IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v187y2022icp1204-1223.html
   My bibliography  Save this article

Experimental study on the effects of multi-resonance plasmonic nanoparticles for improving the solar collector efficiency

Author

Listed:
  • Mallah, Abdul Rahman
  • Zubir, M.N.M.
  • Alawi, Omer A.
  • Kazi, S.N.
  • Ahmed, W.
  • Sadri, R.
  • Kasaeian, Alibakhsh

Abstract

Direct absorption solar collectors (DASCs) are distinguished from other solar collectors by the volumetric absorption process, where the working fluid directly absorbs solar radiation. There is great potential to use plasmonic nanoparticles in the direct absorption solar collectors. In this study, the optical characteristics of various silver nano-morphologies were investigated to formulate blended nanofluids that can absorb solar irradiation within a broad spectral range. Silver nanospheres and nanoplates with fine-tuned sizes and aspect ratios of 4–9 were synthesized and characterized. An innovative test section was built to validate the performance of different silver nano-morphologies under simulated solar irradiation. Hence, the photo-thermal conversion efficiency of nanofluids based on individual silver nano-morphologies can be accurately obtained. The experimental results revealed the promising performance of the blended nanofluids, where the efficiency of the DASC exceeds 70% at solar radiation concentrating factor of ∼2 and a total additives concentration of 0.94 ppm. The interesting aspect of the blended nanofluids formulated in this study is the remarkable low volume fraction of the nanoparticles, which reduces the settlement and agglomeration ratio. Consequently, a higher solar concentration ratio can be harnessed by using the low additives loading blended plasmonic nanofluids.

Suggested Citation

  • Mallah, Abdul Rahman & Zubir, M.N.M. & Alawi, Omer A. & Kazi, S.N. & Ahmed, W. & Sadri, R. & Kasaeian, Alibakhsh, 2022. "Experimental study on the effects of multi-resonance plasmonic nanoparticles for improving the solar collector efficiency," Renewable Energy, Elsevier, vol. 187(C), pages 1204-1223.
  • Handle: RePEc:eee:renene:v:187:y:2022:i:c:p:1204-1223
    DOI: 10.1016/j.renene.2022.01.051
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148122000611
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.01.051?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sharaf, Omar Z. & Al-Khateeb, Ashraf N. & Kyritsis, Dimitrios C. & Abu-Nada, Eiyad, 2018. "Direct absorption solar collector (DASC) modeling and simulation using a novel Eulerian-Lagrangian hybrid approach: Optical, thermal, and hydrodynamic interactions," Applied Energy, Elsevier, vol. 231(C), pages 1132-1145.
    2. Dugaria, Simone & Bortolato, Matteo & Del Col, Davide, 2018. "Modelling of a direct absorption solar receiver using carbon based nanofluids under concentrated solar radiation," Renewable Energy, Elsevier, vol. 128(PB), pages 495-508.
    3. Goel, Nipun & Taylor, Robert A. & Otanicar, Todd, 2020. "A review of nanofluid-based direct absorption solar collectors: Design considerations and experiments with hybrid PV/Thermal and direct steam generation collectors," Renewable Energy, Elsevier, vol. 145(C), pages 903-913.
    4. Mallah, Abdul Rahman & Kazi, S.N. & Zubir, Mohd Nashrul Mohd & Badarudin, A., 2018. "Blended morphologies of plasmonic nanofluids for direct absorption applications," Applied Energy, Elsevier, vol. 229(C), pages 505-521.
    5. Qin, Caiyan & Kim, Joong Bae & Gonome, Hiroki & Lee, Bong Jae, 2020. "Absorption characteristics of nanoparticles with sharp edges for a direct-absorption solar collector," Renewable Energy, Elsevier, vol. 145(C), pages 21-28.
    6. Tunkara, Ebrima & DeJarnette, Drew & Saunders, Aaron E. & Baldwin, Matthew & Otanicar, Todd & Roberts, Kenneth P., 2019. "Indium tin oxide and gold nanoparticle solar filters for concentrating photovoltaic thermal systems," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    7. Qin, Caiyan & Kim, Joong Bae & Lee, Bong Jae, 2019. "Performance analysis of a direct-absorption parabolic-trough solar collector using plasmonic nanofluids," Renewable Energy, Elsevier, vol. 143(C), pages 24-33.
    8. Liu, Xing & Wang, Xinzhi & Huang, Jian & Cheng, Gong & He, Yurong, 2018. "Volumetric solar steam generation enhanced by reduced graphene oxide nanofluid," Applied Energy, Elsevier, vol. 220(C), pages 302-312.
    9. Lee, Seung-Hyun & Choi, Tae Jong & Jang, Seok Pil, 2016. "Thermal efficiency comparison: Surface-based solar receivers with conventional fluids and volumetric solar receivers with nanofluids," Energy, Elsevier, vol. 115(P1), pages 404-417.
    10. Sharaf, Omar Z. & Al-Khateeb, Ashraf N. & Kyritsis, Dimitrios C. & Abu-Nada, Eiyad, 2019. "Energy and exergy analysis and optimization of low-flux direct absorption solar collectors (DASCs): Balancing power- and temperature-gain," Renewable Energy, Elsevier, vol. 133(C), pages 861-872.
    11. Rezapour, Mojtaba & Gholizadeh, Mohammad, 2021. "Analysis of methanol thermochemical reactor with volumetric solar heat flux based on Parabolic Trough Concentrator," Renewable Energy, Elsevier, vol. 180(C), pages 1088-1100.
    12. Mehrali, Mohammad & Ghatkesar, Murali Krishna & Pecnik, Rene, 2018. "Full-spectrum volumetric solar thermal conversion via graphene/silver hybrid plasmonic nanofluids," Applied Energy, Elsevier, vol. 224(C), pages 103-115.
    13. Wang, Yangjie & Li, Qiang & Xuan, Yimin, 2019. "Thermal and chemical reaction performance analyses of solar thermochemical volumetric receiver/reactor with nanofluid," Energy, Elsevier, vol. 189(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gupta, Varun Kumar & Kumar, Sanjay & Kukreja, Rajeev & Chander, Nikhil, 2023. "Experimental thermal performance investigation of a direct absorption solar collector using hybrid nanofluid of gold nanoparticles with natural extract of Azadirachta Indica leaves," Renewable Energy, Elsevier, vol. 202(C), pages 1021-1031.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sainz-Mañas, Miguel & Bataille, Françoise & Caliot, Cyril & Vossier, Alexis & Flamant, Gilles, 2022. "Direct absorption nanofluid-based solar collectors for low and medium temperatures. A review," Energy, Elsevier, vol. 260(C).
    2. Muzamil Hussain & Syed Khawar Hussain Shah & Uzair Sajjad & Naseem Abbas & Ahsan Ali, 2022. "Recent Developments in Optical and Thermal Performance of Direct Absorption Solar Collectors," Energies, MDPI, vol. 15(19), pages 1-23, September.
    3. Sharaf, Omar Z. & Al-Khateeb, Ashraf N. & Kyritsis, Dimitrios C. & Abu-Nada, Eiyad, 2018. "Direct absorption solar collector (DASC) modeling and simulation using a novel Eulerian-Lagrangian hybrid approach: Optical, thermal, and hydrodynamic interactions," Applied Energy, Elsevier, vol. 231(C), pages 1132-1145.
    4. Zeng, Jia & Xuan, Yimin, 2022. "Direct solar-thermal conversion features of flowing photonic nanofluids," Renewable Energy, Elsevier, vol. 188(C), pages 588-602.
    5. Qin, Caiyan & Kim, Joong Bae & Lee, Bong Jae, 2019. "Performance analysis of a direct-absorption parabolic-trough solar collector using plasmonic nanofluids," Renewable Energy, Elsevier, vol. 143(C), pages 24-33.
    6. Chen, Xingyu & Chen, Meijie & Zhou, Ping, 2022. "Solar-thermal conversion performance of heterogeneous nanofluids," Renewable Energy, Elsevier, vol. 198(C), pages 1307-1317.
    7. Wang, Kongxiang & He, Yan & Kan, Ankang & Yu, Wei & Wang, Debing & Zhang, Liyie & Zhu, Guihua & Xie, Huaqing & She, Xiaohui, 2019. "Significant photothermal conversion enhancement of nanofluids induced by Rayleigh-Bénard convection for direct absorption solar collectors," Applied Energy, Elsevier, vol. 254(C).
    8. Mojumder, Juwel C. & Aminossadati, Saiied M. & Leonardi, Christopher R., 2023. "Performance analysis of a concentrated direct absorption solar collector (DASC) with nanofluids using computational fluid dynamics and discrete ordinates radiation modelling (CFD-DORM)," Renewable Energy, Elsevier, vol. 205(C), pages 30-52.
    9. Ju, Xing & Abd El-Samie, Mostafa M. & Xu, Chao & Yu, Hangyu & Pan, Xinyu & Yang, Yongping, 2020. "A fully coupled numerical simulation of a hybrid concentrated photovoltaic/thermal system that employs a therminol VP-1 based nanofluid as a spectral beam filter," Applied Energy, Elsevier, vol. 264(C).
    10. Ajbar, Wassila & Parrales, A. & Huicochea, A. & Hernández, J.A., 2022. "Different ways to improve parabolic trough solar collectors’ performance over the last four decades and their applications: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    11. Qu, Jian & Shang, Lu & Sun, Qin & Han, Xinyue & Zhou, Guoqing, 2022. "Photo-thermal characteristics of water-based graphene oxide (GO) nanofluids at reverse-irradiation conditions with different irradiation angles for high-efficiency solar thermal energy harvesting," Renewable Energy, Elsevier, vol. 195(C), pages 516-527.
    12. Li, Zhijing & Lei, Hui & Kan, Ankang & Xie, Huaqing & Yu, Wei, 2021. "Photothermal applications based on graphene and its derivatives: A state-of-the-art review," Energy, Elsevier, vol. 216(C).
    13. Tembhare, Saurabh P. & Barai, Divya P. & Bhanvase, Bharat A., 2022. "Performance evaluation of nanofluids in solar thermal and solar photovoltaic systems: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    14. Chen, Xingyu & Zhou, Ping & Yan, Hongjie & Chen, Meijie, 2021. "Systematically investigating solar absorption performance of plasmonic nanoparticles," Energy, Elsevier, vol. 216(C).
    15. Wang, Hao & Li, Xiaoke & Luo, Boqiu & Wei, Ke & Zeng, Guangyong, 2021. "The MXene/water nanofluids with high stability and photo-thermal conversion for direct absorption solar collectors: A comparative study," Energy, Elsevier, vol. 227(C).
    16. Tsogtbilegt Boldoo & Jeonggyun Ham & Eui Kim & Honghyun Cho, 2020. "Review of the Photothermal Energy Conversion Performance of Nanofluids, Their Applications, and Recent Advances," Energies, MDPI, vol. 13(21), pages 1-33, November.
    17. Zeng, Jia & Xuan, Yimin & Li, Qiang, 2023. "Direct solar-thermal scalable-decomposition of methanol flowing through a nanoparticle-packed bed reactor under outdoor environment," Energy, Elsevier, vol. 280(C).
    18. Wang, Kongxiang & He, Yan & Liu, Pengyu & Kan, Ankang & Zheng, Zhiheng & Wang, Lingling & Xie, Huaqing & Yu, Wei, 2020. "Highly-efficient nanofluid-based direct absorption solar collector enhanced by reverse-irradiation for medium temperature applications," Renewable Energy, Elsevier, vol. 159(C), pages 652-662.
    19. Vallejo, Javier P. & Mercatelli, Luca & Martina, Maria Raffaella & Di Rosa, Daniele & Dell’Oro, Aldo & Lugo, Luis & Sani, Elisa, 2019. "Comparative study of different functionalized graphene-nanoplatelet aqueous nanofluids for solar energy applications," Renewable Energy, Elsevier, vol. 141(C), pages 791-801.
    20. Liang, Huaxu & Wang, Fuqiang & Yang, Luwei & Cheng, Ziming & Shuai, Yong & Tan, Heping, 2021. "Progress in full spectrum solar energy utilization by spectral beam splitting hybrid PV/T system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:187:y:2022:i:c:p:1204-1223. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.