IDEAS home Printed from https://ideas.repec.org/a/wsi/afexxx/v10y2015i02ns2010495215500177.html
   My bibliography  Save this article

Predicting By Learning: An Adaptive Rationale

Author

Listed:
  • KAIHUA DENG

    (Department of Economics, University of Washington, Seattle, WA 98195-3330, USA2Hanqing Advanced Institute of Economics and Finance, Renmin University of China, Beijing 100872, P. R. China)

Abstract

The paper proposes a partial-adjustment mechanism for the learning process of economic agents and justify the use of past information in predicting stock returns from four different perspectives. By making a pair of mild assumptions about how rational investors learn about the fundamental values of returns and dividend yield over time, I show that for one-step-ahead forecast a stable and significant improvement in terms of short-horizon R2 can be achieved by recasting the classical single-equation predictive regression in a differenced form and incorporating information from the recent past. For longer horizons, the relationship reduces to the standard form.

Suggested Citation

  • Kaihua Deng, 2015. "Predicting By Learning: An Adaptive Rationale," Annals of Financial Economics (AFE), World Scientific Publishing Co. Pte. Ltd., vol. 10(02), pages 1-14, December.
  • Handle: RePEc:wsi:afexxx:v:10:y:2015:i:02:n:s2010495215500177
    DOI: 10.1142/S2010495215500177
    as

    Download full text from publisher

    File URL: http://www.worldscientific.com/doi/abs/10.1142/S2010495215500177
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1142/S2010495215500177?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Martin Lettau & Stijn Van Nieuwerburgh, 2008. "Reconciling the Return Predictability Evidence," The Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1607-1652, July.
    2. Ivo Welch & Amit Goyal, 2008. "A Comprehensive Look at The Empirical Performance of Equity Premium Prediction," The Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1455-1508, July.
    3. Lars Peter Hansen & John C. Heaton & Nan Li, 2008. "Consumption Strikes Back? Measuring Long-Run Risk," Journal of Political Economy, University of Chicago Press, vol. 116(2), pages 260-302, April.
    4. Lubos Pastor & Pietro Veronesi, 2009. "Learning in Financial Markets," Annual Review of Financial Economics, Annual Reviews, vol. 1(1), pages 361-381, November.
    5. John Y. Campbell, Robert J. Shiller, 1988. "The Dividend-Price Ratio and Expectations of Future Dividends and Discount Factors," The Review of Financial Studies, Society for Financial Studies, vol. 1(3), pages 195-228.
    6. Andrawis, Robert R. & Atiya, Amir F. & El-Shishiny, Hisham, 2011. "Combination of long term and short term forecasts, with application to tourism demand forecasting," International Journal of Forecasting, Elsevier, vol. 27(3), pages 870-886.
    7. John Y. Campbell & Robert J. Shiller, 2001. "Valuation Ratios and the Long-Run Stock Market Outlook: An Update," NBER Working Papers 8221, National Bureau of Economic Research, Inc.
    8. Francis X. Diebold, 2015. "Comparing Predictive Accuracy, Twenty Years Later: A Personal Perspective on the Use and Abuse of Diebold-Mariano Tests," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(1), pages 1-1, January.
    9. McAleer, M.J. & Jiménez-Martín, J.A. & Pérez-Amaral, T., 2008. "A decision rule to minimize daily capital charges in forecasting value-at-risk," Econometric Institute Research Papers EI 2008-34, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    10. JULES H. Van BINSBERGEN & RALPH S. J. KOIJEN, 2010. "Predictive Regressions: A Present‐Value Approach," Journal of Finance, American Finance Association, vol. 65(4), pages 1439-1471, August.
    11. Ľuboš Pástor & Robert F. Stambaugh, 2009. "Predictive Systems: Living with Imperfect Predictors," Journal of Finance, American Finance Association, vol. 64(4), pages 1583-1628, August.
    12. Atsushi Inoue & Lutz Kilian, 2005. "In-Sample or Out-of-Sample Tests of Predictability: Which One Should We Use?," Econometric Reviews, Taylor & Francis Journals, vol. 23(4), pages 371-402.
    13. Daniele Massacci, 2015. "Predicting the Distribution of Stock Returns: Model Formulation, Statistical Evaluation, VaR Analysis and Economic Significance," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 34(3), pages 191-208, April.
    14. Chen, Cathy W.S. & Gerlach, Richard & Hwang, Bruce B.K. & McAleer, Michael, 2012. "Forecasting Value-at-Risk using nonlinear regression quantiles and the intra-day range," International Journal of Forecasting, Elsevier, vol. 28(3), pages 557-574.
    15. Thomas Q. Pedersen, 2015. "Predictable Return Distributions," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 34(2), pages 114-132, March.
    16. Hodrick, Robert J, 1992. "Dividend Yields and Expected Stock Returns: Alternative Procedures for Inference and Measurement," The Review of Financial Studies, Society for Financial Studies, vol. 5(3), pages 357-386.
    17. Inoue, Atsushi & Kilian, Lutz, 2006. "On the selection of forecasting models," Journal of Econometrics, Elsevier, vol. 130(2), pages 273-306, February.
    18. Andrawis, Robert R. & Atiya, Amir F. & El-Shishiny, Hisham, 2011. "Combination of long term and short term forecasts, with application to tourism demand forecasting," International Journal of Forecasting, Elsevier, vol. 27(3), pages 870-886, July.
    19. Wichard, Jörg D., 2011. "Forecasting the NN5 time series with hybrid models," International Journal of Forecasting, Elsevier, vol. 27(3), pages 700-707, July.
    20. Jyh‐Lin Wu & Yu‐Hau Hu, 2012. "Price–Dividend Ratios and Stock Price Predictability," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 31(5), pages 423-442, August.
    21. repec:bla:jfinan:v:59:y:2004:i:4:p:1481-1509 is not listed on IDEAS
    22. Jonathan Lewellen & Jay Shanken, 2002. "Learning, Asset‐Pricing Tests, and Market Efficiency," Journal of Finance, American Finance Association, vol. 57(3), pages 1113-1145, June.
    23. Wichard, Jörg D., 2011. "Forecasting the NN5 time series with hybrid models," International Journal of Forecasting, Elsevier, vol. 27(3), pages 700-707.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kaihua Deng & Chang-Jin Kim, 2015. "Predicting Stock Returns — The Information Content Of Predictors Across Horizons," Annals of Financial Economics (AFE), World Scientific Publishing Co. Pte. Ltd., vol. 10(02), pages 1-27, December.
    2. Lawrenz, Jochen & Zorn, Josef, 2017. "Predicting international stock returns with conditional price-to-fundamental ratios," Journal of Empirical Finance, Elsevier, vol. 43(C), pages 159-184.
    3. Rapach, David & Zhou, Guofu, 2013. "Forecasting Stock Returns," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 328-383, Elsevier.
    4. Golinski, Adam & Madeira, Joao & Rambaccussing, Dooruj, 2014. "Fractional Integration of the Price-Dividend Ratio in a Present-Value Model," MPRA Paper 58554, University Library of Munich, Germany.
    5. Jank, Stephan, 2012. "Changes in the composition of publicly traded firms: Implications for the dividend-price ratio and return predictability," CFR Working Papers 12-08, University of Cologne, Centre for Financial Research (CFR).
    6. Ralph S.J. Koijen & Stijn Van Nieuwerburgh, 2011. "Predictability of Returns and Cash Flows," Annual Review of Financial Economics, Annual Reviews, vol. 3(1), pages 467-491, December.
    7. Della Corte, Pasquale & Sarno, Lucio & Valente, Giorgio, 2010. "A century of equity premium predictability and the consumption-wealth ratio: An international perspective," Journal of Empirical Finance, Elsevier, vol. 17(3), pages 313-331, June.
    8. Mykola Babiak & Jozef Barunik, 2020. "Deep Learning, Predictability, and Optimal Portfolio Returns," CERGE-EI Working Papers wp677, The Center for Economic Research and Graduate Education - Economics Institute, Prague.
    9. Golinski, Adam & Madeira, Joao & Rambaccussing, Dooruj, 2014. "Fractional Integration of the Price-Dividend Ratio in a Present-Value Model of Stock Prices," SIRE Discussion Papers 2015-79, Scottish Institute for Research in Economics (SIRE).
    10. Leland E. Farmer & Lawrence Schmidt & Allan Timmermann, 2023. "Pockets of Predictability," Journal of Finance, American Finance Association, vol. 78(3), pages 1279-1341, June.
    11. Avdis, Efstathios & Wachter, Jessica A., 2017. "Maximum likelihood estimation of the equity premium," Journal of Financial Economics, Elsevier, vol. 125(3), pages 589-609.
    12. Stephan Jank, 2015. "Changes in the Composition of Publicly Traded Firms: Implications for the Dividend-Price Ratio and Return Predictability," Management Science, INFORMS, vol. 61(6), pages 1362-1377, June.
    13. Long Chen & Zhi Da & Richard Priestley, 2012. "Dividend Smoothing and Predictability," Management Science, INFORMS, vol. 58(10), pages 1834-1853, October.
    14. Chen, Yong & Da, Zhi & Huang, Dayong, 2022. "Short selling efficiency," Journal of Financial Economics, Elsevier, vol. 145(2), pages 387-408.
    15. Yu, Deshui & Huang, Difang & Chen, Li & Li, Luyang, 2023. "Forecasting dividend growth: The role of adjusted earnings yield," Economic Modelling, Elsevier, vol. 120(C).
    16. Daniel Mantilla-García & Vijay Vaidyanathan, 2017. "Predicting stock returns in the presence of uncertain structural changes and sample noise," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 31(3), pages 357-391, August.
    17. Yu, Deshui & Huang, Difang, 2023. "Cross-sectional uncertainty and expected stock returns," Journal of Empirical Finance, Elsevier, vol. 72(C), pages 321-340.
    18. Jessica A. Wachter, 2010. "Asset Allocation," Annual Review of Financial Economics, Annual Reviews, vol. 2(1), pages 175-206, December.
    19. Michael Johannes & Arthur Korteweg & Nicholas Polson, 2014. "Sequential Learning, Predictability, and Optimal Portfolio Returns," Journal of Finance, American Finance Association, vol. 69(2), pages 611-644, April.
    20. van Binsbergen, Jules & Hueskes, Wouter & Koijen, Ralph & Vrugt, Evert, 2013. "Equity yields," Journal of Financial Economics, Elsevier, vol. 110(3), pages 503-519.
      • Jules H. van Binsbergen & Wouter Hueskes & Ralph Koijen & Evert B. Vrugt, 2011. "Equity Yields," NBER Working Papers 17416, National Bureau of Economic Research, Inc.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wsi:afexxx:v:10:y:2015:i:02:n:s2010495215500177. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tai Tone Lim (email available below). General contact details of provider: http://www.worldscinet.com/afe/afe.shtml .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.