrodynamic interactions," Applied Energy, Elsevier, vol. 231(C), pages 1132-1145.
- Xu, Yanyan & Xue, Yanqin & Qi, Hong & Cai, Weihua, 2021. "An updated review on working fluids, operation mechanisms, and applications of pulsating heat pipes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
- Ma, Ting & Guo, Zhixiong & Lin, Mei & Wang, Qiuwang, 2021. "Recent trends on nanofluid heat transfer machine learning research applied to renewable energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
- Elsheikh, A.H. & Sharshir, S.W. & Mostafa, Mohamed E. & Essa, F.A. & Ahmed Ali, Mohamed Kamal, 2018. "Applications of nanofluids in solar energy: A review of recent advances," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3483-3502.
- Tembhare, Saurabh P. & Barai, Divya P. & Bhanvase, Bharat A., 2022. "Performance evaluation of nanofluids in solar thermal and solar photovoltaic systems: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
- Han, Xinyue & Zhao, Xiaobo & Chen, Xiaobin, 2020. "Design and analysis of a concentrating PV/T system with nanofluid based spectral beam splitter and heat pipe cooling," Renewable Energy, Elsevier, vol. 162(C), pages 55-70.
- Mallah, Abdul Rahman & Kazi, S.N. & Zubir, Mohd Nashrul Mohd & Badarudin, A., 2018. "Blended morphologies of plasmonic nanofluids for direct absorption applications," Applied Energy, Elsevier, vol. 229(C), pages 505-521.
- Sharaf, Omar Z. & Al-Khateeb, Ashraf N. & Kyritsis, Dimitrios C. & Abu-Nada, Eiyad, 2019. "Energy and exergy analysis and optimization of low-flux direct absorption solar collectors (DASCs): Balancing power- and temperature-gain," Renewable Energy, Elsevier, vol. 133(C), pages 861-872.
- Han, Xinyue & Chen, Xiaobin & Sun, Yao & Qu, Jian, 2020. "Performance improvement of a PV/T system utilizing Ag/CoSO4-propylene glycol nanofluid optical filter," Energy, Elsevier, vol. 192(C).
- Widyolar, Bennett & Jiang, Lun & Ferry, Jonathan & Winston, Roland & Kirk, Alexander & Osowski, Mark & Cygan, David & Abbasi, Hamid, 2019. "Theoretical and experimental performance of a two-stage (50X) hybrid spectrum splitting solar collector tested to 600 °C," Applied Energy, Elsevier, vol. 239(C), pages 514-525.
- Mehrali, Mohammad & Ghatkesar, Murali Krishna & Pecnik, Rene, 2018. "Full-spectrum volumetric solar thermal conversion via graphene/silver hybrid plasmonic nanofluids," Applied Energy, Elsevier, vol. 224(C), pages 103-115.
- Qin, Caiyan & Kim, Joong Bae & Lee, Bong Jae, 2019. "Performance analysis of a direct-absorption parabolic-trough solar collector using plasmonic nanofluids," Renewable Energy, Elsevier, vol. 143(C), pages 24-33.
- Mallah, Abdul Rahman & Zubir, M.N.M. & Alawi, Omer A. & Kazi, S.N. & Ahmed, W. & Sadri, R. & Kasaeian, Alibakhsh, 2022. "Experimental study on the effects of multi-resonance plasmonic nanoparticles for improving the solar collector efficiency," Renewable Energy, Elsevier, vol. 187(C), pages 1204-1223.
- Widyolar, Bennett & Jiang, Lun & Winston, Roland, 2018. "Spectral beam splitting in hybrid PV/T parabolic trough systems for power generation," Applied Energy, Elsevier, vol. 209(C), pages 236-250.
- Bhalla, Vishal & Tyagi, Himanshu, 2018. "Parameters influencing the performance of nanoparticles-laden fluid-based solar thermal collectors: A review on optical properties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 84(C), pages 12-42.
- Zhu, Guihua & Wang, Lingling & Bing, Naici & Xie, Huaqing & Yu, Wei, 2019. "Enhancement of photothermal conversion performance using nanofluids based on bimetallic Ag-Au alloys in nitrogen-doped graphitic polyhedrons," Energy, Elsevier, vol. 183(C), pages 747-755.
- Kumar, Sanjay & Sharma, Vipin & Samantaray, Manas R. & Chander, Nikhil, 2020. "Experimental investigation of a direct absorption solar collector using ultra stable gold plasmonic nanofluid under real outdoor conditions," Renewable Energy, Elsevier, vol. 162(C), pages 1958-1969.
- Mojumder, Juwel C. & Aminossadati, Saiied M. & Leonardi, Christopher R., 2023. "Performance analysis of a concentrated direct absorption solar collector (DASC) with nanofluids using computational fluid dynamics and discrete ordinates radiation modelling (CFD-DORM)," Renewable Energy, Elsevier, vol. 205(C), pages 30-52.
- Huang, Gan & Wang, Kai & Curt, Sara Riera & Franchetti, Benjamin & Pesmazoglou, Ioannis & Markides, Christos N., 2021. "On the performance of concentrating fluid-based spectral-splitting hybrid PV-thermal (PV-T) solar collectors," Renewable Energy, Elsevier, vol. 174(C), pages 590-605.
- Xiao, Yang & Tian, Wenshuang & Yu, Linfeng & Chen, Meijie & Zheng, Xiong & Qin, Guangzhao, 2024. "Tunable optical properties of ATO-CuO hybrid nanofluids and the application as spectral beam splitters," Energy, Elsevier, vol. 289(C).
More about this item
Keywords
Solar energy; Direct absorption solar collector (DASC); Nanofluid; Solar heat for industrial processes (SHIP); Concentrating and non-concentrating technologies;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:260:y:2022:i:c:s0360544222018175. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.