IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v123y2018icp398-406.html
   My bibliography  Save this article

A review on the applications of nanofluids in solar energy field

Author

Listed:
  • Khanafer, Khalil
  • Vafai, Kambiz

Abstract

This study provides a critical synthesis on the applications of nanofluids in various types of solar thermal systems. Nanofluids have received attention in recent years due to its importance in various industrial applications especially in the renewable energy field. This work presents the most recent advances of nanofluids in thermal energy storage systems, solar collectors, solar stills, and photovoltaic/thermal systems. With the application of nanomaterials, the efficiency of photovoltaic can increase substantially while reducing the production costs of electricity and manufacturing. This review is structured in three parts: the first part focuses on presenting the latest results for the thermal conductivity, viscosity, specific heat, and the thermal expansion coefficient of nanofluids reported in the literature. The second part of this review is allocated to the applications of nanofluids in different types of solar systems such as solar collectors, solar stills, thermal energy storage systems, and photovoltaic/thermal systems. Finally, the challenges and the bio-engineering safety concerns of using nanofluids in solar energy systems are discussed.

Suggested Citation

  • Khanafer, Khalil & Vafai, Kambiz, 2018. "A review on the applications of nanofluids in solar energy field," Renewable Energy, Elsevier, vol. 123(C), pages 398-406.
  • Handle: RePEc:eee:renene:v:123:y:2018:i:c:p:398-406
    DOI: 10.1016/j.renene.2018.01.097
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148118301071
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2018.01.097?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sharshir, S.W. & Peng, Guilong & Wu, Lirong & Essa, F.A. & Kabeel, A.E. & Yang, Nuo, 2017. "The effects of flake graphite nanoparticles, phase change material, and film cooling on the solar still performance," Applied Energy, Elsevier, vol. 191(C), pages 358-366.
    2. Bertocchi, Rudi & Karni, Jacob & Kribus, Abraham, 2004. "Experimental evaluation of a non-isothermal high temperature solar particle receiver," Energy, Elsevier, vol. 29(5), pages 687-700.
    3. Delfani, S. & Karami, M. & Behabadi, M.A. Akhavan-, 2016. "Performance characteristics of a residential-type direct absorption solar collector using MWCNT nanofluid," Renewable Energy, Elsevier, vol. 87(P1), pages 754-764.
    4. Karami, M. & Akhavan-Bahabadi, M.A. & Delfani, S. & Raisee, M., 2015. "Experimental investigation of CuO nanofluid-based Direct Absorption Solar Collector for residential applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 793-801.
    5. Akash, Bilal A. & Mohsen, Mousa S. & Osta, Omar & Elayan, Yaser, 1998. "Experimental evaluation of a single-basin solar still using different absorbing materials," Renewable Energy, Elsevier, vol. 14(1), pages 307-310.
    6. Sardarabadi, Mohammad & Passandideh-Fard, Mohammad & Zeinali Heris, Saeed, 2014. "Experimental investigation of the effects of silica/water nanofluid on PV/T (photovoltaic thermal units)," Energy, Elsevier, vol. 66(C), pages 264-272.
    7. Woobin Kang & Yunchan Shin & Honghyun Cho, 2017. "Economic Analysis of Flat-Plate and U-Tube Solar Collectors Using an Al 2 O 3 Nanofluid," Energies, MDPI, vol. 10(11), pages 1-15, November.
    8. Gorji, Tahereh B. & Ranjbar, A.A., 2017. "Thermal and exergy optimization of a nanofluid-based direct absorption solar collector," Renewable Energy, Elsevier, vol. 106(C), pages 274-287.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tembhare, Saurabh P. & Barai, Divya P. & Bhanvase, Bharat A., 2022. "Performance evaluation of nanofluids in solar thermal and solar photovoltaic systems: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    2. Elsheikh, A.H. & Sharshir, S.W. & Mostafa, Mohamed E. & Essa, F.A. & Ahmed Ali, Mohamed Kamal, 2018. "Applications of nanofluids in solar energy: A review of recent advances," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3483-3502.
    3. Gimeno-Furió, Alexandra & Martínez-Cuenca, Raúl & Mondragón, Rosa & Gasulla, Antonio Fabián Vela & Doñate-Buendía, Carlos & Mínguez-Vega, Gladys & Hernández, Leonor, 2020. "Optical characterisation and photothermal conversion efficiency of a water-based carbon nanofluid for direct solar absorption applications," Energy, Elsevier, vol. 212(C).
    4. Sharaf, Omar Z. & Al-Khateeb, Ashraf N. & Kyritsis, Dimitrios C. & Abu-Nada, Eiyad, 2018. "Direct absorption solar collector (DASC) modeling and simulation using a novel Eulerian-Lagrangian hybrid approach: Optical, thermal, and hydrodynamic interactions," Applied Energy, Elsevier, vol. 231(C), pages 1132-1145.
    5. Ma, Ting & Guo, Zhixiong & Lin, Mei & Wang, Qiuwang, 2021. "Recent trends on nanofluid heat transfer machine learning research applied to renewable energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    6. Sharaf, Omar Z. & Al-Khateeb, Ashraf N. & Kyritsis, Dimitrios C. & Abu-Nada, Eiyad, 2019. "Energy and exergy analysis and optimization of low-flux direct absorption solar collectors (DASCs): Balancing power- and temperature-gain," Renewable Energy, Elsevier, vol. 133(C), pages 861-872.
    7. Kumar, Sanjay & Sharma, Vipin & Samantaray, Manas R. & Chander, Nikhil, 2020. "Experimental investigation of a direct absorption solar collector using ultra stable gold plasmonic nanofluid under real outdoor conditions," Renewable Energy, Elsevier, vol. 162(C), pages 1958-1969.
    8. Vakili, Masoud & Yahyaei, Masood & Ramsay, James & Aghajannezhad, Pouria & Paknezhad, Behnaz, 2021. "Adaptive neuro-fuzzy inference system modeling to predict the performance of graphene nanoplatelets nanofluid-based direct absorption solar collector based on experimental study," Renewable Energy, Elsevier, vol. 163(C), pages 807-824.
    9. Woobin Kang & Yunchan Shin & Honghyun Cho, 2017. "Economic Analysis of Flat-Plate and U-Tube Solar Collectors Using an Al 2 O 3 Nanofluid," Energies, MDPI, vol. 10(11), pages 1-15, November.
    10. Sundar, L. Syam & Singh, Manoj K. & Punnaiah, V. & Sousa, Antonio C.M., 2018. "Experimental investigation of Al2O3/water nanofluids on the effectiveness of solar flat-plate collectors with and without twisted tape inserts," Renewable Energy, Elsevier, vol. 119(C), pages 820-833.
    11. Gorji, Tahereh B. & Ranjbar, A.A., 2017. "Thermal and exergy optimization of a nanofluid-based direct absorption solar collector," Renewable Energy, Elsevier, vol. 106(C), pages 274-287.
    12. Sainz-Mañas, Miguel & Bataille, Françoise & Caliot, Cyril & Vossier, Alexis & Flamant, Gilles, 2022. "Direct absorption nanofluid-based solar collectors for low and medium temperatures. A review," Energy, Elsevier, vol. 260(C).
    13. Shatar, Nursyahirah Mohd & Sabri, Mohd Faizul Mohd & Salleh, Mohd Faiz Mohd & Ani, Mohd Hanafi, 2023. "Investigation on the performance of solar still with thermoelectric cooling system for various cover material," Renewable Energy, Elsevier, vol. 202(C), pages 844-854.
    14. Xu, Yanyan & Xue, Yanqin & Qi, Hong & Cai, Weihua, 2021. "An updated review on working fluids, operation mechanisms, and applications of pulsating heat pipes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    15. Muhammad Imtiaz Hussain & Gwi-Hyun Lee & Jun-Tae Kim, 2021. "A Comprehensive Performance Characterization of a Nanofluid-Powered Dual-Fluid PV/T System under Outdoor Steady State Conditions," Sustainability, MDPI, vol. 13(23), pages 1-20, November.
    16. Bellos, Evangelos & Tzivanidis, Christos, 2017. "Parametric analysis and optimization of an Organic Rankine Cycle with nanofluid based solar parabolic trough collectors," Renewable Energy, Elsevier, vol. 114(PB), pages 1376-1393.
    17. Bhalla, Vishal & Tyagi, Himanshu, 2018. "Parameters influencing the performance of nanoparticles-laden fluid-based solar thermal collectors: A review on optical properties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 84(C), pages 12-42.
    18. Vallejo, Javier P. & Mercatelli, Luca & Martina, Maria Raffaella & Di Rosa, Daniele & Dell’Oro, Aldo & Lugo, Luis & Sani, Elisa, 2019. "Comparative study of different functionalized graphene-nanoplatelet aqueous nanofluids for solar energy applications," Renewable Energy, Elsevier, vol. 141(C), pages 791-801.
    19. Bhalla, Vishal & Khullar, Vikrant & Tyagi, Himanshu, 2018. "Experimental investigation of photo-thermal analysis of blended nanoparticles (Al2O3/Co3O4) for direct absorption solar thermal collector," Renewable Energy, Elsevier, vol. 123(C), pages 616-626.
    20. Gorji, Tahereh B. & Ranjbar, A.A., 2017. "A review on optical properties and application of nanofluids in direct absorption solar collectors (DASCs)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 10-32.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:123:y:2018:i:c:p:398-406. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.