IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v82y2018ip3p2270-2286.html
   My bibliography  Save this article

Solar process heat in industrial systems – A global review

Author

Listed:
  • Farjana, Shahjadi Hisan
  • Huda, Nazmul
  • Mahmud, M.A. Parvez
  • Saidur, R.

Abstract

In developing countries, industries and manufacturing sectors consume a major portion of the total consumption of energy, where most of the energy is used for low, medium or high temperature heat generation to be used for process applications known as process heat. The necessity to commercialize clean, cheap and efficient renewable sources of energy in industrial applications emerges from increasing concerns about greenhouse gas emissions and global warming and decreasing fossil fuel use in commercial sectors. As an abundant source of energy, solar energy technologies have proven potential. Recent research shows currently only a few industries are employing solar energy in industrial processes to generate process heat while replacing fossil fuels. Solar thermal power generation is already very well-known and getting popular in recent years while other potential applications of the concentrated heat from solar radiation are little explored. This review paper presents a detailed overview of the current potential and future aspects of involving solar industrial process heating systems in industrial applications. In order to keep pace with this emerging and fast growing sector for renewable energy applications, it is necessary to get in depth knowledge about the overall potential of industrial processes in individual industrial sector where solar process heat is currently in use and identifying industrial processes are most compatible for solar system integration depending on temperature level and the type of solar collector in use. Furthermore, the promising sectors needs to be identified for the use of solar heat using industrial processes for the integration of solar heat, so that countries with immense solar energy potential can use those technologies in future to reduce fossil fuel consumption and develop sustainable industrial systems. This paper presents a comprehensive review of the potential industrial processes that can adopt solar process heating systems and thus driving towards sustainable production in industries.

Suggested Citation

  • Farjana, Shahjadi Hisan & Huda, Nazmul & Mahmud, M.A. Parvez & Saidur, R., 2018. "Solar process heat in industrial systems – A global review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2270-2286.
  • Handle: RePEc:eee:rensus:v:82:y:2018:i:p3:p:2270-2286
    DOI: 10.1016/j.rser.2017.08.065
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032117312108
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2017.08.065?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Muneer, T. & Maubleu, S. & Asif, M., 2006. "Prospects of solar water heating for textile industry in Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 10(1), pages 1-23, February.
    2. Silva, R. & Berenguel, M. & Pérez, M. & Fernández-Garcia, A., 2014. "Thermo-economic design optimization of parabolic trough solar plants for industrial process heat applications with memetic algorithms," Applied Energy, Elsevier, vol. 113(C), pages 603-614.
    3. Mekhilef, S. & Saidur, R. & Safari, A., 2011. "A review on solar energy use in industries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(4), pages 1777-1790, May.
    4. Buker, Mahmut Sami & Riffat, Saffa B., 2016. "Solar assisted heat pump systems for low temperature water heating applications: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 399-413.
    5. Mustayen, A.G.M.B. & Mekhilef, S. & Saidur, R., 2014. "Performance study of different solar dryers: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 463-470.
    6. Gautam, Abhishek & Chamoli, Sunil & Kumar, Alok & Singh, Satyendra, 2017. "A review on technical improvements, economic feasibility and world scenario of solar water heating system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 541-562.
    7. Naik, Hardik & Baredar, Prashant & Kumar, Anil, 2017. "Medium temperature application of concentrated solar thermal technology: Indian perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 369-378.
    8. Pirasteh, G. & Saidur, R. & Rahman, S.M.A. & Rahim, N.A., 2014. "A review on development of solar drying applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 133-148.
    9. Lauterbach, C. & Schmitt, B. & Jordan, U. & Vajen, K., 2012. "The potential of solar heat for industrial processes in Germany," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 5121-5130.
    10. Kumar, Mahesh & Sansaniwal, Sunil Kumar & Khatak, Pankaj, 2016. "Progress in solar dryers for drying various commodities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 346-360.
    11. Modi, Anish & Bühler, Fabian & Andreasen, Jesper Graa & Haglind, Fredrik, 2017. "A review of solar energy based heat and power generation systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1047-1064.
    12. Silva, R. & Pérez, M. & Berenguel, M. & Valenzuela, L. & Zarza, E., 2014. "Uncertainty and global sensitivity analysis in the design of parabolic-trough direct steam generation plants for process heat applications," Applied Energy, Elsevier, vol. 121(C), pages 233-244.
    13. Kalogirou, Soteris A, 2002. "Parabolic trough collectors for industrial process heat in Cyprus," Energy, Elsevier, vol. 27(9), pages 813-830.
    14. Absi Halabi, M. & Al-Qattan, A. & Al-Otaibi, A., 2015. "Application of solar energy in the oil industry—Current status and future prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 296-314.
    15. Irene Montero & María Teresa Miranda & Francisco José Sepúlveda & José Ignacio Arranz & Carmen Victoria Rojas & Sergio Nogales, 2015. "Solar Dryer Application for Olive Oil Mill Wastes," Energies, MDPI, vol. 8(12), pages 1-15, December.
    16. Muneer, T. & Asif, M. & Cizmecioglu, Z. & Ozturk, H.K., 2008. "Prospects for solar water heating within Turkish textile industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(3), pages 807-823, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mahmud, M.A. Parvez & Huda, Nazmul & Farjana, Shahjadi Hisan & Lang, Candace, 2020. "Life-cycle impact assessment of renewable electricity generation systems in the United States," Renewable Energy, Elsevier, vol. 151(C), pages 1028-1045.
    2. Romero-Ramos, J.A. & Gil, J.D. & Cardemil, J.M. & Escobar, R.A. & Arias, I. & Pérez-García, M., 2023. "A GIS-AHP approach for determining the potential of solar energy to meet the thermal demand in southeastern Spain productive enclaves," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
    3. Gao, Datong & Li, Jing & Ren, Xiao & Hu, Tianxiang & Pei, Gang, 2022. "A novel direct steam generation system based on the high-vacuum insulated flat plate solar collector," Renewable Energy, Elsevier, vol. 197(C), pages 966-977.
    4. Islam, Md Tasbirul & Huda, Nazmul & Saidur, R., 2019. "Current energy mix and techno-economic analysis of concentrating solar power (CSP) technologies in Malaysia," Renewable Energy, Elsevier, vol. 140(C), pages 789-806.
    5. Tilahun, Fitsum Bekele & Bhandari, Ramchandra & Mamo, Mengesha, 2019. "Design optimization and control approach for a solar-augmented industrial heating," Energy, Elsevier, vol. 179(C), pages 186-198.
    6. Gil, Juan D. & Topa, A. & Álvarez, J.D. & Torres, J.L. & Pérez, M., 2022. "A review from design to control of solar systems for supplying heat in industrial process applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    7. López-Núñez, Oscar A. & Alfaro-Ayala, J. Arturo & Jaramillo, O.A. & Ramírez-Minguela, J.J. & Castro, J. Carlos & Damian-Ascencio, Cesar E. & Cano-Andrade, Sergio, 2020. "A numerical analysis of the energy and entropy generation rate in a Linear Fresnel Reflector using computational fluid dynamics," Renewable Energy, Elsevier, vol. 146(C), pages 1083-1100.
    8. Lugo, S. & García-Valladares, O. & Best, R. & Hernández, J. & Hernández, F., 2019. "Numerical simulation and experimental validation of an evacuated solar collector heating system with gas boiler backup for industrial process heating in warm climates," Renewable Energy, Elsevier, vol. 139(C), pages 1120-1132.
    9. Soares, João & Oliveira, Armando C. & Valenzuela, Loreto, 2021. "A dynamic model for once-through direct steam generation in linear focus solar collectors," Renewable Energy, Elsevier, vol. 163(C), pages 246-261.
    10. Sainz-Mañas, Miguel & Bataille, Françoise & Caliot, Cyril & Vossier, Alexis & Flamant, Gilles, 2022. "Direct absorption nanofluid-based solar collectors for low and medium temperatures. A review," Energy, Elsevier, vol. 260(C).
    11. Famiglietti, Antonio & Lecuona, Antonio & Ibarra, Mercedes & Roa, Javier, 2021. "Turbo-assisted direct solar air heater for medium temperature industrial processes using Linear Fresnel Collectors. Assessment on daily and yearly basis," Energy, Elsevier, vol. 223(C).
    12. Farjana, Shahjadi Hisan & Huda, Nazmul & Mahmud, M.A. Parvez & Saidur, R., 2018. "Solar industrial process heating systems in operation – Current SHIP plants and future prospects in Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 409-419.
    13. Khanlari, Ataollah & Tuncer, Azim Doğuş & Sözen, Adnan & Aytaç, İpek & Çiftçi, Erdem & Variyenli, Halil İbrahim, 2022. "Energy and exergy analysis of a vertical solar air heater with nano-enhanced absorber coating and perforated baffles," Renewable Energy, Elsevier, vol. 187(C), pages 586-602.
    14. Wang, Zhifeng & Wu, Jiani & Lei, Dongqiang & Liu, Hong & Li, Jinping & Wu, Zhiyong, 2020. "Experimental study on latent thermal energy storage system with gradient porosity copper foam for mid-temperature solar energy application," Applied Energy, Elsevier, vol. 261(C).
    15. Acosta-Pazmiño, Iván P. & Rivera-Solorio, C.I. & Gijón-Rivera, M., 2021. "Scaling-up the installation of hybrid solar collectors to reduce CO2 emissions in a Mexican industrial sector from now to 2030," Applied Energy, Elsevier, vol. 298(C).
    16. Mahmud, M. A. Parvez & Huda, Nazmul & Farjana, Shahjadi Hisan & Lang, Candace, 2019. "A strategic impact assessment of hydropower plants in alpine and non-alpine areas of Europe," Applied Energy, Elsevier, vol. 250(C), pages 198-214.
    17. Bie, Yu & Li, Ming & Chen, Fei & Królczyk, Grzegorz & Yang, Lin & Li, Zhixiong & Li, Weihua, 2019. "A novel empirical heat transfer model for a solar thermal storage process using phase change materials," Energy, Elsevier, vol. 168(C), pages 222-234.
    18. Nguyen Minh Phu & Ngo Thien Tu & Nguyen Van Hap, 2021. "Thermohydraulic Performance and Entropy Generation of a Triple-Pass Solar Air Heater with Three Inlets," Energies, MDPI, vol. 14(19), pages 1-19, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sharma, Ashish K. & Sharma, Chandan & Mullick, Subhash C. & Kandpal, Tara C., 2017. "Solar industrial process heating: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 124-137.
    2. Farjana, Shahjadi Hisan & Huda, Nazmul & Mahmud, M.A. Parvez & Saidur, R., 2018. "Solar industrial process heating systems in operation – Current SHIP plants and future prospects in Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 409-419.
    3. El Hage, Hicham & Herez, Amal & Ramadan, Mohamad & Bazzi, Hassan & Khaled, Mahmoud, 2018. "An investigation on solar drying: A review with economic and environmental assessment," Energy, Elsevier, vol. 157(C), pages 815-829.
    4. Fudholi, Ahmad & Sopian, Kamaruzzaman, 2019. "A review of solar air flat plate collector for drying application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 333-345.
    5. Yataganbaba, Alptug & Kurtbaş, İrfan, 2016. "A scientific approach with bibliometric analysis related to brick and tile drying: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 206-224.
    6. Islam, Md Tasbirul & Huda, Nazmul & Abdullah, A.B. & Saidur, R., 2018. "A comprehensive review of state-of-the-art concentrating solar power (CSP) technologies: Current status and research trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 987-1018.
    7. Wengang Hao & Shuonan Liu & Baoqi Mi & Yanhua Lai, 2020. "Mathematical Modeling and Performance Analysis of a New Hybrid Solar Dryer of Lemon Slices for Controlling Drying Temperature," Energies, MDPI, vol. 13(2), pages 1-23, January.
    8. Isidoro Lillo-Bravo & Elena Pérez-Aparicio & Natividad Sancho-Caparrini & Manuel Antonio Silva-Pérez, 2018. "Benefits of Medium Temperature Solar Concentration Technologies as Thermal Energy Source of Industrial Processes in Spain," Energies, MDPI, vol. 11(11), pages 1-30, October.
    9. Dagdougui, Hanane & Ouammi, Ahmed & Robba, Michela & Sacile, Roberto, 2011. "Thermal analysis and performance optimization of a solar water heater flat plate collector: Application to Tétouan (Morocco)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 630-638, January.
    10. jia, Teng & Huang, Junpeng & Li, Rui & He, Peng & Dai, Yanjun, 2018. "Status and prospect of solar heat for industrial processes in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 475-489.
    11. Rafael Herrera-Limones & Ángel Luis León-Rodríguez & Álvaro López-Escamilla, 2019. "Solar Decathlon Latin America and Caribbean: Comfort and the Balance between Passive and Active Design," Sustainability, MDPI, vol. 11(13), pages 1-17, June.
    12. Romero-Ramos, J.A. & Gil, J.D. & Cardemil, J.M. & Escobar, R.A. & Arias, I. & Pérez-García, M., 2023. "A GIS-AHP approach for determining the potential of solar energy to meet the thermal demand in southeastern Spain productive enclaves," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
    13. Bhutto, Abdul Waheed & Bazmi, Aqeel Ahmed & Zahedi, Gholamreza, 2012. "Greener energy: Issues and challenges for Pakistan—Solar energy prospective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2762-2780.
    14. Shiva Gorjian & Behnam Hosseingholilou & Laxmikant D. Jathar & Haniyeh Samadi & Samiran Samanta & Atul A. Sagade & Karunesh Kant & Ravishankar Sathyamurthy, 2021. "Recent Advancements in Technical Design and Thermal Performance Enhancement of Solar Greenhouse Dryers," Sustainability, MDPI, vol. 13(13), pages 1-32, June.
    15. Ge, T.S. & Wang, R.Z. & Xu, Z.Y. & Pan, Q.W. & Du, S. & Chen, X.M. & Ma, T. & Wu, X.N. & Sun, X.L. & Chen, J.F., 2018. "Solar heating and cooling: Present and future development," Renewable Energy, Elsevier, vol. 126(C), pages 1126-1140.
    16. Ortiz-Rodríguez, N.M. & Marín-Camacho, J.F. & González, A. Llamas- & García-Valladares, O., 2021. "Drying kinetics of natural rubber sheets under two solar thermal drying systems," Renewable Energy, Elsevier, vol. 165(P1), pages 438-454.
    17. Allouhi, A. & Agrouaz, Y. & Benzakour Amine, Mohammed & Rehman, S. & Buker, M.S. & Kousksou, T. & Jamil, A. & Benbassou, A., 2017. "Design optimization of a multi-temperature solar thermal heating system for an industrial process," Applied Energy, Elsevier, vol. 206(C), pages 382-392.
    18. Daghigh, Roonak & Shafieian, Abdellah, 2016. "An experimental study of a heat pipe evacuated tube solar dryer with heat recovery system," Renewable Energy, Elsevier, vol. 96(PA), pages 872-880.
    19. Ghazouani, Mokhtar & Bouya, Mohsine & Benaissa, Mohammed, 2020. "Thermo-economic and exergy analysis and optimization of small PTC collectors for solar heat integration in industrial processes," Renewable Energy, Elsevier, vol. 152(C), pages 984-998.
    20. Muhumuza, Ronald & Zacharopoulos, Aggelos & Mondol, Jayanta Deb & Smyth, Mervyn & Pugsley, Adrian, 2018. "Energy consumption levels and technical approaches for supporting development of alternative energy technologies for rural sectors of developing countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 90-102.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:82:y:2018:i:p3:p:2270-2286. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.