IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v122y2018icp140-151.html
   My bibliography  Save this article

Performance evaluation of a brine-recirculation multistage flash desalination system coupled with nanofluid-based direct absorption solar collector

Author

Listed:
  • Garg, Kapil
  • Khullar, Vikrant
  • Das, Sarit K.
  • Tyagi, Himanshu

Abstract

A mathematical model for multistage flash (MSF) desalination system with brine recirculation (BR) configuration is developed in this study. The heat source for BR-MSF is chosen to be a nanofluid-based direct absorption solar collector (DASC) for which a numerical model is developed. Both these systems, BR-MSF and DASC are coupled via a counter-flow heat exchanger. The overall performance of the combined system is quantified in terms of gained output ratio (GOR). Moreover, the variation in GOR caused by various influencing parameters such as height (H) and length (L) of solar collector, nanoparticle volume fraction (fv) and incident flux on the collector (q) is studied in detail. The effect of these parameters on the top brine temperature (To) is also discussed. The study shows that DASC can be used as a heat source for BR-MSF system and gives high GOR ranging between 11 and 14 depending on the various operating conditions. This system is also compared with a parabolic trough collector (PTC) based BR-MSF system and it is found that DASC-based BR-MSF system gives higher GOR under identical conditions (relatively 11% higher). The exergy analysis is also presented for this system which shows the irreversibilities associated with various physical processes and components of the overall system and in addition to that exergy efficiency is also calculated for the overall system.

Suggested Citation

  • Garg, Kapil & Khullar, Vikrant & Das, Sarit K. & Tyagi, Himanshu, 2018. "Performance evaluation of a brine-recirculation multistage flash desalination system coupled with nanofluid-based direct absorption solar collector," Renewable Energy, Elsevier, vol. 122(C), pages 140-151.
  • Handle: RePEc:eee:renene:v:122:y:2018:i:c:p:140-151
    DOI: 10.1016/j.renene.2018.01.050
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148118300508
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2018.01.050?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jiang, Juyuan & Tian, He & Cui, Mingxian & Liu, Lijian, 2009. "Proof-of-concept study of an integrated solar desalination system," Renewable Energy, Elsevier, vol. 34(12), pages 2798-2802.
    2. Benjemaa, F & Houcine, I & Chahbani, M.H, 1999. "Potential of renewable energy development for water desalination in Tunisia," Renewable Energy, Elsevier, vol. 18(3), pages 331-347.
    3. Narayan, G. Prakash & Sharqawy, Mostafa H. & Summers, Edward K. & Lienhard, John H. & Zubair, Syed M. & Antar, M.A., 2010. "The potential of solar-driven humidification-dehumidification desalination for small-scale decentralized water production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(4), pages 1187-1201, May.
    4. Liu, Zhen-hua & Hu, Ren-Lin & Chen, Xiu-juan, 2014. "A novel integrated solar desalination system with multi-stage evaporation/heat recovery processes," Renewable Energy, Elsevier, vol. 64(C), pages 26-33.
    5. Pugsley, Adrian & Zacharopoulos, Aggelos & Mondol, Jayanta Deb & Smyth, Mervyn, 2016. "Global applicability of solar desalination," Renewable Energy, Elsevier, vol. 88(C), pages 200-219.
    6. Ali, Muhammad Tauha & Fath, Hassan E.S. & Armstrong, Peter R., 2011. "A comprehensive techno-economical review of indirect solar desalination," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 4187-4199.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sainz-Mañas, Miguel & Bataille, Françoise & Caliot, Cyril & Vossier, Alexis & Flamant, Gilles, 2022. "Direct absorption nanofluid-based solar collectors for low and medium temperatures. A review," Energy, Elsevier, vol. 260(C).
    2. Dahiru U. Lawal & Mohamed A. Antar & Atia E. Khalifa, 2021. "Integration of a MSF Desalination System with a HDH System for Brine Recovery," Sustainability, MDPI, vol. 13(6), pages 1-27, March.
    3. Saldivia, David & Rosales, Carlos & Barraza, Rodrigo & Cornejo, Lorena, 2019. "Computational analysis for a multi-effect distillation (MED) plant driven by solar energy in Chile," Renewable Energy, Elsevier, vol. 132(C), pages 206-220.
    4. Guo, Chenglong & Zhao, Jiaxu & Zhang, Wenting & Miao, Endong & Xie, Yuhang, 2020. "Constructing 3D optical absorption holes by stacking macroporous membrane for highly efficient solar steam generation," Renewable Energy, Elsevier, vol. 159(C), pages 944-953.
    5. Pietrasanta, Ariana M. & Mussati, Sergio F. & Aguirre, Pio A. & Morosuk, Tatiana & Mussati, Miguel C., 2022. "Water-renewable energy Nexus: Optimization of geothermal energy-powered seawater desalination systems," Renewable Energy, Elsevier, vol. 196(C), pages 234-246.
    6. Ali Babaeebazaz & Shiva Gorjian & Majid Amidpour, 2021. "Integration of a Solar Parabolic Dish Collector with a Small-Scale Multi-Stage Flash Desalination Unit: Experimental Evaluation, Exergy and Economic Analyses," Sustainability, MDPI, vol. 13(20), pages 1-24, October.
    7. Wang, Lu & Zheng, Hongfei & Jin, Rihui & Ma, Xinglong & He, Qian, 2022. "Experimental investigation on a floating multi-effect solar still with rising seawater film," Renewable Energy, Elsevier, vol. 195(C), pages 194-202.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Chennan & Goswami, Yogi & Stefanakos, Elias, 2013. "Solar assisted sea water desalination: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 136-163.
    2. Sharon, H. & Reddy, K.S., 2015. "A review of solar energy driven desalination technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1080-1118.
    3. Saldivia, David & Rosales, Carlos & Barraza, Rodrigo & Cornejo, Lorena, 2019. "Computational analysis for a multi-effect distillation (MED) plant driven by solar energy in Chile," Renewable Energy, Elsevier, vol. 132(C), pages 206-220.
    4. Ihsan Ullah & Mohammad G. Rasul, 2018. "Recent Developments in Solar Thermal Desalination Technologies: A Review," Energies, MDPI, vol. 12(1), pages 1-31, December.
    5. Shalaby, S.M., 2017. "Reverse osmosis desalination powered by photovoltaic and solar Rankine cycle power systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 789-797.
    6. M, Chandrashekara & Yadav, Avadhesh, 2017. "Water desalination system using solar heat: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1308-1330.
    7. Calise, Francesco & d’Accadia, Massimo Dentice & Vicidomini, Maria, 2019. "Optimization and dynamic analysis of a novel polygeneration system producing heat, cool and fresh water," Renewable Energy, Elsevier, vol. 143(C), pages 1331-1347.
    8. Khan, Meer A.M. & Rehman, S. & Al-Sulaiman, Fahad A., 2018. "A hybrid renewable energy system as a potential energy source for water desalination using reverse osmosis: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 456-477.
    9. Smith, Kate & Liu, Shuming & Liu, Ying & Guo, Shengjie, 2018. "Can China reduce energy for water? A review of energy for urban water supply and wastewater treatment and suggestions for change," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 41-58.
    10. Manju, S. & Sagar, Netramani, 2017. "Renewable energy integrated desalination: A sustainable solution to overcome future fresh-water scarcity in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 594-609.
    11. Baniasadi, Ehsan, 2017. "Concurrent hydrogen and water production from brine water based on solar spectrum splitting: Process design and thermoeconomic analysis," Renewable Energy, Elsevier, vol. 102(PA), pages 50-64.
    12. Omar, Amr & Nashed, Amir & Li, Qiyuan & Leslie, Greg & Taylor, Robert A., 2020. "Pathways for integrated concentrated solar power - Desalination: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    13. Kasaeian, Alibakhsh & Rajaee, Fatemeh & Yan, Wei-Mon, 2019. "Osmotic desalination by solar energy: A critical review," Renewable Energy, Elsevier, vol. 134(C), pages 1473-1490.
    14. Mohamed, A.S.A. & Shahdy, Abanob G. & Mohamed, Hany A. & Ahmed, M. Salem, 2023. "A comprehensive review of the vacuum solar still systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    15. Ferry, Jonathan & Widyolar, Bennett & Jiang, Lun & Winston, Roland, 2020. "Solar thermal wastewater evaporation for brine management and low pressure steam using the XCPC," Applied Energy, Elsevier, vol. 265(C).
    16. Ahmed E. Abu El-Maaty & Mohamed M. Awad & Gamal I. Sultan & Ahmed M. Hamed, 2023. "Innovative Approaches to Solar Desalination: A Comprehensive Review of Recent Research," Energies, MDPI, vol. 16(9), pages 1-31, May.
    17. Mokri, Alaeddine & Aal Ali, Mona & Emziane, Mahieddine, 2013. "Solar energy in the United Arab Emirates: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 340-375.
    18. Plappally, A.K. & Lienhard V, J.H., 2012. "Energy requirements for water production, treatment, end use, reclamation, and disposal," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4818-4848.
    19. Shafieian, Abdellah & Khiadani, Mehdi & Nosrati, Ataollah, 2018. "A review of latest developments, progress, and applications of heat pipe solar collectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 95(C), pages 273-304.
    20. Balghouthi, M. & Chahbani, M.H. & Guizani, A., 2012. "Investigation of a solar cooling installation in Tunisia," Applied Energy, Elsevier, vol. 98(C), pages 138-148.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:122:y:2018:i:c:p:140-151. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.