IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v145y2020icp903-913.html
   My bibliography  Save this article

A review of nanofluid-based direct absorption solar collectors: Design considerations and experiments with hybrid PV/Thermal and direct steam generation collectors

Author

Listed:
  • Goel, Nipun
  • Taylor, Robert A.
  • Otanicar, Todd

Abstract

Over the last 100 plus years, solar thermal energy has been used for residential heating applications, industrial process heating, electricity generation, and thermochemical reactions. Because of the vast number of applications, numerous designs have been developed to improve the efficiency of converting incoming solar energy into useful heat and to lower the cost. Conventional solar thermal collectors required a solid surface to absorb and convert incoming solar energy to useful thermal energy. Developments in materials science have enabled a new type of absorber—a volumetric absorber—which utilizes nanoparticles suspended in a fluid to absorb sunlight. Since most working fluids only weakly absorb sunlight, well-engineered ‘nanofluids’ are attractive because only a low volume fraction of nanoparticles is needed to obtain a large shift in the optical properties. This review, on the 10-year anniversary of the first appearance of nanofluid-based direct absorption solar thermal collectors, provides a forward-looking perspective on the challenges and opportunities associated with nanofluids as direct absorbers. Through a critical comparison of design considerations, as well as the most recent experimental results of less well explored areas like hybrid photovoltaic/thermal systems and direct steam generation, this review aims to provide discourse on the next steps for development.

Suggested Citation

  • Goel, Nipun & Taylor, Robert A. & Otanicar, Todd, 2020. "A review of nanofluid-based direct absorption solar collectors: Design considerations and experiments with hybrid PV/Thermal and direct steam generation collectors," Renewable Energy, Elsevier, vol. 145(C), pages 903-913.
  • Handle: RePEc:eee:renene:v:145:y:2020:i:c:p:903-913
    DOI: 10.1016/j.renene.2019.06.097
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148119309206
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.06.097?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:145:y:2020:i:c:p:903-913. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.