IDEAS home Printed from https://ideas.repec.org/a/gam/jecnmx/v9y2021i4p36-d652685.html
   My bibliography  Save this article

Forecasting US Inflation in Real Time

Author

Listed:
  • Chad Fulton

    (Board of Governors of the Federal Reserve System, 20th and Constitution Ave NW, Washington, DC 20551, USA)

  • Kirstin Hubrich

    (Board of Governors of the Federal Reserve System, 20th and Constitution Ave NW, Washington, DC 20551, USA)

Abstract

We analyze real-time forecasts of US inflation over 1999Q3–2019Q4 and subsamples, investigating whether and how forecast accuracy and robustness can be improved with additional information such as expert judgment, additional macroeconomic variables, and forecast combination. The forecasts include those from the Federal Reserve Board’s Tealbook, the Survey of Professional Forecasters, dynamic models, and combinations thereof. While simple models remain hard to beat, additional information does improve forecasts, especially after 2009. Notably, forecast combination improves forecast accuracy over simpler models and robustifies against bad forecasts; aggregating forecasts of inflation’s components can improve performance compared to forecasting the aggregate directly; and judgmental forecasts, which may incorporate larger and more timely datasets in conjunction with model-based forecasts, improve forecasts at short horizons.

Suggested Citation

  • Chad Fulton & Kirstin Hubrich, 2021. "Forecasting US Inflation in Real Time," Econometrics, MDPI, vol. 9(4), pages 1-20, October.
  • Handle: RePEc:gam:jecnmx:v:9:y:2021:i:4:p:36-:d:652685
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2225-1146/9/4/36/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2225-1146/9/4/36/
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. West, Kenneth D, 1996. "Asymptotic Inference about Predictive Ability," Econometrica, Econometric Society, vol. 64(5), pages 1067-1084, September.
    2. James H. Stock & Mark W. Watson, 2016. "Core Inflation and Trend Inflation," The Review of Economics and Statistics, MIT Press, vol. 98(4), pages 770-784, October.
    3. Jennifer L. Castle & Jurgen A. Doornik & David F. Hendry, 2021. "Selecting a Model for Forecasting," Econometrics, MDPI, vol. 9(3), pages 1-35, June.
    4. Yock Y. Chong & David F. Hendry, 1986. "Econometric Evaluation of Linear Macro-Economic Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 53(4), pages 671-690.
    5. Kirstin Hubrich & Kenneth D. West, 2010. "Forecast evaluation of small nested model sets," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(4), pages 574-594.
    6. Hendry, David F. & Hubrich, Kirstin, 2011. "Combining Disaggregate Forecasts or Combining Disaggregate Information to Forecast an Aggregate," Journal of Business & Economic Statistics, American Statistical Association, vol. 29(2), pages 216-227.
    7. Modugno, Michele, 2013. "Now-casting inflation using high frequency data," International Journal of Forecasting, Elsevier, vol. 29(4), pages 664-675.
    8. Raffaella Giacomini & Barbara Rossi, 2009. "Detecting and Predicting Forecast Breakdowns," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 76(2), pages 669-705.
    9. Clinton P. McCully & Brian C. Moyer & Kenneth J. Stewart, 2007. "A Reconciliation between the Consumer Price Index and the Personal Consumption Expenditures Price Index," BEA Papers 0079, Bureau of Economic Analysis.
    10. Martin Eichenbaum & Nir Jaimovich & Sergio Rebelo & Josephine Smith, 2014. "How Frequent Are Small Price Changes?," American Economic Journal: Macroeconomics, American Economic Association, vol. 6(2), pages 137-155, April.
    11. Granger, C. W. J., 1987. "Implications of Aggregation with Common Factors," Econometric Theory, Cambridge University Press, vol. 3(2), pages 208-222, April.
    12. Edward S. Knotek & Saeed Zaman, 2017. "Nowcasting U.S. Headline and Core Inflation," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 49(5), pages 931-968, August.
    13. James H. Stock & Mark W. Watson, 2007. "Why Has U.S. Inflation Become Harder to Forecast?," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(s1), pages 3-33, February.
    14. Hubrich, Kirstin, 2005. "Forecasting euro area inflation: Does aggregating forecasts by HICP component improve forecast accuracy?," International Journal of Forecasting, Elsevier, vol. 21(1), pages 119-136.
    15. Hendry, David F., 2006. "Robustifying forecasts from equilibrium-correction systems," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 399-426.
    16. Clements,Michael & Hendry,David, 1998. "Forecasting Economic Time Series," Cambridge Books, Cambridge University Press, number 9780521634809, January.
    17. Ericsson, Neil R., 1992. "Parameter constancy, mean square forecast errors, and measuring forecast performance: An exposition, extensions, and illustration," Journal of Policy Modeling, Elsevier, vol. 14(4), pages 465-495, August.
    18. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    19. Francis X. Diebold, 2015. "Comparing Predictive Accuracy, Twenty Years Later: A Personal Perspective on the Use and Abuse of Diebold-Mariano Tests," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(1), pages 1-1, January.
    20. Kirstin Hubrich & Frauke Skudelny, 2017. "Forecast Combination for Euro Area Inflation: A Cure in Times of Crisis?," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 36(5), pages 515-540, August.
    21. James H. Stock & Mark W. Watson, 2007. "Erratum to "Why Has U.S. Inflation Become Harder to Forecast?"," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(7), pages 1849-1849, October.
    22. Peter Tulip, 2009. "Has the Economy Become More Predictable? Changes in Greenbook Forecast Accuracy," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 41(6), pages 1217-1231, September.
    23. James H. Stock & Mark W. Watson, 2007. "Erratum to “Why Has U.S. Inflation Become Harder to Forecast?”," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(7), pages 1849-1849, October.
    24. Dean Croushore & Tom Stark, 2019. "Fifty Years of the Survey of Professional Forecasters," Economic Insights, Federal Reserve Bank of Philadelphia, vol. 4(4), pages 1-11, October.
    25. David F. Hendry & Michael P. Clements, 2004. "Pooling of forecasts," Econometrics Journal, Royal Economic Society, vol. 7(1), pages 1-31, June.
    26. Peter Tulip, 2009. "Has the Economy Become More Predictable? Changes in Greenbook Forecast Accuracy," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 41(6), pages 1217-1231, September.
    27. Jerome H. Powell, 2018. "Monetary policy and risk management at a time of low inflation and low unemployment," Business Economics, Palgrave Macmillan;National Association for Business Economics, vol. 53(4), pages 173-183, October.
    28. Andrew Atkeson & Lee E. Ohanian, 2001. "Are Phillips curves useful for forecasting inflation?," Quarterly Review, Federal Reserve Bank of Minneapolis, vol. 25(Win), pages 2-11.
    29. James H. Stock & Mark W. Watson, 2007. "Why Has U.S. Inflation Become Harder to Forecast?," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(s1), pages 3-33, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rossi, Barbara, 2013. "Advances in Forecasting under Instability," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1203-1324, Elsevier.
    2. Tallman, Ellis W. & Zaman, Saeed, 2020. "Combining survey long-run forecasts and nowcasts with BVAR forecasts using relative entropy," International Journal of Forecasting, Elsevier, vol. 36(2), pages 373-398.
    3. Andrew B. Martinez, 2020. "Extracting Information from Different Expectations," Working Papers 2020-008, The George Washington University, Department of Economics, H. O. Stekler Research Program on Forecasting.
    4. Aron, Janine & Muellbauer, John, 2012. "Improving forecasting in an emerging economy, South Africa: Changing trends, long run restrictions and disaggregation," International Journal of Forecasting, Elsevier, vol. 28(2), pages 456-476.
    5. Barbara Rossi, 2019. "Forecasting in the presence of instabilities: How do we know whether models predict well and how to improve them," Economics Working Papers 1711, Department of Economics and Business, Universitat Pompeu Fabra, revised Jul 2021.
    6. Faust, Jon & Wright, Jonathan H., 2013. "Forecasting Inflation," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 2-56, Elsevier.
    7. Hendry, David F. & Hubrich, Kirstin, 2011. "Combining Disaggregate Forecasts or Combining Disaggregate Information to Forecast an Aggregate," Journal of Business & Economic Statistics, American Statistical Association, vol. 29(2), pages 216-227.
    8. Kirstin Hubrich & Frauke Skudelny, 2017. "Forecast Combination for Euro Area Inflation: A Cure in Times of Crisis?," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 36(5), pages 515-540, August.
    9. Gibbs, Christopher G. & Vasnev, Andrey L., 2024. "Conditionally optimal weights and forward-looking approaches to combining forecasts," International Journal of Forecasting, Elsevier, vol. 40(4), pages 1734-1751.
    10. Mariia Artemova & Francisco Blasques & Siem Jan Koopman & Zhaokun Zhang, 2021. "Forecasting in a changing world: from the great recession to the COVID-19 pandemic," Tinbergen Institute Discussion Papers 21-006/III, Tinbergen Institute.
    11. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    12. Edward S. Knotek & Saeed Zaman, 2017. "Nowcasting U.S. Headline and Core Inflation," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 49(5), pages 931-968, August.
    13. Ekşi Ozan & Orman Cüneyt & Taş Bedri Kamil Onur, 2017. "Has the forecasting performance of the Federal Reserve’s Greenbooks changed over time?," The B.E. Journal of Macroeconomics, De Gruyter, vol. 17(2), pages 1-25, June.
    14. Matei Demetrescu & Christoph Hanck & Robinson Kruse‐Becher, 2022. "Robust inference under time‐varying volatility: A real‐time evaluation of professional forecasters," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(5), pages 1010-1030, August.
    15. Thomas Hasenzagl & Filippo Pellegrino & Lucrezia Reichlin & Giovanni Ricco, 2022. "A Model of the Fed's View on Inflation," The Review of Economics and Statistics, MIT Press, vol. 104(4), pages 686-704, October.
    16. Jan Prüser, 2021. "Forecasting US inflation using Markov dimension switching," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(3), pages 481-499, April.
    17. Anjara Lalaina Jocelyn Rakotoarisoa, 2024. "Modélisations Univariées de l’Inflation Mensuelle à Madagascar : l’Atout du Modèle LSTM, un Réseau de Neurones Récurrents," Post-Print hal-04766563, HAL.
    18. Gao, Shen & Hou, Chenghan & Nguyen, Bao H., 2021. "Forecasting natural gas prices using highly flexible time-varying parameter models," Economic Modelling, Elsevier, vol. 105(C).
    19. Kirstin Hubrich & Kenneth D. West, 2010. "Forecast evaluation of small nested model sets," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(4), pages 574-594.

    More about this item

    Keywords

    inflation; Phillips curve; survey forecasts; Tealbook forecasts; forecast combination;
    All these keywords.

    JEL classification:

    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications
    • E30 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - General (includes Measurement and Data)

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jecnmx:v:9:y:2021:i:4:p:36-:d:652685. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.