IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v545y2020ics0378437119316097.html
   My bibliography  Save this article

Carbon price forecasting with complex network and extreme learning machine

Author

Listed:
  • Xu, Hua
  • Wang, Minggang
  • Jiang, Shumin
  • Yang, Weiguo

Abstract

Carbon emission price mechanism is the core issue in carbon emission trading. The carbon emission price fluctuation trend is related to the play of the effectiveness of carbon emission trading market, and directly affects the green and low-carbon behavior of enterprises and residents. Therefore, the prediction of carbon price is of great practical significance. This study presents a new carbon price prediction model by using time series complex network analysis technology and extreme learning machine algorithm (ELM). In our model, we first map the carbon price data into a carbon price network (CPN), and then extract the effective information of carbon price fluctuations by using the network topology, and use the extracted effective information to reconstruct the carbon price sample data. With the reconstructed data and the extreme learning machine algorithm, the carbon price network extreme learning machine model (CPN-ELM) is built. To test the validity of the model, we selected the carbon emission price data of the second, third and transition stages of the European Union Emissions Trading System (EU ETS) for empirical analysis, the results show that CPN-ELM can improve the predictive accuracy of ELM in both level accuracy and directional accuracy. Meanwhile, CPN-ELM prediction model has better robustness when facing the random samples, sample data with different frequencies or sample data with structural changes.

Suggested Citation

  • Xu, Hua & Wang, Minggang & Jiang, Shumin & Yang, Weiguo, 2020. "Carbon price forecasting with complex network and extreme learning machine," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
  • Handle: RePEc:eee:phsmap:v:545:y:2020:i:c:s0378437119316097
    DOI: 10.1016/j.physa.2019.122830
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437119316097
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2019.122830?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Francis X. Diebold, 2015. "Comparing Predictive Accuracy, Twenty Years Later: A Personal Perspective on the Use and Abuse of Diebold-Mariano Tests," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(1), pages 1-1, January.
    2. Wang, Minggang & Chen, Ying & Tian, Lixin & Jiang, Shumin & Tian, Zihao & Du, Ruijin, 2016. "Fluctuation behavior analysis of international crude oil and gasoline price based on complex network perspective," Applied Energy, Elsevier, vol. 175(C), pages 109-127.
    3. David Liben‐Nowell & Jon Kleinberg, 2007. "The link‐prediction problem for social networks," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 58(7), pages 1019-1031, May.
    4. Zhu, Bangzhu & Wei, Yiming, 2013. "Carbon price forecasting with a novel hybrid ARIMA and least squares support vector machines methodology," Omega, Elsevier, vol. 41(3), pages 517-524.
    5. Zhang, X. & Chen, M.Y. & Wang, M.G. & Ge, Y.E. & Stanley, H.E., 2019. "A novel hybrid approach to Baltic Dry Index forecasting based on a combined dynamic fluctuation network and artificial intelligence method," Applied Mathematics and Computation, Elsevier, vol. 361(C), pages 499-516.
    6. Wang, Chao & Zhang, Xinyi & Wang, Minggang & Lim, Ming K. & Ghadimi, Pezhman, 2019. "Predictive analytics of the copper spot price by utilizing complex network and artificial neural network techniques," Resources Policy, Elsevier, vol. 63(C), pages 1-1.
    7. Guoqiang Sun & Tong Chen & Zhinong Wei & Yonghui Sun & Haixiang Zang & Sheng Chen, 2016. "A Carbon Price Forecasting Model Based on Variational Mode Decomposition and Spiking Neural Networks," Energies, MDPI, vol. 9(1), pages 1-16, January.
    8. Wang, Minggang & Zhao, Longfeng & Du, Ruijin & Wang, Chao & Chen, Lin & Tian, Lixin & Eugene Stanley, H., 2018. "A novel hybrid method of forecasting crude oil prices using complex network science and artificial intelligence algorithms," Applied Energy, Elsevier, vol. 220(C), pages 480-495.
    9. Lü, Linyuan & Zhou, Tao, 2011. "Link prediction in complex networks: A survey," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(6), pages 1150-1170.
    10. An, Haizhong & Gao, Xiangyun & Fang, Wei & Huang, Xuan & Ding, Yinghui, 2014. "The role of fluctuating modes of autocorrelation in crude oil prices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 393(C), pages 382-390.
    11. Zhao, Xin & Han, Meng & Ding, Lili & Kang, Wanglin, 2018. "Usefulness of economic and energy data at different frequencies for carbon price forecasting in the EU ETS," Applied Energy, Elsevier, vol. 216(C), pages 132-141.
    12. Li, Xiuming & Sun, Mei & Gao, Cuixia & Han, Dun & Wang, Minggang, 2018. "The parametric modified limited penetrable visibility graph for constructing complex networks from time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 492(C), pages 1097-1106.
    13. Wang, Minggang & Tian, Lixin, 2016. "From time series to complex networks: The phase space coarse graining," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 456-468.
    14. Wang, Minggang & Tian, Lixin & Xu, Hua & Li, Weiyu & Du, Ruijin & Dong, Gaogao & Wang, Jie & Gu, Jiani, 2017. "Systemic risk and spatiotemporal dynamics of the consumer market of China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 473(C), pages 188-204.
    15. Bezsudnov, I.V. & Snarskii, A.A., 2014. "From the time series to the complex networks: The parametric natural visibility graph," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 414(C), pages 53-60.
    16. Wang, Minggang & Tian, Lixin & Du, Ruijin, 2016. "Research on the interaction patterns among the global crude oil import dependency countries: A complex network approach," Applied Energy, Elsevier, vol. 180(C), pages 779-791.
    17. Zhu, Bangzhu & Ye, Shunxin & Wang, Ping & He, Kaijian & Zhang, Tao & Wei, Yi-Ming, 2018. "A novel multiscale nonlinear ensemble leaning paradigm for carbon price forecasting," Energy Economics, Elsevier, vol. 70(C), pages 143-157.
    18. Rong Zhang & Baabak Ashuri & Yong Deng, 2017. "A novel method for forecasting time series based on fuzzy logic and visibility graph," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 11(4), pages 759-783, December.
    19. Gary Koop & Lise Tole, 2013. "Forecasting the European carbon market," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 176(3), pages 723-741, June.
    20. Chevallier, Julien, 2011. "Nonparametric modeling of carbon prices," Energy Economics, Elsevier, vol. 33(6), pages 1267-1282.
    21. Huan Chen & Lixin Tian & Minggang Wang & Zaili Zhen, 2017. "Analysis of the Dynamic Evolutionary Behavior of American Heating Oil Spot and Futures Price Fluctuation Networks," Sustainability, MDPI, vol. 9(4), pages 1-29, April.
    22. Segnon, Mawuli & Lux, Thomas & Gupta, Rangan, 2017. "Modeling and forecasting the volatility of carbon dioxide emission allowance prices: A review and comparison of modern volatility models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 692-704.
    23. repec:dau:papers:123456789/6791 is not listed on IDEAS
    24. Zhu, Bangzhu & Han, Dong & Wang, Ping & Wu, Zhanchi & Zhang, Tao & Wei, Yi-Ming, 2017. "Forecasting carbon price using empirical mode decomposition and evolutionary least squares support vector regression," Applied Energy, Elsevier, vol. 191(C), pages 521-530.
    25. Wang, Minggang & Tian, Lixin & Zhou, Peng, 2018. "A novel approach for oil price forecasting based on data fluctuation network," Energy Economics, Elsevier, vol. 71(C), pages 201-212.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qi, Shaozhou & Cheng, Shihan & Tan, Xiujie & Feng, Shenghao & Zhou, Qi, 2022. "Predicting China's carbon price based on a multi-scale integrated model," Applied Energy, Elsevier, vol. 324(C).
    2. Tianqi Pang & Kehui Tan & Chenyou Fan, 2023. "Carbon Price Forecasting with Quantile Regression and Feature Selection," Papers 2305.03224, arXiv.org.
    3. Sha Liu & Yiting Zhang & Junping Wang & Danlei Feng, 2024. "Fluctuations and Forecasting of Carbon Price Based on A Hybrid Ensemble Learning GARCH-LSTM-Based Approach: A Case of Five Carbon Trading Markets in China," Sustainability, MDPI, vol. 16(4), pages 1-23, February.
    4. Li, Guohui & Ning, Zhiyuan & Yang, Hong & Gao, Lipeng, 2022. "A new carbon price prediction model," Energy, Elsevier, vol. 239(PD).
    5. Sun Meng & Yan Chen, 2023. "Market Volatility Spillover, Network Diffusion, and Financial Systemic Risk Management: Financial Modeling and Empirical Study," Mathematics, MDPI, vol. 11(6), pages 1-16, March.
    6. Zhou, Yang & Xie, Chi & Wang, Gang-Jin & Zhu, You & Uddin, Gazi Salah, 2023. "Analysing and forecasting co-movement between innovative and traditional financial assets based on complex network and machine learning," Research in International Business and Finance, Elsevier, vol. 64(C).
    7. Gao, Feng & Chi, Hong & Shao, Xueyan, 2021. "Forecasting residential electricity consumption using a hybrid machine learning model with online search data," Applied Energy, Elsevier, vol. 300(C).
    8. Zhu, Mengrui & Xu, Hua & Wang, Minggang & Tian, Lixin, 2024. "Carbon price interval prediction method based on probability density recurrence network and interval multi-layer perceptron," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 636(C).
    9. Jujie Wang & Zhenzhen Zhuang, 2023. "A novel cluster based multi-index nonlinear ensemble framework for carbon price forecasting," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(7), pages 6225-6247, July.
    10. Huang, Yumeng & Dai, Xingyu & Wang, Qunwei & Zhou, Dequn, 2021. "A hybrid model for carbon price forecastingusing GARCH and long short-term memory network," Applied Energy, Elsevier, vol. 285(C).
    11. Nader Trabelsi & Aviral Kumar Tiwari, 2023. "CO2 Emission Allowances Risk Prediction with GAS and GARCH Models," Computational Economics, Springer;Society for Computational Economics, vol. 61(2), pages 775-805, February.
    12. Zhou, Feite & Huang, Zhehao & Zhang, Changhong, 2022. "Carbon price forecasting based on CEEMDAN and LSTM," Applied Energy, Elsevier, vol. 311(C).
    13. Zhang, Fang & Xia, Yan, 2022. "Carbon price prediction models based on online news information analytics," Finance Research Letters, Elsevier, vol. 46(PA).
    14. Tan, Xueping & Sirichand, Kavita & Vivian, Andrew & Wang, Xinyu, 2022. "Forecasting European carbon returns using dimension reduction techniques: Commodity versus financial fundamentals," International Journal of Forecasting, Elsevier, vol. 38(3), pages 944-969.
    15. Wen Zhang & Zhibin Wu, 2022. "Optimal hybrid framework for carbon price forecasting using time series analysis and least squares support vector machine," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(3), pages 615-632, April.
    16. AL-Alimi, Dalal & AlRassas, Ayman Mutahar & Al-qaness, Mohammed A.A. & Cai, Zhihua & Aseeri, Ahmad O. & Abd Elaziz, Mohamed & Ewees, Ahmed A., 2023. "TLIA: Time-series forecasting model using long short-term memory integrated with artificial neural networks for volatile energy markets," Applied Energy, Elsevier, vol. 343(C).
    17. Zhang, Wen & Wu, Zhibin & Zeng, Xiaojun & Zhu, Changhui, 2023. "An ensemble dynamic self-learning model for multiscale carbon price forecasting," Energy, Elsevier, vol. 263(PC).
    18. Wang, Minggang & Zhu, Mengrui & Tian, Lixin, 2022. "A novel framework for carbon price forecasting with uncertainties," Energy Economics, Elsevier, vol. 112(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huang, Yumeng & Dai, Xingyu & Wang, Qunwei & Zhou, Dequn, 2021. "A hybrid model for carbon price forecastingusing GARCH and long short-term memory network," Applied Energy, Elsevier, vol. 285(C).
    2. Jesús Molina‐Muñoz & Andrés Mora‐Valencia & Javier Perote, 2024. "Predicting carbon and oil price returns using hybrid models based on machine and deep learning," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 31(2), June.
    3. Zhou, Yang & Xie, Chi & Wang, Gang-Jin & Zhu, You & Uddin, Gazi Salah, 2023. "Analysing and forecasting co-movement between innovative and traditional financial assets based on complex network and machine learning," Research in International Business and Finance, Elsevier, vol. 64(C).
    4. Wang, Minggang & Xu, Hua & Tian, Lixin & Eugene Stanley, H., 2018. "Degree distributions and motif profiles of limited penetrable horizontal visibility graphs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 620-634.
    5. Wang, Minggang & Zhu, Mengrui & Tian, Lixin, 2022. "A novel framework for carbon price forecasting with uncertainties," Energy Economics, Elsevier, vol. 112(C).
    6. Tan, Xueping & Sirichand, Kavita & Vivian, Andrew & Wang, Xinyu, 2022. "Forecasting European carbon returns using dimension reduction techniques: Commodity versus financial fundamentals," International Journal of Forecasting, Elsevier, vol. 38(3), pages 944-969.
    7. Wang, Xin & Sun, Mei, 2021. "A novel prediction model of multi-layer symbolic pattern network: Based on causation entropy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 575(C).
    8. Katarzyna Rudnik & Anna Hnydiuk-Stefan & Aneta Kucińska-Landwójtowicz & Łukasz Mach, 2022. "Forecasting Day-Ahead Carbon Price by Modelling Its Determinants Using the PCA-Based Approach," Energies, MDPI, vol. 15(21), pages 1-23, October.
    9. Wang, Minggang & Tian, Lixin & Zhou, Peng, 2018. "A novel approach for oil price forecasting based on data fluctuation network," Energy Economics, Elsevier, vol. 71(C), pages 201-212.
    10. Kaijian He & Qian Yang & Lei Ji & Jingcheng Pan & Yingchao Zou, 2023. "Financial Time Series Forecasting with the Deep Learning Ensemble Model," Mathematics, MDPI, vol. 11(4), pages 1-15, February.
    11. Guangyong Zhang & Lixin Tian & Wenbin Zhang & Xu Yan & Bingyue Wan & Zaili Zhen, 2020. "A Study on the Similarities and Differences of the Conventional Gasoline Spot Price Fluctuation Network between Different Harbors," Sustainability, MDPI, vol. 12(2), pages 1-25, January.
    12. Wang, Minggang & Zhao, Longfeng & Du, Ruijin & Wang, Chao & Chen, Lin & Tian, Lixin & Eugene Stanley, H., 2018. "A novel hybrid method of forecasting crude oil prices using complex network science and artificial intelligence algorithms," Applied Energy, Elsevier, vol. 220(C), pages 480-495.
    13. Yan, Kai & Zhang, Wei & Shen, Dehua, 2020. "Stylized facts of the carbon emission market in China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 555(C).
    14. Chen, Linfei & Zhao, Xuefeng, 2024. "A multiscale and multivariable differentiated learning for carbon price forecasting," Energy Economics, Elsevier, vol. 131(C).
    15. Jujie Wang & Zhenzhen Zhuang, 2023. "A novel cluster based multi-index nonlinear ensemble framework for carbon price forecasting," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(7), pages 6225-6247, July.
    16. Zhu, Jiaming & Wu, Peng & Chen, Huayou & Liu, Jinpei & Zhou, Ligang, 2019. "Carbon price forecasting with variational mode decomposition and optimal combined model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 519(C), pages 140-158.
    17. Zhu, Bangzhu & Ye, Shunxin & Wang, Ping & He, Kaijian & Zhang, Tao & Wei, Yi-Ming, 2018. "A novel multiscale nonlinear ensemble leaning paradigm for carbon price forecasting," Energy Economics, Elsevier, vol. 70(C), pages 143-157.
    18. Peng Ye & Yong Li & Abu Bakkar Siddik, 2023. "Forecasting the Return of Carbon Price in the Chinese Market Based on an Improved Stacking Ensemble Algorithm," Energies, MDPI, vol. 16(11), pages 1-39, June.
    19. Lei, Heng & Xue, Minggao & Liu, Huiling, 2022. "Probability distribution forecasting of carbon allowance prices: A hybrid model considering multiple influencing factors," Energy Economics, Elsevier, vol. 113(C).
    20. Zhen Zhang & Minggang Wang & Lixin Tian & Wenbin Zhang, 2017. "Research on the development efficiency of regional high-end talent in China: A complex network approach," PLOS ONE, Public Library of Science, vol. 12(12), pages 1-18, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:545:y:2020:i:c:s0378437119316097. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.