Thermal efficiency enhancement of direct absorption parabolic trough solar collector (DAPTSC) by using nanofluid and metal foam
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2019.116662
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Du, Shen & Ren, Qinlong & He, Ya-Ling, 2017. "Optical and radiative properties analysis and optimization study of the gradually-varied volumetric solar receiver," Applied Energy, Elsevier, vol. 207(C), pages 27-35.
- Sopian, K & Supranto, & Daud, W.R.W & Othman, M.Y & Yatim, B, 1999. "Thermal performance of the double-pass solar collector with and without porous media," Renewable Energy, Elsevier, vol. 18(4), pages 557-564.
- Zaversky, Fritz & Aldaz, Leticia & Sánchez, Marcelino & Ávila-Marín, Antonio L. & Roldán, M. Isabel & Fernández-Reche, Jesús & Füssel, Alexander & Beckert, Wieland & Adler, Jörg, 2018. "Numerical and experimental evaluation and optimization of ceramic foam as solar absorber – Single-layer vs multi-layer configurations," Applied Energy, Elsevier, vol. 210(C), pages 351-375.
- Kizilkan, Onder & Kabul, Ahmet & Dincer, Ibrahim, 2016. "Development and performance assessment of a parabolic trough solar collector-based integrated system for an ice-cream factory," Energy, Elsevier, vol. 100(C), pages 167-176.
- Valizade, M. & Heyhat, M.M. & Maerefat, M., 2020. "Experimental study of the thermal behavior of direct absorption parabolic trough collector by applying copper metal foam as volumetric solar absorption," Renewable Energy, Elsevier, vol. 145(C), pages 261-269.
- Colangelo, Gianpiero & Favale, Ernani & de Risi, Arturo & Laforgia, Domenico, 2013. "A new solution for reduced sedimentation flat panel solar thermal collector using nanofluids," Applied Energy, Elsevier, vol. 111(C), pages 80-93.
- Fan, Man & Liang, Hongbo & You, Shijun & Zhang, Huan & Zheng, Wandong & Xia, Junbao, 2018. "Heat transfer analysis of a new volumetric based receiver for parabolic trough solar collector," Energy, Elsevier, vol. 142(C), pages 920-931.
- Bretado de los Rios, Mariana Soledad & Rivera-Solorio, Carlos I. & García-Cuéllar, Alejandro J., 2018. "Thermal performance of a parabolic trough linear collector using Al2O3/H2O nanofluids," Renewable Energy, Elsevier, vol. 122(C), pages 665-673.
- Gude, Veera Gnaneswar & Nirmalakhandan, Nagamany & Deng, Shuguang & Maganti, Anand, 2012. "Low temperature desalination using solar collectors augmented by thermal energy storage," Applied Energy, Elsevier, vol. 91(1), pages 466-474.
- Gorji, Tahereh B. & Ranjbar, A.A., 2017. "A review on optical properties and application of nanofluids in direct absorption solar collectors (DASCs)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 10-32.
- Bellos, Evangelos & Tzivanidis, Christos & Tsimpoukis, Dimitrios, 2018. "Enhancing the performance of parabolic trough collectors using nanofluids and turbulators," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 358-375.
- Jamal-Abad, Milad Tajik & Saedodin, Seyfollah & Aminy, Mohammad, 2017. "Experimental investigation on a solar parabolic trough collector for absorber tube filled with porous media," Renewable Energy, Elsevier, vol. 107(C), pages 156-163.
- Chen, Meijie & He, Yurong & Zhu, Jiaqi & Wen, Dongsheng, 2016. "Investigating the collector efficiency of silver nanofluids based direct absorption solar collectors," Applied Energy, Elsevier, vol. 181(C), pages 65-74.
- Salgado Conrado, L. & Rodriguez-Pulido, A. & Calderón, G., 2017. "Thermal performance of parabolic trough solar collectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1345-1359.
- Subramani, J. & Nagarajan, P.K. & Mahian, Omid & Sathyamurthy, Ravishankar, 2018. "Efficiency and heat transfer improvements in a parabolic trough solar collector using TiO2 nanofluids under turbulent flow regime," Renewable Energy, Elsevier, vol. 119(C), pages 19-31.
- Colangelo, Gianpiero & Favale, Ernani & Miglietta, Paola & de Risi, Arturo & Milanese, Marco & Laforgia, Domenico, 2015. "Experimental test of an innovative high concentration nanofluid solar collector," Applied Energy, Elsevier, vol. 154(C), pages 874-881.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Peng, Hao & Li, Meilin & Liang, Xingang, 2020. "Thermal-hydraulic and thermodynamic performance of parabolic trough solar receiver partially filled with gradient metal foam," Energy, Elsevier, vol. 211(C).
- Kulkarni, Vismay V. & Bhalla, Vishal & Garg, Kapil & Tyagi, Himanshu, 2021. "Hybrid nanoparticles-laden fluid based spiral solar collector: A proof-of-concept experimental study," Renewable Energy, Elsevier, vol. 179(C), pages 1360-1369.
- Shaaban, S., 2021. "Enhancement of the solar trough collector efficiency by optimizing the reflecting mirror profile," Renewable Energy, Elsevier, vol. 176(C), pages 40-49.
- Yang, Liu & Du, Kai, 2020. "Thermo-economic analysis of a novel parabolic trough solar collector equipped with preheating system and canopy," Energy, Elsevier, vol. 211(C).
- Chen, Yanjun & Zhang, Yalei & Lan, Huiyong & Li, Changzheng & Liu, Xiuliang & He, Deqiang, 2023. "Electric field combined nanofluid to enhance photothermal efficiency of the direct absorption solar collector," Renewable Energy, Elsevier, vol. 215(C).
- Jouybari, Nima Fallah & Lundström, T. Staffan, 2020. "Performance improvement of a solar air heater by covering the absorber plate with a thin porous material," Energy, Elsevier, vol. 190(C).
- Ali A. Hmad & Nihad Dukhan, 2021. "Cooling Design for PEM Fuel-Cell Stacks Employing Air and Metal Foam: Simulation and Experiment," Energies, MDPI, vol. 14(9), pages 1-19, May.
- Murtadha Zahi Khattar & Mohammad Mahdi Heyhat, 2022. "Exergy, Economic and Environmental Analysis of a Direct Absorption Parabolic Trough Collector Filled with Porous Metal Foam," Energies, MDPI, vol. 15(21), pages 1-17, November.
- Nattapat Pongboriboon & Wei Wu & Walairat Chandra-ambhorn & Patthranit Wongpromrat & Eakarach Bumrungthaichaichan, 2023. "Simple Empirical Relation for an Evacuated-Tube Solar Collector Performance Prediction from Solar Intensity," Energies, MDPI, vol. 16(17), pages 1-19, August.
- Sainz-Mañas, Miguel & Bataille, Françoise & Caliot, Cyril & Vossier, Alexis & Flamant, Gilles, 2022. "Direct absorption nanofluid-based solar collectors for low and medium temperatures. A review," Energy, Elsevier, vol. 260(C).
- Joseph, Albin & Sreekumar, Sreehari & Thomas, Shijo, 2020. "Energy and exergy analysis of SiO2/Ag-CuO plasmonic nanofluid on direct absorption parabolic solar collector," Renewable Energy, Elsevier, vol. 162(C), pages 1655-1664.
- Ajbar, Wassila & Parrales, A. & Huicochea, A. & Hernández, J.A., 2022. "Different ways to improve parabolic trough solar collectors’ performance over the last four decades and their applications: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
- Vengadesan, Elumalai & Ismail Rumaney, Abdul Rahim & Mitra, Rohan & Harichandan, Sattwik & Senthil, Ramalingam, 2022. "Heat transfer enhancement of a parabolic trough solar collector using a semicircular multitube absorber," Renewable Energy, Elsevier, vol. 196(C), pages 111-124.
- Alamdari, Pedram & Khatamifar, Mehdi & Lin, Wenxian, 2024. "Heat loss analysis review: Parabolic trough and linear Fresnel collectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
- Heyhat, Mohammad Mahdi & Zahi Khattar, Murtadha, 2023. "On the effect of different placement schemes of metal foam as volumetric absorber on the thermal performance of a direct absorption parabolic trough solar collector," Energy, Elsevier, vol. 266(C).
- Norouzi, Amir Mohammad & Siavashi, Majid & Ahmadi, Rouhollah & Tahmasbi, Milad, 2021. "Experimental study of a parabolic trough solar collector with rotating absorber tube," Renewable Energy, Elsevier, vol. 168(C), pages 734-749.
- Ahbabi Saray, Jabraeil & Heyhat, Mohammad Mahdi, 2022. "Modeling of a direct absorption parabolic trough collector based on using nanofluid: 4E assessment and water-energy nexus analysis," Energy, Elsevier, vol. 244(PB).
- Siavashi, Majid & Hosseini, Farzad & Talesh Bahrami, Hamid Reza, 2021. "A new design with preheating and layered porous ceramic for hydrogen production through methane steam reforming process," Energy, Elsevier, vol. 231(C).
- Stanek, Bartosz & Grzywnowicz, Krzysztof & Bartela, Łukasz & Węcel, Daniel & Uchman, Wojciech, 2021. "A system analysis of hybrid solar PTC-CPV absorber operation," Renewable Energy, Elsevier, vol. 174(C), pages 635-653.
- Trilok G & N Gnanasekaran & Moghtada Mobedi, 2021. "Various Trade-Off Scenarios in Thermo-Hydrodynamic Performance of Metal Foams Due to Variations in Their Thickness and Structural Conditions," Energies, MDPI, vol. 14(24), pages 1-23, December.
- Abu-Hamdeh, Nidal H. & Bantan, Rashad A.R. & Khoshvaght-Aliabadi, Morteza & Alimoradi, Ashkan, 2020. "Effects of ribs on thermal performance of curved absorber tube used in cylindrical solar collectors," Renewable Energy, Elsevier, vol. 161(C), pages 1260-1275.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Ajbar, Wassila & Parrales, A. & Huicochea, A. & Hernández, J.A., 2022. "Different ways to improve parabolic trough solar collectors’ performance over the last four decades and their applications: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
- Elsheikh, A.H. & Sharshir, S.W. & Mostafa, Mohamed E. & Essa, F.A. & Ahmed Ali, Mohamed Kamal, 2018. "Applications of nanofluids in solar energy: A review of recent advances," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3483-3502.
- Tembhare, Saurabh P. & Barai, Divya P. & Bhanvase, Bharat A., 2022. "Performance evaluation of nanofluids in solar thermal and solar photovoltaic systems: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
- Abubakr, Mohamed & Amein, Hamza & Akoush, Bassem M. & El-Bakry, M. Medhat & Hassan, Muhammed A., 2020. "An intuitive framework for optimizing energetic and exergetic performances of parabolic trough solar collectors operating with nanofluids," Renewable Energy, Elsevier, vol. 157(C), pages 130-149.
- Qin, Caiyan & Kim, Joong Bae & Lee, Bong Jae, 2019. "Performance analysis of a direct-absorption parabolic-trough solar collector using plasmonic nanofluids," Renewable Energy, Elsevier, vol. 143(C), pages 24-33.
- Moosavian, Seyed Farhan & Borzuei, Daryoosh & Ahmadi, Abolfazl, 2021. "Energy, exergy, environmental and economic analysis of the parabolic solar collector with life cycle assessment for different climate conditions," Renewable Energy, Elsevier, vol. 165(P1), pages 301-320.
- Yasinskiy, Andrey & Navas, Javier & Aguilar, Teresa & Alcántara, Rodrigo & Gallardo, Juan Jesús & Sánchez-Coronilla, Antonio & Martín, Elisa I. & De Los Santos, Desireé & Fernández-Lorenzo, Concha, 2018. "Dramatically enhanced thermal properties for TiO2-based nanofluids for being used as heat transfer fluids in concentrating solar power plants," Renewable Energy, Elsevier, vol. 119(C), pages 809-819.
- Peng, Hao & Li, Meilin & Liang, Xingang, 2020. "Thermal-hydraulic and thermodynamic performance of parabolic trough solar receiver partially filled with gradient metal foam," Energy, Elsevier, vol. 211(C).
- Mallah, Abdul Rahman & Kazi, S.N. & Zubir, Mohd Nashrul Mohd & Badarudin, A., 2018. "Blended morphologies of plasmonic nanofluids for direct absorption applications," Applied Energy, Elsevier, vol. 229(C), pages 505-521.
- Gómez-Villarejo, Roberto & Martín, Elisa I. & Navas, Javier & Sánchez-Coronilla, Antonio & Aguilar, Teresa & Gallardo, Juan Jesús & Alcántara, Rodrigo & De los Santos, Desiré & Carrillo-Berdugo, Iván , 2017. "Ag-based nanofluidic system to enhance heat transfer fluids for concentrating solar power: Nano-level insights," Applied Energy, Elsevier, vol. 194(C), pages 19-29.
- Amein, Hamza & Akoush, Bassem M. & El-Bakry, M. Medhat & Abubakr, Mohamed & Hassan, Muhammed A., 2022. "Enhancing the energy utilization in parabolic trough concentrators with cracked heat collection elements using a cost-effective rotation mechanism," Renewable Energy, Elsevier, vol. 181(C), pages 250-266.
- Chen, Meijie & He, Yurong & Zhu, Jiaqi & Wen, Dongsheng, 2016. "Investigating the collector efficiency of silver nanofluids based direct absorption solar collectors," Applied Energy, Elsevier, vol. 181(C), pages 65-74.
- Ma, Ting & Guo, Zhixiong & Lin, Mei & Wang, Qiuwang, 2021. "Recent trends on nanofluid heat transfer machine learning research applied to renewable energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
- Fan, Man & Liang, Hongbo & You, Shijun & Zhang, Huan & Zheng, Wandong & Xia, Junbao, 2018. "Heat transfer analysis of a new volumetric based receiver for parabolic trough solar collector," Energy, Elsevier, vol. 142(C), pages 920-931.
- Tabish Alam & Nagesh Babu Balam & Kishor Sitaram Kulkarni & Md Irfanul Haque Siddiqui & Nishant Raj Kapoor & Chandan Swaroop Meena & Ashok Kumar & Raffaello Cozzolino, 2021. "Performance Augmentation of the Flat Plate Solar Thermal Collector: A Review," Energies, MDPI, vol. 14(19), pages 1-23, September.
- Wen, Jin & Chang, Qingchao & Zhu, Jishi & Cui, Rui & He, Cheng & Yan, Xinxing & Li, Xiaoke, 2023. "The enhanced photothermal characteristics of plasmonic ZrC/TiN composite nanofluids for direct absorption solar collectors," Renewable Energy, Elsevier, vol. 206(C), pages 676-685.
- Osorio, Julian D. & Rivera-Alvarez, Alejandro, 2019. "Performance analysis of Parabolic Trough Collectors with Double Glass Envelope," Renewable Energy, Elsevier, vol. 130(C), pages 1092-1107.
- Yılmaz, İbrahim Halil & Mwesigye, Aggrey, 2018. "Modeling, simulation and performance analysis of parabolic trough solar collectors: A comprehensive review," Applied Energy, Elsevier, vol. 225(C), pages 135-174.
- Mehrali, Mohammad & Ghatkesar, Murali Krishna & Pecnik, Rene, 2018. "Full-spectrum volumetric solar thermal conversion via graphene/silver hybrid plasmonic nanofluids," Applied Energy, Elsevier, vol. 224(C), pages 103-115.
- Sedighi, Mohammadreza & Padilla, Ricardo Vasquez & Alamdari, Pedram & Lake, Maree & Rose, Andrew & Izadgoshasb, Iman & Taylor, Robert A., 2020. "A novel high-temperature (>700 °C), volumetric receiver with a packed bed of transparent and absorbing spheres," Applied Energy, Elsevier, vol. 264(C).
More about this item
Keywords
Energy efficiency improvement; Parabolic trough solar collector; Direct absorption; Nanofluid; Metal foam; Thermal efficiency;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:192:y:2020:i:c:s0360544219323576. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.