IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v367y2024ics0306261924007694.html
   My bibliography  Save this article

Comparative assessment and policy analysis of forecasting quarterly renewable energy demand: Fresh evidence from an innovative seasonal approach with superior matching algorithms

Author

Listed:
  • Ding, Song
  • Cai, Zhijian
  • Qin, Xinghuan
  • Shen, Xingao

Abstract

In the pursuit of sustainable development, accurate renewable energy demand forecasting holds great significance for climate change mitigation and promoting sustainability. However, renewable energy forecasting has been consistently challenged by seasonality and nonlinearity. Identifying the periodic and nonlinear characteristics concealed within renewable energy sources accurately is still an unexplored problem. Consequently, an innovative nonlinear discrete seasonal grey model is proposed for renewable energy forecasting, which incorporates seasonal dummy variables and a power exponent term for handling the seasonality and nonlinear patterns in time series. Furthermore, an intelligent algorithm matching framework is proposed to augment the flexibility of the newly developed model. For practical purposes, the new methodology is contrasted against a range of benchmarks encompassing statistical, machine-learning, and traditional grey models in forecasting the quarterly total renewable energy consumption in the United States. The proposed model exhibits over 27% improvement rates over its counterparts, achieving the most superior predictive accuracies of 1.45%, 39.27, and 0.79 in MAPEP, RMSEP, and MASEP metrics, respectively. Furthermore, the probability density and sample size analyses are conducted to validate the robustness of the new model, confirming its adaptability and stability towards algorithm randomness and historical information volume. Consequently, the novel model is employed to forecast the short-to-long-terms renewable energy consumption in the U.S., showcasing an upward trend and seasonal fluctuations of the consumption for the forthcoming 24 quarters from 2023Q4 to 2029Q3. These insights can offer valuable implications to the stakeholders such as energy suppliers, utility managers, and policy advocates, highlighting actionable strategies for optimizing renewable energy consumption forecasting and aiding sustainable development initiatives.

Suggested Citation

  • Ding, Song & Cai, Zhijian & Qin, Xinghuan & Shen, Xingao, 2024. "Comparative assessment and policy analysis of forecasting quarterly renewable energy demand: Fresh evidence from an innovative seasonal approach with superior matching algorithms," Applied Energy, Elsevier, vol. 367(C).
  • Handle: RePEc:eee:appene:v:367:y:2024:i:c:s0306261924007694
    DOI: 10.1016/j.apenergy.2024.123386
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924007694
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.123386?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:367:y:2024:i:c:s0306261924007694. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.