Tunable optical properties of ATO-CuO hybrid nanofluids and the application as spectral beam splitters
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2023.129964
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Otanicar, Todd & Dale, John & Orosz, Matthew & Brekke, Nick & DeJarnette, Drew & Tunkara, Ebrima & Roberts, Kenneth & Harikumar, Parameswar, 2018. "Experimental evaluation of a prototype hybrid CPV/T system utilizing a nanoparticle fluid absorber at elevated temperatures," Applied Energy, Elsevier, vol. 228(C), pages 1531-1539.
- Zhang, Yuanting & Qiu, Yu & Li, Qing & Henry, Asegun, 2022. "Optical-thermal-mechanical characteristics of an ultra-high-temperature graphite receiver designed for concentrating solar power," Applied Energy, Elsevier, vol. 307(C).
- Huaxu, Liang & Fuqiang, Wang & Dong, Zhang & Ziming, Cheng & Chuanxin, Zhang & Bo, Lin & Huijin, Xu, 2020. "Experimental investigation of cost-effective ZnO nanofluid based spectral splitting CPV/T system," Energy, Elsevier, vol. 194(C).
- Xiao, Yang & Bao, Yanqiong & Yu, Linfeng & Zheng, Xiong & Qin, Guangzhao & Chen, Meijie & He, Maogang, 2023. "Ultra-stable carbon quantum dot nanofluids as excellent spectral beam splitters in PV/T applications," Energy, Elsevier, vol. 273(C).
- An, Wei & Wu, Jinrui & Zhu, Tong & Zhu, Qunzhi, 2016. "Experimental investigation of a concentrating PV/T collector with Cu9S5 nanofluid spectral splitting filter," Applied Energy, Elsevier, vol. 184(C), pages 197-206.
- Joshi, Sandeep S. & Dhoble, Ashwinkumar S., 2018. "Photovoltaic -Thermal systems (PVT): Technology review and future trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 92(C), pages 848-882.
- Li, Haoran & He, Yurong & Wang, Changhong & Wang, Xinzhi & Hu, Yanwei, 2019. "Tunable thermal and electricity generation enabled by spectrally selective absorption nanoparticles for photovoltaic/thermal applications," Applied Energy, Elsevier, vol. 236(C), pages 117-126.
- An, Wei & Zhang, Jie & Zhu, Tong & Gao, Naiping, 2016. "Investigation on a spectral splitting photovoltaic/thermal hybrid system based on polypyrrole nanofluid: Preliminary test," Renewable Energy, Elsevier, vol. 86(C), pages 633-642.
- Liang, Huaxu & Wang, Fuqiang & Yang, Luwei & Cheng, Ziming & Shuai, Yong & Tan, Heping, 2021. "Progress in full spectrum solar energy utilization by spectral beam splitting hybrid PV/T system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
- Crisostomo, Felipe & Hjerrild, Natasha & Mesgari, Sara & Li, Qiyuan & Taylor, Robert A., 2017. "A hybrid PV/T collector using spectrally selective absorbing nanofluids," Applied Energy, Elsevier, vol. 193(C), pages 1-14.
- Qu, Dan & Cheng, Lekai & Bao, Yanqiong & Gao, Yingxv & Zheng, Xiong & Qin, Guangzhao, 2022. "Enhanced optical absorption and solar steam generation of CB-ATO hybrid nanofluids," Renewable Energy, Elsevier, vol. 199(C), pages 509-516.
- Huang, Ju & Han, Xinyue & Zhao, Xiaobo & Meng, Chunfeng, 2021. "Facile preparation of core-shell Ag@SiO2 nanoparticles and their application in spectrally splitting PV/T systems," Energy, Elsevier, vol. 215(PA).
- Kannan, Nadarajah & Vakeesan, Divagar, 2016. "Solar energy for future world: - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 1092-1105.
- Mojiri, Ahmad & Taylor, Robert & Thomsen, Elizabeth & Rosengarten, Gary, 2013. "Spectral beam splitting for efficient conversion of solar energy—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 654-663.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Xiao, Yang & Bao, Yanqiong & Yu, Linfeng & Zheng, Xiong & Qin, Guangzhao & Chen, Meijie & He, Maogang, 2023. "Ultra-stable carbon quantum dot nanofluids as excellent spectral beam splitters in PV/T applications," Energy, Elsevier, vol. 273(C).
- Huang, Gan & Wang, Kai & Curt, Sara Riera & Franchetti, Benjamin & Pesmazoglou, Ioannis & Markides, Christos N., 2021. "On the performance of concentrating fluid-based spectral-splitting hybrid PV-thermal (PV-T) solar collectors," Renewable Energy, Elsevier, vol. 174(C), pages 590-605.
- Hong, Wenpeng & Li, Boyu & Li, Haoran & Niu, Xiaojuan & Li, Yan & Lan, Jingrui, 2022. "Recent progress in thermal energy recovery from the decoupled photovoltaic/thermal system equipped with spectral splitters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
- Liang, Huaxu & Wang, Fuqiang & Yang, Luwei & Cheng, Ziming & Shuai, Yong & Tan, Heping, 2021. "Progress in full spectrum solar energy utilization by spectral beam splitting hybrid PV/T system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
- Sainz-Mañas, Miguel & Bataille, Françoise & Caliot, Cyril & Vossier, Alexis & Flamant, Gilles, 2022. "Direct absorption nanofluid-based solar collectors for low and medium temperatures. A review," Energy, Elsevier, vol. 260(C).
- Elharoun, O. & Tawfik, M. & El-Sharkawy, Ibrahim I. & Zeidan, E., 2023. "Experimental investigation of photovoltaic performance with compound parabolic solar concentrator and fluid spectral filter," Energy, Elsevier, vol. 278(PA).
- Han, Xinyue & Zhao, Xiaobo & Chen, Xiaobin, 2020. "Design and analysis of a concentrating PV/T system with nanofluid based spectral beam splitter and heat pipe cooling," Renewable Energy, Elsevier, vol. 162(C), pages 55-70.
- Han, Xinyue & Ding, Fan & Huang, Ju & Zhao, Xiaobo, 2023. "Hybrid nanofluid filtered concentrating photovoltaic/thermal-direct contact membrane distillation system for co-production of electricity and freshwater," Energy, Elsevier, vol. 263(PD).
- Han, Xinyue & Zhao, Xiaobo & Huang, Ju & Qu, Jian, 2022. "Optical properties optimization of plasmonic nanofluid to enhance the performance of spectral splitting photovoltaic/thermal systems," Renewable Energy, Elsevier, vol. 188(C), pages 573-587.
- Huaxu, Liang & Fuqiang, Wang & Dong, Zhang & Ziming, Cheng & Chuanxin, Zhang & Bo, Lin & Huijin, Xu, 2020. "Experimental investigation of cost-effective ZnO nanofluid based spectral splitting CPV/T system," Energy, Elsevier, vol. 194(C).
- Pan, Hong-Yu & Chen, Xue & Xia, Xin-Lin, 2022. "A review on the evolvement of optical-frequency filtering in photonic devices in 2016–2021," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
- Wang, Kai & Pantaleo, Antonio M. & Herrando, María & Faccia, Michele & Pesmazoglou, Ioannis & Franchetti, Benjamin M. & Markides, Christos N., 2020. "Spectral-splitting hybrid PV-thermal (PVT) systems for combined heat and power provision to dairy farms," Renewable Energy, Elsevier, vol. 159(C), pages 1047-1065.
- Xia, Xiaokang & Wei, Wei & Yu, Bendong & Li, Niansi & Ji, Jie, 2024. "Experiment and numerical investigation on a spectral splitting PV/T system for electrical energy and thermal output," Energy, Elsevier, vol. 288(C).
- Han, Xinyue & Chen, Xiaobin & Sun, Yao & Qu, Jian, 2020. "Performance improvement of a PV/T system utilizing Ag/CoSO4-propylene glycol nanofluid optical filter," Energy, Elsevier, vol. 192(C).
- Widyolar, Bennett & Jiang, Lun & Ferry, Jonathan & Winston, Roland & Kirk, Alexander & Osowski, Mark & Cygan, David & Abbasi, Hamid, 2019. "Theoretical and experimental performance of a two-stage (50X) hybrid spectrum splitting solar collector tested to 600 °C," Applied Energy, Elsevier, vol. 239(C), pages 514-525.
- Alois Resch & Robert Höller, 2021. "Electrical Efficiency Increase in CPVT Collectors by Spectral Splitting," Energies, MDPI, vol. 14(23), pages 1-18, December.
- Zhao, Xiaobo & Han, Xinyue & Yao, Yiping & Huang, Ju, 2022. "Stability investigation of propylene glycol-based Ag@SiO2 nanofluids and their performance in spectral splitting photovoltaic/thermal systems," Energy, Elsevier, vol. 238(PC).
- Widyolar, Bennett & Jiang, Lun & Winston, Roland, 2018. "Spectral beam splitting in hybrid PV/T parabolic trough systems for power generation," Applied Energy, Elsevier, vol. 209(C), pages 236-250.
- Otanicar, Todd & Dale, John & Orosz, Matthew & Brekke, Nick & DeJarnette, Drew & Tunkara, Ebrima & Roberts, Kenneth & Harikumar, Parameswar, 2018. "Experimental evaluation of a prototype hybrid CPV/T system utilizing a nanoparticle fluid absorber at elevated temperatures," Applied Energy, Elsevier, vol. 228(C), pages 1531-1539.
- Li, Boyu & Hong, Wenpeng & Li, Haoran & Lan, Jingrui & Zi, Junliang, 2022. "Optimized energy distribution management in the nanofluid-assisted photovoltaic/thermal system via exergy efficiency analysis," Energy, Elsevier, vol. 242(C).
More about this item
Keywords
Antimony tin oxide; Cupric oxide; Spectral beam splitters; Nanofluids;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:289:y:2024:i:c:s0360544223033583. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.