My bibliography
Save this item
Comparing Predictive Accuracy, Twenty Years Later: A Personal Perspective on the Use and Abuse of Diebold-Mariano Tests
Citations
Blog mentions
As found by EconAcademics.org, the blog aggregator for Economics research:- My "Must Read" List
by Dave Giles in Econometrics Beat: Dave Giles' Blog on 2012-09-27 06:33:00
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Adam J. Check & Anna K Nolan & Tyler C. Schipper, 2019.
"Forecasting GDP Growth using Disaggregated GDP Revisions,"
Economics Bulletin, AccessEcon, vol. 39(4), pages 2580-2588.
- Check, Adam J. & Nolan, Anna K. & Schipper, Tyler C., 2018. "Forecasting GDP: Do Revisions Matter?," MPRA Paper 86194, University Library of Munich, Germany.
- João C. Claudio & Katja Heinisch & Oliver Holtemöller, 2020.
"Nowcasting East German GDP growth: a MIDAS approach,"
Empirical Economics, Springer, vol. 58(1), pages 29-54, January.
- Claudio, João C. & Heinisch, Katja & Holtemöller, Oliver, 2019. "Nowcasting East German GDP growth: A MIDAS approach," IWH Discussion Papers 24/2019, Halle Institute for Economic Research (IWH).
- David I. Harvey & Stephen J. Leybourne & Yang Zu, 2024. "Tests for equal forecast accuracy under heteroskedasticity," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(5), pages 850-869, August.
- Xuan, Chunji & Kim, Chang-Jin, 2020. "Structural breaks in the mean of dividend-price ratios: Implications of learning on stock return predictability," Japan and the World Economy, Elsevier, vol. 55(C).
- Florian Ziel & Rick Steinert & Sven Husmann, 2015. "Forecasting day ahead electricity spot prices: The impact of the EXAA to other European electricity markets," Papers 1501.00818, arXiv.org, revised Dec 2015.
- Barbara Rossi, 2013.
"Exchange Rate Predictability,"
Journal of Economic Literature, American Economic Association, vol. 51(4), pages 1063-1119, December.
- Barbara Rossi, 2013. "Exchange Rate Predictability," Working Papers 690, Barcelona School of Economics.
- Rossi, Barbara, 2013. "Exchange Rate Predictability," CEPR Discussion Papers 9575, C.E.P.R. Discussion Papers.
- Barbara Rossi, 2013. "Exchange rate predictability," Economics Working Papers 1369, Department of Economics and Business, Universitat Pompeu Fabra.
- Croonenbroeck, Carsten & Stadtmann, Georg, 2019. "Renewable generation forecast studies – Review and good practice guidance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 312-322.
- Isabel Figuerola‐Ferretti & Alejandro Rodríguez & Eduardo Schwartz, 2021. "Oil price analysts' forecasts," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 41(9), pages 1351-1374, September.
- Dhiman, Harsh S. & Deb, Dipankar & Guerrero, Josep M., 2019. "Hybrid machine intelligent SVR variants for wind forecasting and ramp events," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 369-379.
- Olkhov, Victor, 2024. "Lower bounds of uncertainty and upper limits on the accuracy of forecasts of macroeconomic variables," MPRA Paper 121628, University Library of Munich, Germany.
- Luisa Bisaglia & Matteo Grigoletto, 2018. "A new time-varying model for forecasting long-memory series," Papers 1812.07295, arXiv.org.
- Sihong Chen & Qi Li & Qiaoyu Wang & Yu Yvette Zhang, 2023. "Multivariate models of commodity futures markets: a dynamic copula approach," Empirical Economics, Springer, vol. 64(6), pages 3037-3057, June.
- Giovannelli, Alessandro & Massacci, Daniele & Soccorsi, Stefano, 2021.
"Forecasting stock returns with large dimensional factor models,"
Journal of Empirical Finance, Elsevier, vol. 63(C), pages 252-269.
- Alessandro Giovannelli & Daniele Massacci & Stefano Soccorsi, 2020. "Forecasting Stock Returns with Large Dimensional Factor Models," Working Papers 305661169, Lancaster University Management School, Economics Department.
- Nowotarski, Jakub & Weron, Rafał, 2018.
"Recent advances in electricity price forecasting: A review of probabilistic forecasting,"
Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1548-1568.
- Jakub Nowotarski & Rafal Weron, 2016. "Recent advances in electricity price forecasting: A review of probabilistic forecasting," HSC Research Reports HSC/16/07, Hugo Steinhaus Center, Wroclaw University of Science and Technology.
- Byrne, Joseph P. & Korobilis, Dimitris & Ribeiro, Pinho J., 2014. "On the Sources of Uncertainty in Exchange Rate Predictability," 2007 Annual Meeting, July 29-August 1, 2007, Portland, Oregon TN 2015-24, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
- Rocha, Jordano Vieira & Pereira, Pedro L. Valls, 2015. "Forecast comparison with nonlinear methods for Brazilian industrial production," Textos para discussão 397, FGV EESP - Escola de Economia de São Paulo, Fundação Getulio Vargas (Brazil).
- Schiele, Philipp, 2021. "Modern Approaches to Dynamic Portfolio Optimization," Junior Management Science (JUMS), Junior Management Science e. V., vol. 6(1), pages 149-189.
- Kung, Ko-Lun & MacMinn, Richard D. & Kuo, Weiyu & Tsai, Chenghsien Jason, 2022. "Multi-population mortality modeling: When the data is too much and not enough," Insurance: Mathematics and Economics, Elsevier, vol. 103(C), pages 41-55.
- Tamás Kiss & Hoang Nguyen & Pär Österholm, 2021.
"Modelling Returns in US Housing Prices—You’re the One for Me, Fat Tails,"
JRFM, MDPI, vol. 14(11), pages 1-17, October.
- Kiss, Tamás & Nguyen, Hoang & Österholm, Pär, 2020. "Modelling Returns in US Housing Prices – You’re the One for Me, Fat Tails," Working Papers 2020:13, Örebro University, School of Business.
- Hideyuki Takamizawa, 2018.
"A term structure model of interest rates with quadratic volatility,"
Quantitative Finance, Taylor & Francis Journals, vol. 18(7), pages 1173-1198, July.
- TAKAMIZAWA, Hideyuki & 高見澤, 秀幸, 2017. "A Term Structure Model of Interest Rates with Quadratic Volatility," Working Paper Series G-1-18, Hitotsubashi University Center for Financial Research.
- Robert Gausden & Mohammad Hasan, 2022. "A reappraisal of Katona’s adaptive theory of consumer behaviour using U.K. data," Manchester School, University of Manchester, vol. 90(2), pages 122-143, March.
- Shapiro, Adam Hale & Sudhof, Moritz & Wilson, Daniel J., 2022.
"Measuring news sentiment,"
Journal of Econometrics, Elsevier, vol. 228(2), pages 221-243.
- Adam Hale Shapiro & Moritz Sudhof & Daniel J. Wilson, 2020. "Measuring News Sentiment," Working Paper Series 2017-1, Federal Reserve Bank of San Francisco.
- Magdalena Grothe & Aidan Meyler, 2018.
"Inflation Forecasts: Are Market-Based and Survey-Based Measures Informative?,"
International Journal of Financial Research, International Journal of Financial Research, Sciedu Press, vol. 9(1), pages 171-188, January.
- Grothe, Magdalena & Meyler, Aidan, 2015. "Inflation forecasts: Are market-based and survey-based measures informative?," MPRA Paper 66982, University Library of Munich, Germany.
- Meyler, Aidan & Grothe, Magdalena, 2015. "Inflation forecasts: Are market-based and survey-based measures informative?," Working Paper Series 1865, European Central Bank.
- Seitz, Franz & Baumann, Ursel & Albuquerque, Bruno, 2015.
"The information content of money and credit for US activity,"
Working Paper Series
1803, European Central Bank.
- Seitz, Franz & Albuquerque, Bruno & Baumann, Ursel, 2015. "The Information Content Of Money And Credit For US Activity," VfS Annual Conference 2015 (Muenster): Economic Development - Theory and Policy 113066, Verein für Socialpolitik / German Economic Association.
- Kruse, Robinson & Leschinski, Christian & Will, Michael, 2016.
"Comparing Predictive Accuracy under Long Memory - With an Application to Volatility Forecasting,"
Hannover Economic Papers (HEP)
dp-571, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
- Robinson Kruse & Christian Leschinski & Michael Will, 2016. "Comparing Predictive Accuracy under Long Memory - With an Application to Volatility Forecasting," CREATES Research Papers 2016-17, Department of Economics and Business Economics, Aarhus University.
- Baris Soybilgen & Ege Yazgan, 2017.
"An evaluation of inflation expectations in Turkey,"
Central Bank Review, Research and Monetary Policy Department, Central Bank of the Republic of Turkey, vol. 17(1), pages 1-31–38.
- Baris Soybilgen & Ege Yazgan, 2016. "An Evaluation Of Inflation Expectations In Turkey," Working Papers 1601, The Center for Financial Studies (CEFIS), Istanbul Bilgi University.
- Lago, Jesus & Marcjasz, Grzegorz & De Schutter, Bart & Weron, Rafał, 2021.
"Forecasting day-ahead electricity prices: A review of state-of-the-art algorithms, best practices and an open-access benchmark,"
Applied Energy, Elsevier, vol. 293(C).
- Jesus Lago & Grzegorz Marcjasz & Bart De Schutter & Rafa{l} Weron, 2020. "Forecasting day-ahead electricity prices: A review of state-of-the-art algorithms, best practices and an open-access benchmark," Papers 2008.08004, arXiv.org, revised Dec 2020.
- Siliverstovs, Boriss & Wochner, Daniel S., 2018. "Google Trends and reality: Do the proportions match?," Journal of Economic Behavior & Organization, Elsevier, vol. 145(C), pages 1-23.
- Thorsten Lehnert & Gildas Blanchard & Dennis Bams, 2014. "Evaluating Option Pricing Model Performance Using Model Uncertainty," LSF Research Working Paper Series 14-06, Luxembourg School of Finance, University of Luxembourg.
- Hajo Holzmann & Matthias Eulert, 2014. "The role of the information set for forecasting - with applications to risk management," Papers 1404.7653, arXiv.org.
- Wagner, Andreas & Ramentol, Enislay & Schirra, Florian & Michaeli, Hendrik, 2022. "Short- and long-term forecasting of electricity prices using embedding of calendar information in neural networks," Journal of Commodity Markets, Elsevier, vol. 28(C).
- Barbara Rossi, 2019.
"Forecasting in the Presence of Instabilities: How Do We Know Whether Models Predict Well and How to Improve Them,"
Working Papers
1162, Barcelona School of Economics.
- Rossi, Barbara, 2020. "Forecasting in the Presence of Instabilities: How Do We Know Whether Models Predict Well and How to Improve Them," CEPR Discussion Papers 14472, C.E.P.R. Discussion Papers.
- Barbara Rossi, 2019. "Forecasting in the presence of instabilities: How do we know whether models predict well and how to improve them," Economics Working Papers 1711, Department of Economics and Business, Universitat Pompeu Fabra, revised Jul 2021.
- Christiane Baumeister & Lutz Kilian, 2015.
"Forecasting the Real Price of Oil in a Changing World: A Forecast Combination Approach,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(3), pages 338-351, July.
- Kilian, Lutz & Baumeister, Christiane, 2013. "Forecasting the Real Price of Oil in a Changing World: A Forecast Combination Approach," CEPR Discussion Papers 9569, C.E.P.R. Discussion Papers.
- Christiane Baumeister & Lutz Kilian, 2013. "Forecasting the Real Price of Oil in a Changing World: A Forecast Combination Approach," Staff Working Papers 13-28, Bank of Canada.
- Baumeister, Christiane & Kilian, Lutz, 2013. "Forecasting the real price of oil in a changing world: A forecast combination approach," CFS Working Paper Series 2013/11, Center for Financial Studies (CFS).
- Heni Boubaker & Bassem Saidane & Mouna Ben Saad Zorgati, 2022. "Modelling the dynamics of stock market in the gulf cooperation council countries: evidence on persistence to shocks," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-22, December.
- Maciej Kostrzewski & Jadwiga Kostrzewska, 2021. "The Impact of Forecasting Jumps on Forecasting Electricity Prices," Energies, MDPI, vol. 14(2), pages 1-17, January.
- Hsiu-Hsin Ko, 2016. "Exchange Rate Predictability in Finite Samples," The Japanese Economic Review, Springer, vol. 67(3), pages 361-378, September.
- Haas Ornelas, José Renato, 2019.
"Expected currency returns and volatility risk premia,"
The North American Journal of Economics and Finance, Elsevier, vol. 49(C), pages 206-234.
- José Renato Haas Ornelas, 2017. "Expected Currency Returns and Volatility Risk Premia," Working Papers Series 454, Central Bank of Brazil, Research Department.
- Cubadda, Gianluca & Grassi, Stefano & Guardabascio, Barbara, 2025.
"The time-varying Multivariate Autoregressive Index model,"
International Journal of Forecasting, Elsevier, vol. 41(1), pages 175-190.
- G. Cubadda & S. Grassi & B. Guardabascio, 2022. "The Time-Varying Multivariate Autoregressive Index Model," Papers 2201.07069, arXiv.org.
- Gianluca Cubadda & Stefano Grassi & Barbara Guardabascio, 2024. "The Time-Varying Multivariate Autoregressive Index Model," CEIS Research Paper 571, Tor Vergata University, CEIS, revised 10 Jan 2024.
- Liu, Jing & Ma, Feng & Zhang, Yaojie, 2019. "Forecasting the Chinese stock volatility across global stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 466-477.
- Shihao Gu & Bryan Kelly & Dacheng Xiu, 2020.
"Empirical Asset Pricing via Machine Learning,"
The Review of Financial Studies, Society for Financial Studies, vol. 33(5), pages 2223-2273.
- Shihao Gu & Bryan Kelly & Dacheng Xiu, 2018. "Empirical Asset Pricing via Machine Learning," NBER Working Papers 25398, National Bureau of Economic Research, Inc.
- Shihao Gu & Bryan T. Kelly & Dacheng Xiu, 2018. "Empirical Asset Pricing via Machine Learning," Swiss Finance Institute Research Paper Series 18-71, Swiss Finance Institute.
- Michele Ca’ Zorzi & Jakub Muck & Michal Rubaszek, 2016.
"Real Exchange Rate Forecasting and PPP: This Time the Random Walk Loses,"
Open Economies Review, Springer, vol. 27(3), pages 585-609, July.
- Michele Ca' Zorzi & Jakub Muck & Michal Rubaszek, 2015. "Real exchange rate forecasting and ppp: this time the random walk loses," Globalization Institute Working Papers 229, Federal Reserve Bank of Dallas.
- Pan, Zhiyuan & Pettenuzzo, Davide & Wang, Yudong, 2020.
"Forecasting stock returns: A predictor-constrained approach,"
Journal of Empirical Finance, Elsevier, vol. 55(C), pages 200-217.
- Davide Pettenuzzo & Zhiyuan Pan & Yudong Wang, 2017. "Forecasting Stock Returns: A Predictor-Constrained Approach," Working Papers 116R, Brandeis University, Department of Economics and International Business School, revised Feb 2018.
- Davide Pettenuzzo & Zhiyuan Pan & Yudong Wang, 2017. "Forecasting Stock Returns: A Predictor-Constrained Approach," Working Papers 116, Brandeis University, Department of Economics and International Business School.
- Hecq, A.W. & Götz, T.B. & Urbain, J.R.Y.J., 2012.
"Real-time forecast density combinations (forecasting US GDP growth using mixed-frequency data),"
Research Memorandum
021, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
- Götz, T.B. & Hecq, A.W. & Urbain, J.R.Y.J., 2014. "Combining distributions of real-time forecasts: An application to U.S. growth," Research Memorandum 027, Maastricht University, Graduate School of Business and Economics (GSBE).
- Rui Liu, 2019. "Forecasting Bond Risk Premia with Unspanned Macroeconomic Information," Quarterly Journal of Finance (QJF), World Scientific Publishing Co. Pte. Ltd., vol. 9(01), pages 1-62, March.
- Lorenzo Burlon & Simone Emiliozzi & Alessandro Notarpietro & Massimiliano Pisani, 2015. "Medium-term forecasting of euro-area macroeconomic variables with DSGE and BVARX models," Questioni di Economia e Finanza (Occasional Papers) 257, Bank of Italy, Economic Research and International Relations Area.
- Luca Margaritella & Ovidijus Stauskas, 2024. "New Tests of Equal Forecast Accuracy for Factor-Augmented Regressions with Weaker Loadings," Papers 2409.20415, arXiv.org, revised Oct 2024.
- Michele Ca’ Zorzi & Jakub Muck & Michal Rubaszek, 2016.
"Real Exchange Rate Forecasting and PPP: This Time the Random Walk Loses,"
Open Economies Review, Springer, vol. 27(3), pages 585-609, July.
- Michele Ca’ Zorzi & Michal Rubaszek, 2012. "Real exchange rate forecasting: a calibrated half-life PPP model can beat the random walk," NBP Working Papers 123, Narodowy Bank Polski.
- Ca' Zorzi, Michele & Rubaszek, Michał & Muck, Jakub, 2013. "Real exchange rate forecasting: a calibrated half-life PPP model can beat the random walk," Working Paper Series 1576, European Central Bank.
- Franses, Philip Hans, 2016. "A note on the Mean Absolute Scaled Error," International Journal of Forecasting, Elsevier, vol. 32(1), pages 20-22.
- Salvatore Carta & Andrea Medda & Alessio Pili & Diego Reforgiato Recupero & Roberto Saia, 2018. "Forecasting E-Commerce Products Prices by Combining an Autoregressive Integrated Moving Average (ARIMA) Model and Google Trends Data," Future Internet, MDPI, vol. 11(1), pages 1-19, December.
- Cotter, John & Eyiah-Donkor, Emmanuel & Potì, Valerio, 2023.
"Commodity futures return predictability and intertemporal asset pricing,"
Journal of Commodity Markets, Elsevier, vol. 31(C).
- John Cotter & Emmanuel Eyiah-Donkor & Valerio Potì, 2020. "Commodity Futures Return Predictability and Intertemporal Asset Pricing," Working Papers 202011, Geary Institute, University College Dublin.
- John Cotter & Emmanuel Eyiah-Donkor & Valerio Potì, 2023. "Commodity futures return predictability and intertemporal asset pricing," Post-Print hal-04192933, HAL.
- Jun Lu & Shao Yi, 2022. "Reducing overestimating and underestimating volatility via the augmented blending-ARCH model," Papers 2203.12456, arXiv.org.
- Pablo Pincheira & Nicolás Hardy & Felipe Muñoz, 2021. "“Go Wild for a While!”: A New Test for Forecast Evaluation in Nested Models," Mathematics, MDPI, vol. 9(18), pages 1-28, September.
- Julien, Chevallier & Sévi, Benoît, 2013.
"A Fear Index to Predict Oil Futures Returns,"
Energy: Resources and Markets
156489, Fondazione Eni Enrico Mattei (FEEM).
- Julien Chevallier & Benoit Sevi, 2014. "A fear index to predict oil futures returns," Working Papers 2014-333, Department of Research, Ipag Business School.
- Julien Chevallier & Benoît Sévi, 2013. "A Fear Index to Predict Oil Futures Returns," Working Papers 2013.62, Fondazione Eni Enrico Mattei.
- Julien Chevallier & Benoît Sévi, 2014. "A fear index to predict oil futures returns," Post-Print hal-01463111, HAL.
- Laura Coroneo & Fabrizio Iacone, 2020. "Comparing predictive accuracy in small samples using fixed‐smoothing asymptotics," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(4), pages 391-409, June.
- Muniain, Peru & Ziel, Florian, 2020. "Probabilistic forecasting in day-ahead electricity markets: Simulating peak and off-peak prices," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1193-1210.
- Charles F. Manski, 2021.
"Econometrics for Decision Making: Building Foundations Sketched by Haavelmo and Wald,"
Econometrica, Econometric Society, vol. 89(6), pages 2827-2853, November.
- Charles F. Manski, 2019. "Econometrics For Decision Making: Building Foundations Sketched By Haavelmo And Wald," NBER Working Papers 26596, National Bureau of Economic Research, Inc.
- Charles F. Manski, 2019. "Econometrics For Decision Making: Building Foundations Sketched By Haavelmo And Wald," Papers 1912.08726, arXiv.org, revised Feb 2021.
- Bordo, Michael D. & Haubrich, Joseph G., 2024. "Low interest rates and the predictive content of the yield curve," The North American Journal of Economics and Finance, Elsevier, vol. 71(C).
- Warne, Anders, 2023. "DSGE model forecasting: rational expectations vs. adaptive learning," Working Paper Series 2768, European Central Bank.
- Kurov, Alexander & Sancetta, Alessio & Strasser, Georg & Wolfe, Marketa Halova, 2019.
"Price Drift Before U.S. Macroeconomic News: Private Information about Public Announcements?,"
Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 54(1), pages 449-479, February.
- Alexander Kurov & Alessio Sancetta & Georg H. Strasser & Marketa Halova Wolfe, 2015. "Price Drift before U.S. Macroeconomic News: Private Information about Public Announcements?," Boston College Working Papers in Economics 881, Boston College Department of Economics, revised 29 Jul 2015.
- Strasser, Georg & Kurov, Alexander & Sancetta, Alessio & Wolfe, Marketa Halova, 2016. "Price drift before U.S. macroeconomic news: private information about public announcements?," Working Paper Series 1901, European Central Bank.
- Pincheira, Pablo & Hardy, Nicolás & Muñoz, Felipe, 2021. ""Go wild for a while!": A new asymptotically Normal test for forecast evaluation in nested models," MPRA Paper 105368, University Library of Munich, Germany.
- Tim Bollerslev & Benjamin Hood & John Huss & Lasse Heje Pedersen, 2018.
"Risk Everywhere: Modeling and Managing Volatility,"
The Review of Financial Studies, Society for Financial Studies, vol. 31(7), pages 2729-2773.
- Pedersen, Lasse Heje & Bollerslev, Tim & Hood, Benjamin & Huss, John, 2018. "Risk Everywhere: Modeling and Managing Volatility," CEPR Discussion Papers 12687, C.E.P.R. Discussion Papers.
- Simon Hirsch & Jonathan Berrisch & Florian Ziel, 2024. "Online Distributional Regression," Papers 2407.08750, arXiv.org, revised Aug 2024.
- Khowaja, Kainat & Saef, Danial & Sizov, Sergej & Härdle, Wolfgang Karl, 2020. "Data Analytics Driven Controlling: bridging statistical modeling and managerial intuition," IRTG 1792 Discussion Papers 2020-026, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
- Dalibor Stevanovic, 2013.
"Probability and Severity of Recessions,"
CIRANO Working Papers
2013s-43, CIRANO.
- Rachidi Kotchoni & Dalibor Stevanovic, 2013. "Probability and Severity of Recessions," Cahiers de recherche 1341, CIRPEE.
- Yu‐Sheng Lai, 2018. "Estimation of the optimal futures hedge ratio for equity index portfolios using a realized beta generalized autoregressive conditional heteroskedasticity model," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 38(11), pages 1370-1390, November.
- Ghimire, Sujan & Deo, Ravinesh C. & Casillas-Pérez, David & Salcedo-Sanz, Sancho, 2024. "Two-step deep learning framework with error compensation technique for short-term, half-hourly electricity price forecasting," Applied Energy, Elsevier, vol. 353(PA).
- Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022.
"Forecasting: theory and practice,"
International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
- Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
- Kaihua Deng, 2015. "Predicting By Learning: An Adaptive Rationale," Annals of Financial Economics (AFE), World Scientific Publishing Co. Pte. Ltd., vol. 10(02), pages 1-14, December.
- Diaz, Elena Maria & Perez-Quiros, Gabriel, 2021. "GEA tracker: A daily indicator of global economic activity," Journal of International Money and Finance, Elsevier, vol. 115(C).
- Sune Karlsson & Pär Österholm, 2020.
"A note on the stability of the Swedish Phillips curve,"
Empirical Economics, Springer, vol. 59(6), pages 2573-2612, December.
- Karlsson, Sune & Österholm, Pär, 2018. "A Note on the Stability of the Swedish Philips Curve," Working Papers 2018:6, Örebro University, School of Business.
- Maria Billstam & Kristina Frändén & Johan Samuelsson & Pär Österholm, 2017.
"Quasi-Real-Time Data of the Economic Tendency Survey,"
Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 13(1), pages 105-138, May.
- Billstam, Maria & Frändén, Kristina & Samuelsson, Johan & Österholm, Pär, 2016. "Quasi-Real-Time Data of the Economic Tendency Survey," Working Papers 143, National Institute of Economic Research.
- Ricardo P. Masini & Marcelo C. Medeiros & Eduardo F. Mendes, 2023.
"Machine learning advances for time series forecasting,"
Journal of Economic Surveys, Wiley Blackwell, vol. 37(1), pages 76-111, February.
- Ricardo P. Masini & Marcelo C. Medeiros & Eduardo F. Mendes, 2020. "Machine Learning Advances for Time Series Forecasting," Papers 2012.12802, arXiv.org, revised Apr 2021.
- De Backer, Bruno & Dewachter, Hans & Iania, Leonardo, 2021.
"Macrofinancial information on the post-COVID-19 economic recovery: Will it be V, U or L-shaped?,"
Finance Research Letters, Elsevier, vol. 43(C).
- De Backer, Bruno & Dewachter, Hans & Iania, Leonardo, 2021. "Macrofinancial information on the post-COVID-19 economic recovery: Will it be V, U or L-shaped?," LIDAM Reprints LFIN 2021007, Université catholique de Louvain, Louvain Finance (LFIN).
- De Backer, Bruno & Dewachter, Hans & Iania, Leonardo, 2021. "Macrofinancial information on the post- COVID-19 economic recovery: will it be V, U or L-shaped?," LIDAM Discussion Papers LFIN 2021002, Université catholique de Louvain, Louvain Finance (LFIN).
- Luisa Bisaglia & Matteo Grigoletto, 2021. "A new time-varying model for forecasting long-memory series," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(1), pages 139-155, March.
- Karsten Müller, 2022. "German forecasters’ narratives: How informative are German business cycle forecast reports?," Empirical Economics, Springer, vol. 62(5), pages 2373-2415, May.
- Tschora, Léonard & Pierre, Erwan & Plantevit, Marc & Robardet, Céline, 2022. "Electricity price forecasting on the day-ahead market using machine learning," Applied Energy, Elsevier, vol. 313(C).
- Hunt, Ian, 2022. "In-sample tests of predictability are superior to pseudo-out-of-sample tests, even when data mining," International Journal of Forecasting, Elsevier, vol. 38(3), pages 872-877.
- Fu, Wenlong & Fang, Ping & Wang, Kai & Li, Zhenxing & Xiong, Dongzhen & Zhang, Kai, 2021. "Multi-step ahead short-term wind speed forecasting approach coupling variational mode decomposition, improved beetle antennae search algorithm-based synchronous optimization and Volterra series model," Renewable Energy, Elsevier, vol. 179(C), pages 1122-1139.
- Jiani Heng & Chen Wang & Xuejing Zhao & Liye Xiao, 2016. "Research and Application Based on Adaptive Boosting Strategy and Modified CGFPA Algorithm: A Case Study for Wind Speed Forecasting," Sustainability, MDPI, vol. 8(3), pages 1-25, March.
- Markus Hertrich, 2022. "Foreign exchange interventions under a minimum exchange rate regime and the Swiss franc," Review of International Economics, Wiley Blackwell, vol. 30(2), pages 450-489, May.
- Tuhkuri, Joonas, 2016. "Forecasting Unemployment with Google Searches," ETLA Working Papers 35, The Research Institute of the Finnish Economy.
- Danilo Leiva-Leon, 2017.
"Measuring Business Cycles Intra-Synchronization in US: A Regime-switching Interdependence Framework,"
Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 79(4), pages 513-545, August.
- Danilo Leiva-Leon, 2017. "Measuring business cycles intra-synchronization in us: a regime-switching interdependence framework," Working Papers 1726, Banco de España.
- Filipović, Damir & Gourier, Elise & Mancini, Loriano, 2016. "Quadratic variance swap models," Journal of Financial Economics, Elsevier, vol. 119(1), pages 44-68.
- Matei Demetrescu & Christoph Hanck & Robinson Kruse, 2016. "Fixed-b Inference in the Presence of Time-Varying Volatility," CREATES Research Papers 2016-01, Department of Economics and Business Economics, Aarhus University.
- Guilherme Lindenmeyer & Pedro Pablo Skorin & Hudson da Silva Torrent, 2021. "Using boosting for forecasting electric energy consumption during a recession: a case study for the Brazilian State Rio Grande do Sul," Letters in Spatial and Resource Sciences, Springer, vol. 14(2), pages 111-128, August.
- Cotter, John & Hallam, Mark & Yilmaz, Kamil, 2023.
"Macro-financial spillovers,"
Journal of International Money and Finance, Elsevier, vol. 133(C).
- John Cotter & Mark Hallam & Kamil Yilmaz, 2020. "Macro-Financial Spillovers," Working Papers 202005, Geary Institute, University College Dublin.
- Haas, Christian & Budin, Constantin & d’Arcy, Anne, 2024. "How to select oil price prediction models — The effect of statistical and financial performance metrics and sentiment scores," Energy Economics, Elsevier, vol. 133(C).
- Angela Abbate & Massimiliano Marcellino, 2018.
"Point, interval and density forecasts of exchange rates with time varying parameter models,"
Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 181(1), pages 155-179, January.
- Abbate, Angela & Marcellino, Massimiliano, 2016. "Point, interval and density forecasts of exchange rates with time-varying parameter models," Discussion Papers 19/2016, Deutsche Bundesbank.
- Marcellino, Massimiliano & Abbate, Angela, 2016. "Point, interval and density forecasts of exchange rates with time-varying parameter models," CEPR Discussion Papers 11559, C.E.P.R. Discussion Papers.
- Tunaru, Diana, 2017. "Gaussian estimation and forecasting of the U.K. yield curve with multi-factor continuous-time models," International Review of Financial Analysis, Elsevier, vol. 52(C), pages 119-129.
- Michał Narajewski & Florian Ziel, 2019. "Estimation and Simulation of the Transaction Arrival Process in Intraday Electricity Markets," Energies, MDPI, vol. 12(23), pages 1-16, November.
- Miller, J. Isaac, 2018.
"Simple robust tests for the specification of high-frequency predictors of a low-frequency series,"
Econometrics and Statistics, Elsevier, vol. 5(C), pages 45-66.
- J. Isaac Miller, 2014. "Simple Robust Tests for the Specification of High-Frequency Predictors of a Low-Frequency Series," Working Papers 1412, Department of Economics, University of Missouri.
- Buncic, Daniel & Gisler, Katja I.M., 2016.
"Global equity market volatility spillovers: A broader role for the United States,"
International Journal of Forecasting, Elsevier, vol. 32(4), pages 1317-1339.
- Buncic, Daniel & Gisler, Katja I. M., 2015. "Global Equity Market Volatility Spillovers: A Broader Role for the United States," Economics Working Paper Series 1508, University of St. Gallen, School of Economics and Political Science.
- Giampiero M. Gallo & Edoardo Otranto, 2014. "Forecasting Realized Volatility with Changes of Regimes," Econometrics Working Papers Archive 2014_03, Universita' degli Studi di Firenze, Dipartimento di Statistica, Informatica, Applicazioni "G. Parenti", revised Feb 2014.
- Chang, Yoosoon & Choi, Yongok & Kim, Chang Sik & Miller, J. Isaac & Park, Joon Y., 2021.
"Forecasting regional long-run energy demand: A functional coefficient panel approach,"
Energy Economics, Elsevier, vol. 96(C).
- Yoosoon Chang & Yongok Choi & Chang Sik Kim & J. Isaac Miller & Joon Y. Park, 2019. "Forecasting Regional Long-Run Energy Demand: A Functional Coefficient Panel Approach," Working Papers 1915, Department of Economics, University of Missouri.
- Håvard Hungnes, 2020. "Predicting the exchange rate path. The importance of using up-to-date observations in the forecasts," Discussion Papers 934, Statistics Norway, Research Department.
- Costantini, Mauro & Kunst, Robert M., 2021.
"On using predictive-ability tests in the selection of time-series prediction models: A Monte Carlo evaluation,"
International Journal of Forecasting, Elsevier, vol. 37(2), pages 445-460.
- Costantini, Mauro & Kunst, Robert M., 2018. "On Using Predictive-ability Tests in the Selection of Time-series Prediction Models: A Monte Carlo Evaluation," Economics Series 341, Institute for Advanced Studies.
- Gibbs, Christopher G. & Vasnev, Andrey L., 2024.
"Conditionally optimal weights and forward-looking approaches to combining forecasts,"
International Journal of Forecasting, Elsevier, vol. 40(4), pages 1734-1751.
- Christopher G. Gibbs & Andrey L. Vasnev, 2017. "Conditionally Optimal Weights and Forward-Looking Approaches to Combining Forecasts," Discussion Papers 2017-10, School of Economics, The University of New South Wales.
- Aysun Türkvatan, 2023. "Exports and imports in Turkey: A regime‐switching approach," The World Economy, Wiley Blackwell, vol. 46(3), pages 791-834, March.
- Simon Hirsch & Florian Ziel, 2022. "Simulation-based Forecasting for Intraday Power Markets: Modelling Fundamental Drivers for Location, Shape and Scale of the Price Distribution," Papers 2211.13002, arXiv.org.
- repec:dau:papers:123456789/11714 is not listed on IDEAS
- Buncic, Daniel & Tischhauser, Martin, 2017.
"Macroeconomic factors and equity premium predictability,"
International Review of Economics & Finance, Elsevier, vol. 51(C), pages 621-644.
- Buncic, Daniel & Tischhauser, Martin, 2015. "Macroeconomic Factors and Equity Premium Predictability," Economics Working Paper Series 1522, University of St. Gallen, School of Economics and Political Science.
- Christopher Kath & Florian Ziel, 2018. "The value of forecasts: Quantifying the economic gains of accurate quarter-hourly electricity price forecasts," Papers 1811.08604, arXiv.org.
- Sergei Kulakov, 2020. "X-Model: Further Development and Possible Modifications," Forecasting, MDPI, vol. 2(1), pages 1-16, February.
- Buncic, Daniel & Moretto, Carlo, 2015.
"Forecasting copper prices with dynamic averaging and selection models,"
The North American Journal of Economics and Finance, Elsevier, vol. 33(C), pages 1-38.
- Buncic, Daniel & Moretto, Carlo, 2014. "Forecasting Copper Prices with Dynamic Averaging and Selection Models," Economics Working Paper Series 1430, University of St. Gallen, School of Economics and Political Science.
- Poghosyan, Karen & Poghosyan, Ruben, 2021.
"On the applicability of dynamic factor models for forecasting real GDP growth in Armenia,"
Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 61, pages 28-46.
- Karen Poghosyan & Ruben Poghosyan, 2021. "On the Applicability of Dynamic Factor Models for Forecasting Real GDP Growth in Armenia," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 71(1), pages 52-79, June.
- Knut Are Aastveit & Claudia Foroni & Francesco Ravazzolo, 2017.
"Density Forecasts With Midas Models,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(4), pages 783-801, June.
- Knut Are Aastveit & Claudia Foroni & Francesco Ravazzolo, 2014. "Density forecasts with MIDAS models," Working Paper 2014/10, Norges Bank.
- Knut Are Aastveit & Claudia Foroni & Francesco Ravazzolo, 2014. "Density forecasts with MIDAS models," Working Papers No 3/2014, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
- Carriero, Andrea & Clark, Todd E. & Marcellino, Massimiliano, 2019. "Large Bayesian vector autoregressions with stochastic volatility and non-conjugate priors," Journal of Econometrics, Elsevier, vol. 212(1), pages 137-154.
- Galvão, Ana Beatriz & Garratt, Anthony & Mitchell, James, 2021. "Does judgment improve macroeconomic density forecasts?," International Journal of Forecasting, Elsevier, vol. 37(3), pages 1247-1260.
- Albuquerque, Bruno & Baumann, Ursel & Seitz, Franz, 2016. "What does money and credit tell us about real activity in the United States?," The North American Journal of Economics and Finance, Elsevier, vol. 37(C), pages 328-347.
- Arnoud Stevens & Joris Wauters, 2021.
"Is euro area lowflation here to stay? Insights from a time‐varying parameter model with survey data,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(5), pages 566-586, August.
- Arnoud Stevens & Joris Wauters, 2018. "Is euro area lowflation here to stay ? Insights from a time-varying parameter model with survey data," Working Paper Research 355, National Bank of Belgium.
- Joseph P. Byrne & Dimitris Korobilis & Pinho J. Ribeiro, 2018.
"On The Sources Of Uncertainty In Exchange Rate Predictability,"
International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 59(1), pages 329-357, February.
- Byrne, Joseph P. & Korobilis, Dimitris & Ribeiro, Pinho J., 2014. "On the Sources of Uncertainty in Exchange Rate Predictability," SIRE Discussion Papers 2015-24, Scottish Institute for Research in Economics (SIRE).
- Byrne, Joseph P & Korobilis, Dimitris & Ribeiro, Pinho J, 2014. "On the Sources of Uncertainty in Exchange Rate Predictability," MPRA Paper 58956, University Library of Munich, Germany.
- Joseph P. Byrne & Dimitris Korobilis & Pinho J. Ribeiro, 2014. "On the Sources of Uncertainty in Exchange Rate Predictability," Working Papers 2014_16, Business School - Economics, University of Glasgow.
- Elliott, Graham & Gargano, Antonio & Timmermann, Allan, 2015. "Complete subset regressions with large-dimensional sets of predictors," Journal of Economic Dynamics and Control, Elsevier, vol. 54(C), pages 86-110.
- Michael W. McCracken, 2020.
"Diverging Tests of Equal Predictive Ability,"
Econometrica, Econometric Society, vol. 88(4), pages 1753-1754, July.
- Michael W. McCracken, 2019. "Diverging Tests of Equal Predictive Ability," Working Papers 2019-018, Federal Reserve Bank of St. Louis, revised 09 Mar 2020.
- Walther, Thomas & Klein, Tony & Bouri, Elie, 2019.
"Exogenous drivers of Bitcoin and Cryptocurrency volatility – A mixed data sampling approach to forecasting,"
Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 63(C).
- Walther, Thomas & Klein, Tony & Bouri, Elie, 2018. "Exogenous Drivers of Bitcoin and Cryptocurrency Volatility – A Mixed Data Sampling Approach to Forecasting," QBS Working Paper Series 2018/02, Queen's University Belfast, Queen's Business School.
- Saulius Jokubaitis & Dmitrij Celov & Remigijus Leipus, 2019. "Sparse structures with LASSO through Principal Components: forecasting GDP components in the short-run," Papers 1906.07992, arXiv.org, revised Oct 2020.
- Ding, Song & Cai, Zhijian & Qin, Xinghuan & Shen, Xingao, 2024. "Comparative assessment and policy analysis of forecasting quarterly renewable energy demand: Fresh evidence from an innovative seasonal approach with superior matching algorithms," Applied Energy, Elsevier, vol. 367(C).
- Hinterlang, Natascha, 2019. "Predicting Monetary Policy Using Artificial Neural Networks," VfS Annual Conference 2019 (Leipzig): 30 Years after the Fall of the Berlin Wall - Democracy and Market Economy 203503, Verein für Socialpolitik / German Economic Association.
- Orlando, Giuseppe & Bufalo, Michele, 2022. "Modelling bursts and chaos regularization in credit risk with a deterministic nonlinear model," Finance Research Letters, Elsevier, vol. 47(PA).
- Léonard Tschora & Erwan Pierre & Marc Plantevit & Céline Robardet, 2022. "Electricity price forecasting on the day-ahead market using machine learning," Post-Print hal-03621974, HAL.
- Chad Fulton & Kirstin Hubrich, 2021.
"Forecasting US Inflation in Real Time,"
Econometrics, MDPI, vol. 9(4), pages 1-20, October.
- Chad Fulton & Kirstin Hubrich, 2021. "Forecasting US Inflation in Real Time," Finance and Economics Discussion Series 2021-014, Board of Governors of the Federal Reserve System (U.S.).
- Levent Bulut, 2017. "Does Statistical Significance Help to Evaluate Predictive Performance of Competing Models?," Journal of Economics and Financial Analysis, Tripal Publishing House, vol. 1(1), pages 1-13.
- Benjamin K. Johannsen & Elmar Mertens, 2021.
"A Time‐Series Model of Interest Rates with the Effective Lower Bound,"
Journal of Money, Credit and Banking, Blackwell Publishing, vol. 53(5), pages 1005-1046, August.
- Benjamin K. Johannsen & Elmar Mertens, 2016. "A Time Series Model of Interest Rates With the Effective Lower Bound," Finance and Economics Discussion Series 2016-033, Board of Governors of the Federal Reserve System (U.S.).
- Benjamin K Johannsen & Elmar Mertens, 2018. "A time series model of interest rates with the effective lower bound," BIS Working Papers 715, Bank for International Settlements.
- Filip Staněk, 2023. "Optimal out‐of‐sample forecast evaluation under stationarity," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(8), pages 2249-2279, December.
- Hsiu-Hsin Ko, 2016. "Exchange Rate Predictability in Finite Samples," The Japanese Economic Review, Japanese Economic Association, vol. 67(3), pages 361-378, September.
- Chao Zhang & Yihuang Zhang & Mihai Cucuringu & Zhongmin Qian, 2022. "Volatility forecasting with machine learning and intraday commonality," Papers 2202.08962, arXiv.org, revised Feb 2023.
- Mengxing Wei & Ali al-Nowaihi & Sanjit Dhami, 2019. "Quantum Decision Theory, Bounded Rationality and the Ellsberg Paradox," Studies in Microeconomics, , vol. 7(1), pages 110-139, June.
- Amengual, Dante & Xiu, Dacheng, 2018. "Resolution of policy uncertainty and sudden declines in volatility," Journal of Econometrics, Elsevier, vol. 203(2), pages 297-315.
- Chen, Yong & Eaton, Gregory W. & Paye, Bradley S., 2018. "Micro(structure) before macro? The predictive power of aggregate illiquidity for stock returns and economic activity," Journal of Financial Economics, Elsevier, vol. 130(1), pages 48-73.
- Peru Muniain & Florian Ziel, 2018. "Probabilistic Forecasting in Day-Ahead Electricity Markets: Simulating Peak and Off-Peak Prices," Papers 1810.08418, arXiv.org, revised Dec 2019.
- Vince, Daly & Paytakhti Oskooe, Seyyed Ali, 2015. "Stock market efficiency in Iran: unit root testing with smooth structural breaks and non-trading days," Economics Discussion Papers 2015-6, School of Economics, Kingston University London.
- Catherine L. Kling & Raymond W. Arritt & Gray Calhoun & David A. Keiser, 2016. "Research Needs and Challenges in the FEW System: Coupling Economic Models with Agronomic, Hydrologic, and Bioenergy Models for Sustainable Food, Energy, and Water Systems," Center for Agricultural and Rural Development (CARD) Publications 16-wp563, Center for Agricultural and Rural Development (CARD) at Iowa State University.
- Andrés García-Medina & Ester Aguayo-Moreno, 2024. "LSTM–GARCH Hybrid Model for the Prediction of Volatility in Cryptocurrency Portfolios," Computational Economics, Springer;Society for Computational Economics, vol. 63(4), pages 1511-1542, April.
- Chamay Kruger & Willem Daniel Schutte & Tanja Verster, 2021. "Using Model Performance to Assess the Representativeness of Data for Model Development and Calibration in Financial Institutions," Risks, MDPI, vol. 9(11), pages 1-26, November.
- Hinterlang, Natascha, 2020. "Predicting monetary policy using artificial neural networks," Discussion Papers 44/2020, Deutsche Bundesbank.
- Jokubaitis, Saulius & Celov, Dmitrij & Leipus, Remigijus, 2021. "Sparse structures with LASSO through principal components: Forecasting GDP components in the short-run," International Journal of Forecasting, Elsevier, vol. 37(2), pages 759-776.
- Götz, Thomas B. & Hecq, Alain & Urbain, Jean-Pierre, 2016. "Combining forecasts from successive data vintages: An application to U.S. growth," International Journal of Forecasting, Elsevier, vol. 32(1), pages 61-74.
- Rick Steinert & Florian Ziel, 2018. "Short- to Mid-term Day-Ahead Electricity Price Forecasting Using Futures," Papers 1801.10583, arXiv.org.
- Pettenuzzo, Davide & Timmermann, Allan & Valkanov, Rossen, 2014.
"Forecasting stock returns under economic constraints,"
Journal of Financial Economics, Elsevier, vol. 114(3), pages 517-553.
- Timmermann, Allan & Pettenuzzo, Davide & Valkanov, Rossen, 2013. "Forecasting Stock Returns under Economic Constraints," CEPR Discussion Papers 9377, C.E.P.R. Discussion Papers.
- Davide Pettenuzzo & Allan Timmermann & Rossen Valkanov, 2013. "Forecasting Stock Returns under Economic Constraints," Working Papers 57, Brandeis University, Department of Economics and International Business School.
- Gomez, William & Wang, Fu-Kwun & Lo, Shih-Che, 2024. "A hybrid approach based machine learning models in electricity markets," Energy, Elsevier, vol. 289(C).
- Kostrzewski, Maciej & Kostrzewska, Jadwiga, 2019. "Probabilistic electricity price forecasting with Bayesian stochastic volatility models," Energy Economics, Elsevier, vol. 80(C), pages 610-620.
- Hertrich, Markus, 2020. "Foreign exchange interventions under a one-sided target zone regime and the Swiss franc," Discussion Papers 21/2020, Deutsche Bundesbank.
- Diebold, Francis X. & Schorfheide, Frank & Shin, Minchul, 2017.
"Real-time forecast evaluation of DSGE models with stochastic volatility,"
Journal of Econometrics, Elsevier, vol. 201(2), pages 322-332.
- Francis X. Diebold & Frank Schorfheide & Minchul Shin, 2015. "Real-Time Forecast Evaluation of DSGE Models with Stochastic Volatility," PIER Working Paper Archive 15-018, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania, revised 01 May 2015.
- Diebold, Francis X. & Schorfheide, Frank & Shin, Minchul, 2017. "Real-time forecast evaluation of DSGE models with stochastic volatility," CFS Working Paper Series 577, Center for Financial Studies (CFS).
- Francis X. Diebold & Frank Schorfheide & Minchul Shin, 2016. "Real-Time Forecast Evaluation of DSGE Models with Stochastic Volatility," NBER Working Papers 22615, National Bureau of Economic Research, Inc.
- Kath, Christopher & Ziel, Florian, 2018. "The value of forecasts: Quantifying the economic gains of accurate quarter-hourly electricity price forecasts," Energy Economics, Elsevier, vol. 76(C), pages 411-423.
- Papantonis Ioannis & Rompolis Leonidas S. & Tzavalis Elias & Agapitos Orestis, 2023. "Augmenting the Realized-GARCH: the role of signed-jumps, attenuation-biases and long-memory effects," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 27(2), pages 171-198, April.
- Jörg Döpke & Karsten Müller & Lars Tegtmeier, 2023. "Moments of cross‐sectional stock market returns and the German business cycle," Economic Notes, Banca Monte dei Paschi di Siena SpA, vol. 52(2), July.
- Wang, Lu & Wu, Jiangbin & Cao, Yang & Hong, Yanran, 2022. "Forecasting renewable energy stock volatility using short and long-term Markov switching GARCH-MIDAS models: Either, neither or both?," Energy Economics, Elsevier, vol. 111(C).
- Buansing, T.S. Tuang & Golan, Amos & Ullah, Aman, 2020.
"An information-theoretic approach for forecasting interval-valued SP500 daily returns,"
International Journal of Forecasting, Elsevier, vol. 36(3), pages 800-813.
- T.S. Tuang Buansing & Amos Golan & Aman Ullah, 2019. "Information-Theoretic Approach for Forecasting Interval-Valued SP500 Daily Returns," Working Papers 201922, University of California at Riverside, Department of Economics.
- Bloznelis, Daumantas, 2017. "Hedging under square loss," MPRA Paper 83442, University Library of Munich, Germany.
- Andree,Bo Pieter Johannes & Chamorro Elizondo,Andres Fernando & Kraay,Aart C. & Spencer,Phoebe Girouard & Wang,Dieter, 2020. "Predicting Food Crises," Policy Research Working Paper Series 9412, The World Bank.
- Conlon, Thomas & Cotter, John & Eyiah-Donkor, Emmanuel, 2024. "Forecasting the price of oil: A cautionary note," Journal of Commodity Markets, Elsevier, vol. 33(C).
- Auer, Benjamin R. & Schuhmacher, Frank & Niemann, Sebastian, 2023. "Cloning mutual fund returns," The Quarterly Review of Economics and Finance, Elsevier, vol. 90(C), pages 31-37.
- Rafal Weron & Florian Ziel, 2018.
"Electricity price forecasting,"
HSC Research Reports
HSC/18/08, Hugo Steinhaus Center, Wroclaw University of Science and Technology.
- Katarzyna Maciejowska & Rafal Weron, 2019. "Electricity price forecasting," HSC Research Reports HSC/19/01, Hugo Steinhaus Center, Wroclaw University of Science and Technology.
- Hartigan, Luke, 2018.
"Alternative HAC covariance matrix estimators with improved finite sample properties,"
Computational Statistics & Data Analysis, Elsevier, vol. 119(C), pages 55-73.
- Luke Hartigan, 2016. "Alternative HAC Covariance Matrix Estimators with Improved Finite Sample Properties," Discussion Papers 2016-06, School of Economics, The University of New South Wales.
- Sergei Kulakov & Florian Ziel, 2019. "The Impact of Renewable Energy Forecasts on Intraday Electricity Prices," Papers 1903.09641, arXiv.org, revised Nov 2019.
- Zhou, Jin & Li, Haiqi & Zhong, Wanling, 2021. "A modified Diebold–Mariano test for equal forecast accuracy with clustered dependence," Economics Letters, Elsevier, vol. 207(C).
- Roozbeh Sadeghian Broujeny & Safa Ben Ayed & Mouadh Matalah, 2023. "Energy Consumption Forecasting in a University Office by Artificial Intelligence Techniques: An Analysis of the Exogenous Data Effect on the Modeling," Energies, MDPI, vol. 16(10), pages 1-21, May.
- Jiangwei Liu & Xiaohong Huang, 2021. "Forecasting Crude Oil Price Using Event Extraction," Papers 2111.09111, arXiv.org.
- Michelle L. Barnes & Giovanni P. Olivei, 2017. "Consumer Attitudes and Their Forecasting Power for Consumer Spending," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 49(5), pages 1031-1058, August.
- Tim Köhler & Jörg Döpke, 2023. "Will the last be the first? Ranking German macroeconomic forecasters based on different criteria," Empirical Economics, Springer, vol. 64(2), pages 797-832, February.
- Kyle E. Binder & Mohsen Pourahmadi & James W. Mjelde, 2020. "The role of temporal dependence in factor selection and forecasting oil prices," Empirical Economics, Springer, vol. 58(3), pages 1185-1223, March.
- Ductor, Lorenzo & Leiva-Leon, Danilo, 2016.
"Dynamics of global business cycle interdependence,"
Journal of International Economics, Elsevier, vol. 102(C), pages 110-127.
- Lorenzo Ductor & Danilo Leiva-Leon, 2015. "Dynamics of Global Business Cycles Interdependence," Working Papers Central Bank of Chile 763, Central Bank of Chile.
- Nima Nonejad, 2024. "Point forecasts of the price of crude oil: an attempt to “beat” the end-of-month random-walk benchmark," Empirical Economics, Springer, vol. 67(4), pages 1497-1539, October.
- Heni Boubaker & Nawres Bannour, 2023. "Coupling the Empirical Wavelet and the Neural Network Methods in Order to Forecast Electricity Price," JRFM, MDPI, vol. 16(4), pages 1-22, April.
- Olena Kostyshyna & Tolga Özden & Yang Zhang, 2024. "Endogenous Credibility and Wage-Price Spirals," Staff Working Papers 24-14, Bank of Canada.
- Rick Steinert & Florian Ziel, 2019. "Short- to Mid-term Day-Ahead Electricity Price Forecasting Using Futures," The Energy Journal, , vol. 40(1), pages 105-128, January.
- Michael W. McCracken, 2019. "Tests of Conditional Predictive Ability: Some Simulation Evidence," Working Papers 2019-11, Federal Reserve Bank of St. Louis.
- Xu, Hua & Wang, Minggang & Jiang, Shumin & Yang, Weiguo, 2020. "Carbon price forecasting with complex network and extreme learning machine," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
- Håvard Hungnes, 2020. "Equal predictability test for multi-step-ahead system forecasts invariant to linear transformations," Discussion Papers 931, Statistics Norway, Research Department.
- Laura Coroneo & Fabrizio Iacone, 2015. "Comparing predictive accuracy in small samples," Discussion Papers 15/15, Department of Economics, University of York.
- Eric Hillebrand & Jakob Mikkelsen & Lars Spreng & Giovanni Urga, 2020. "Exchange Rates and Macroeconomic Fundamentals: Evidence of Instabilities from Time-Varying Factor Loadings," CREATES Research Papers 2020-19, Department of Economics and Business Economics, Aarhus University.
- Ellwanger, Reinhard & Snudden, Stephen, 2023. "Forecasts of the real price of oil revisited: Do they beat the random walk?," Journal of Banking & Finance, Elsevier, vol. 154(C).
- Ulrich Gunter & Irem Önder & Stefan Gindl, 2019. "Exploring the predictive ability of LIKES of posts on the Facebook pages of four major city DMOs in Austria," Tourism Economics, , vol. 25(3), pages 375-401, May.
- Anh Ngoc-Lan Huynh & Ravinesh C. Deo & Duc-Anh An-Vo & Mumtaz Ali & Nawin Raj & Shahab Abdulla, 2020. "Near Real-Time Global Solar Radiation Forecasting at Multiple Time-Step Horizons Using the Long Short-Term Memory Network," Energies, MDPI, vol. 13(14), pages 1-30, July.
- Arango-Castillo, Lenin & Orraca, María José & Molina, G. Stefano, 2023. "The global component of headline and core inflation in emerging market economies and its ability to improve forecasting performance," Economic Modelling, Elsevier, vol. 120(C).
- Elliott, Graham & Gargano, Antonio & Timmermann, Allan, 2013.
"Complete subset regressions,"
Journal of Econometrics, Elsevier, vol. 177(2), pages 357-373.
- Elliott, Graham & Gargano, Antonio & Timmermann, Allan, 2013. "Complete subset regressions," University of California at San Diego, Economics Working Paper Series qt1st3n7z7, Department of Economics, UC San Diego.
- Chiang, I-Hsuan Ethan & Hughen, W. Keener, 2017. "Do oil futures prices predict stock returns?," Journal of Banking & Finance, Elsevier, vol. 79(C), pages 129-141.
- Procasky, William J. & Yin, Anwen, 2023. "The impact of COVID-19 on the relative market efficiency and forecasting ability of credit derivative and equity markets," International Review of Financial Analysis, Elsevier, vol. 90(C).
- Yang, Yifan & Guo, Ju’e & Li, Yi & Zhou, Jiandong, 2024. "Forecasting day-ahead electricity prices with spatial dependence," International Journal of Forecasting, Elsevier, vol. 40(3), pages 1255-1270.
- Papantonis, Ioannis & Rompolis, Leonidas & Tzavalis, Elias, 2023. "Improving variance forecasts: The role of Realized Variance features," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1221-1237.
- Fang, Libing & Qian, Yichuo & Chen, Ying & Yu, Honghai, 2018. "How does stock market volatility react to NVIX? Evidence from developed countries," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 490-499.
- repec:hum:wpaper:sfb649dp2015-041 is not listed on IDEAS
- Christina Anderl & Guglielmo Maria Caporale, 2023. "The Asymmetric Impact of Economic Policy and Oil Price Uncertainty on Inflation: Evidence from Developed and Emerging Economies," CESifo Working Paper Series 10276, CESifo.
- Edvinsson, Rodney & Karlsson, Sune & Österholm, Pär, 2023. "Does Money Growth Predict Inflation? Evidence from Vector Autoregressions Using Four Centuries of Data," Working Papers 2023:3, Örebro University, School of Business.
- Florian Ziel & Kevin Berk, 2019. "Multivariate Forecasting Evaluation: On Sensitive and Strictly Proper Scoring Rules," Papers 1910.07325, arXiv.org.
- Domit, Sílvia & Monti, Francesca & Sokol, Andrej, 2019. "Forecasting the UK economy with a medium-scale Bayesian VAR," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1669-1678.
- Schulz, Rainer & Wersing, Martin, 2015. "Forecasting the oil price using house prices," SFB 649 Discussion Papers 2015-041, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
- Madadkhani, Shiva & Ikonnikova, Svetlana, 2024. "Toward high-resolution projection of electricity prices: A machine learning approach to quantifying the effects of high fuel and CO2 prices," Energy Economics, Elsevier, vol. 129(C).
- Siva R Venna & Satya Katragadda & Vijay Raghavan & Raju Gottumukkala, 2021. "River Stage Forecasting using Enhanced Partial Correlation Graph," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(12), pages 4111-4126, September.
- Pavel Kapinos & Oscar A. Mitnik, 2016. "A Top-down Approach to Stress-testing Banks," Journal of Financial Services Research, Springer;Western Finance Association, vol. 49(2), pages 229-264, June.
- Guillaume Chevalier & Guillaume Coqueret & Thomas Raffinot, 2022. "Supervised portfolios," Post-Print hal-04144588, HAL.
- Reinhard Ellwanger, Stephen Snudden, Lenin Arango-Castillo, 2023. "Seize the Last Day: Period-End-Point Sampling for Forecasts of Temporally Aggregated Data," LCERPA Working Papers bm0142, Laurier Centre for Economic Research and Policy Analysis.
- Simon Hirsch & Florian Ziel, 2023. "Multivariate Simulation-based Forecasting for Intraday Power Markets: Modelling Cross-Product Price Effects," Papers 2306.13419, arXiv.org.
- José Renato Haas Ornelas & Roberto Baltieri Mauad, 2017. "Volatility risk premia and future commodities returns," BIS Working Papers 619, Bank for International Settlements.
- Juan Carlos Escanciano & Ricardo Parra, 2024. "Extending the Scope of Inference About Predictive Ability to Machine Learning Methods," Papers 2402.12838, arXiv.org, revised Apr 2024.
- Andersen, Torben G. & Li, Yingying & Todorov, Viktor & Zhou, Bo, 2023. "Volatility measurement with pockets of extreme return persistence," Journal of Econometrics, Elsevier, vol. 237(2).
- Zongwu Cai & Pixiong Chen, 2022. "New Online Investor Sentiment and Asset Returns," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 202216, University of Kansas, Department of Economics, revised Nov 2022.
- Zeda Li & William W. S. Wei, 2024. "Measuring the advantages of contemporaneous aggregation in forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(5), pages 1308-1320, August.
- Takamizawa, Hideyuki & 高見澤, 秀幸, 2015. "Impact of No-arbitrage on Interest Rate Dynamics," Working Paper Series G-1-5, Hitotsubashi University Center for Financial Research.
- Mariia Artemova & Francisco Blasques & Siem Jan Koopman & Zhaokun Zhang, 2021. "Forecasting in a changing world: from the great recession to the COVID-19 pandemic," Tinbergen Institute Discussion Papers 21-006/III, Tinbergen Institute.
- Ziel, Florian & Steinert, Rick & Husmann, Sven, 2015. "Forecasting day ahead electricity spot prices: The impact of the EXAA to other European electricity markets," Energy Economics, Elsevier, vol. 51(C), pages 430-444.
- Jean-Yves Pitarakis, 2020. "A Novel Approach to Predictive Accuracy Testing in Nested Environments," Papers 2008.08387, arXiv.org, revised Oct 2023.
- Chien-Ho Wang & Ming-Hui Ko & Wan-Jiun Chen, 2019. "Effects of Kyoto Protocol on CO 2 Emissions: A Five-Country Rolling Regression Analysis," Sustainability, MDPI, vol. 11(3), pages 1-20, January.
- Jamali, Ibrahim & Yamani, Ehab, 2019. "Out-of-sample exchange rate predictability in emerging markets: Fundamentals versus technical analysis," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 61(C), pages 241-263.
- Tobback, Ellen & Naudts, Hans & Daelemans, Walter & Junqué de Fortuny, Enric & Martens, David, 2018. "Belgian economic policy uncertainty index: Improvement through text mining," International Journal of Forecasting, Elsevier, vol. 34(2), pages 355-365.
- Frank J. Fabozzi & Francesco A. Fabozzi & Diana Tunaru, 2023. "A comparison of multi-factor term structure models for interbank rates," Review of Quantitative Finance and Accounting, Springer, vol. 61(1), pages 323-356, July.
- repec:ecb:ecbwps:20141803 is not listed on IDEAS
- Jonathan Hambur & Lynne Cockerell & Christopher Potter & Penelope Smith & Michelle Wright, 2015. "Modelling the Australian Dollar," RBA Research Discussion Papers rdp2015-12, Reserve Bank of Australia.
- Blasques, F. & Koopman, S.J. & Mallee, M. & Zhang, Z., 2016. "Weighted maximum likelihood for dynamic factor analysis and forecasting with mixed frequency data," Journal of Econometrics, Elsevier, vol. 193(2), pages 405-417.
- William J. Procasky & Anwen Yin, 2022. "Forecasting high‐yield equity and CDS index returns: Does observed cross‐market informational flow have predictive power?," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(8), pages 1466-1490, August.