Point forecasts of the price of crude oil: an attempt to “beat” the end-of-month random-walk benchmark
Author
Abstract
Suggested Citation
DOI: 10.1007/s00181-024-02599-8
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Hamilton, James D., 1996. "This is what happened to the oil price-macroeconomy relationship," Journal of Monetary Economics, Elsevier, vol. 38(2), pages 215-220, October.
- Ellwanger, Reinhard & Snudden, Stephen, 2023. "Forecasts of the real price of oil revisited: Do they beat the random walk?," Journal of Banking & Finance, Elsevier, vol. 154(C).
- Shiu-Sheng Chen, 2014.
"Forecasting Crude Oil Price Movements With Oil-Sensitive Stocks,"
Economic Inquiry, Western Economic Association International, vol. 52(2), pages 830-844, April.
- Chen, Shiu-Sheng, 2013. "Forecasting Crude Oil Price Movements with Oil-Sensitive Stocks," MPRA Paper 49240, University Library of Munich, Germany.
- Nima Nonejad, 2021. "Should crude oil price volatility receive more attention than the price of crude oil? An empirical investigation via a large‐scale out‐of‐sample forecast evaluation of US macroeconomic data," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(5), pages 769-791, August.
- Degiannakis, Stavros & Filis, George & Panagiotakopoulou, Sofia, 2018.
"Oil price shocks and uncertainty: How stable is their relationship over time?,"
Economic Modelling, Elsevier, vol. 72(C), pages 42-53.
- Degiannakis, Stavros & Filis, George & Panagiotakopoulou, Sofia, 2018. "Oil Price Shocks and Uncertainty: How stable is their relationship over time?," MPRA Paper 96271, University Library of Munich, Germany.
- Stavros Degiannakis & George Filis & Sofia Panagiotakopoulou, 2018. "Oil Price Shocks and Uncertainty: How stable is their relationship over time?," BAFES Working Papers BAFES13, Department of Accounting, Finance & Economic, Bournemouth University.
- Christiane Baumeister & Dimitris Korobilis & Thomas K. Lee, 2022.
"Energy Markets and Global Economic Conditions,"
The Review of Economics and Statistics, MIT Press, vol. 104(4), pages 828-844, October.
- Christiane Baumeister & Dimitris Korobilis & Thomas K. Lee, 2020. "Energy Markets and Global Economic Conditions," Working Papers 2020_08, Business School - Economics, University of Glasgow.
- Baumeister, Christiane & Korobilis, Dimitris & Lee, Thomas K., 2020. "Energy Markets and Global Economic Conditions," CEPR Discussion Papers 14580, C.E.P.R. Discussion Papers.
- Christiane Baumeister & Dimitris Korobilis & Thomas K. Lee, 2020. "Energy Markets and Global Economic Conditions," NBER Working Papers 27001, National Bureau of Economic Research, Inc.
- Christiane Baumeister & Dimitris Korobilis & Thomas K. Lee, 2020. "Energy Markets and Global Economic Conditions," CESifo Working Paper Series 8282, CESifo.
- Dario Caldara & Matteo Iacoviello, 2022.
"Measuring Geopolitical Risk,"
American Economic Review, American Economic Association, vol. 112(4), pages 1194-1225, April.
- Dario Caldara & Matteo Iacoviello, 2018. "Measuring Geopolitical Risk," International Finance Discussion Papers 1222r1, Board of Governors of the Federal Reserve System (U.S.), revised 23 Mar 2022.
- Matteo Iacoviello, 2018. "Measuring Geopolitical Risk," 2018 Meeting Papers 79, Society for Economic Dynamics.
- Jan J. J. Groen & Richard Paap & Francesco Ravazzolo, 2013.
"Real-Time Inflation Forecasting in a Changing World,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 31(1), pages 29-44, January.
- Groen, J.J.J. & Paap, R., 2009. "Real-time inflation forecasting in a changing world," Econometric Institute Research Papers EI 2009-19, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
- Jan J. J. Groen & Richard Paap & Francesco Ravazzolo, 2009. "Real-time inflation forecasting in a changing world," Staff Reports 388, Federal Reserve Bank of New York.
- Jan J. J. Groen & Richard Paap & Francesco Ravazzolo, 2009. "Real-Time Inflation Forecasting in a Changing World," Working Paper 2009/16, Norges Bank.
- Christiane Baumeister & Lutz Kilian, 2015.
"Forecasting the Real Price of Oil in a Changing World: A Forecast Combination Approach,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(3), pages 338-351, July.
- Christiane Baumeister & Lutz Kilian, 2013. "Forecasting the Real Price of Oil in a Changing World: A Forecast Combination Approach," Staff Working Papers 13-28, Bank of Canada.
- Kilian, Lutz & Baumeister, Christiane, 2013. "Forecasting the Real Price of Oil in a Changing World: A Forecast Combination Approach," CEPR Discussion Papers 9569, C.E.P.R. Discussion Papers.
- Baumeister, Christiane & Kilian, Lutz, 2013. "Forecasting the real price of oil in a changing world: A forecast combination approach," CFS Working Paper Series 2013/11, Center for Financial Studies (CFS).
- Baumeister, Christiane & Guérin, Pierre & Kilian, Lutz, 2015.
"Do high-frequency financial data help forecast oil prices? The MIDAS touch at work,"
International Journal of Forecasting, Elsevier, vol. 31(2), pages 238-252.
- Kilian, Lutz & Baumeister, Christiane, 2013. "Do High-Frequency Financial Data Help Forecast Oil Prices? The MIDAS Touch at Work," CEPR Discussion Papers 9768, C.E.P.R. Discussion Papers.
- Christiane Baumeister & Pierre Guérin & Lutz Kilian, 2014. "Do High-Frequency Financial Data Help Forecast Oil Prices? The MIDAS Touch at Work," Staff Working Papers 14-11, Bank of Canada.
- Baumeister, Christiane & Guérin, Pierre & Kilian, Lutz, 2013. "Do high-frequency financial data help forecast oil prices? The MIDAS touch at work," CFS Working Paper Series 2013/22, Center for Financial Studies (CFS).
- Christiane Baumeister & Lutz Kilian, 2014.
"What Central Bankers Need To Know About Forecasting Oil Prices,"
International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 55(3), pages 869-889, August.
- Kilian, Lutz & Baumeister, Christiane, 2012. "What Central Bankers Need to Know about Forecasting Oil Prices," CEPR Discussion Papers 9118, C.E.P.R. Discussion Papers.
- Christiane Baumeister & Lutz Kilian, 2013. "What Central Bankers Need to Know about Forecasting Oil Prices," Staff Working Papers 13-15, Bank of Canada.
- Hamilton, James D., 2011.
"Nonlinearities And The Macroeconomic Effects Of Oil Prices,"
Macroeconomic Dynamics, Cambridge University Press, vol. 15(S3), pages 364-378, November.
- James D. Hamilton, 2010. "Nonlinearities and the Macroeconomic Effects of Oil Prices," NBER Working Papers 16186, National Bureau of Economic Research, Inc.
- Adams, Zeno & Collot, Solène & Kartsakli, Maria, 2020. "Have commodities become a financial asset? Evidence from ten years of Financialization," Energy Economics, Elsevier, vol. 89(C).
- Baumeister, Christiane & Kilian, Lutz & Zhou, Xiaoqing, 2018. "Are Product Spreads Useful For Forecasting Oil Prices? An Empirical Evaluation Of The Verleger Hypothesis," Macroeconomic Dynamics, Cambridge University Press, vol. 22(3), pages 562-580, April.
- Gil-Alana, Luis A. & Gupta, Rangan, 2014.
"Persistence and cycles in historical oil price data,"
Energy Economics, Elsevier, vol. 45(C), pages 511-516.
- Luis A. Gil-Alana & Rangan Gupta, 2013. "Persistence and Cycles in Historical Oil Prices Data," Working Papers 201375, University of Pretoria, Department of Economics.
- Narayan, Paresh Kumar & Liu, Ruipeng, 2015.
"A unit root model for trending time-series energy variables,"
Energy Economics, Elsevier, vol. 50(C), pages 391-402.
- Narayan, Paresh Kumar & Liu, Ruipeng, 2015. "A unit root model for trending time-series energy variables," Working Papers fe_2015_05, Deakin University, Department of Economics.
- Scott R. Baker & Nicholas Bloom & Steven J. Davis, 2016.
"Measuring Economic Policy Uncertainty,"
The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 131(4), pages 1593-1636.
- Scott R. Baker & Nicholas Bloom & Steven J. Davis, 2015. "Measuring Economic Policy Uncertainty," Economics Working Papers 15111, Hoover Institution, Stanford University.
- Scott R. Baker & Nicholas Bloom & Steven J. Davis, 2015. "Measuring Economic Policy Uncertainty," NBER Working Papers 21633, National Bureau of Economic Research, Inc.
- Scott R. Baker & Nicholas Bloom & Steven J. Davis, 2015. "Measuring Economic Policy Uncertainty," CEP Discussion Papers dp1379, Centre for Economic Performance, LSE.
- Baker, Scott R. & Bloom, Nicholas & Davis, Steven J., 2015. "Measuring economic policy uncertainty," LSE Research Online Documents on Economics 64986, London School of Economics and Political Science, LSE Library.
- Davis, Steven & Bloom, Nicholas & Baker, Scott, 2015. "Measuring Economic Policy Uncertainty," CEPR Discussion Papers 10900, C.E.P.R. Discussion Papers.
- Kirstin Hubrich & Kenneth D. West, 2010.
"Forecast evaluation of small nested model sets,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(4), pages 574-594.
- Kirstin Hubrich & Kenneth D. West, 2008. "Forecast Evaluation of Small Nested Model Sets," NBER Working Papers 14601, National Bureau of Economic Research, Inc.
- Hubrich, Kirstin & West, Kenneth D., 2009. "Forecast evaluation of small nested model sets," Working Paper Series 1030, European Central Bank.
- Raggi, Davide & Bordignon, Silvano, 2012.
"Long memory and nonlinearities in realized volatility: A Markov switching approach,"
Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3730-3742.
- S. Bordignon & D. Raggi, 2010. "Long memory and nonlinearities in realized volatility: a Markov switching approach," Working Papers 694, Dipartimento Scienze Economiche, Universita' di Bologna.
- Clark, Todd E. & West, Kenneth D., 2007.
"Approximately normal tests for equal predictive accuracy in nested models,"
Journal of Econometrics, Elsevier, vol. 138(1), pages 291-311, May.
- Todd E. Clark & Kenneth D. West, 2005. "Approximately normal tests for equal predictive accuracy in nested models," Research Working Paper RWP 05-05, Federal Reserve Bank of Kansas City.
- Kenneth D. West & Todd Clark, 2006. "Approximately Normal Tests for Equal Predictive Accuracy in Nested Models," NBER Technical Working Papers 0326, National Bureau of Economic Research, Inc.
- Markus K. Brunnermeier & Lasse Heje Pedersen, 2009.
"Market Liquidity and Funding Liquidity,"
The Review of Financial Studies, Society for Financial Studies, vol. 22(6), pages 2201-2238, June.
- Lasse Heje Pederson & Markus K Brunnermeier, 2007. "Market Liquidity and Funding Liquidity," FMG Discussion Papers dp580, Financial Markets Group.
- Brunnermeier, Markus K. & Pedersen, Lasse Heje, 2007. "Market liquidity and funding liquidity," LSE Research Online Documents on Economics 24478, London School of Economics and Political Science, LSE Library.
- Markus K. Brunnermeier & Lasse Heje Pedersen, 2007. "Market Liquidity and Funding Liquidity," NBER Working Papers 12939, National Bureau of Economic Research, Inc.
- Brunnermeier, Markus & Pedersen, Lasse Heje, 2007. "Market Liquidity and Funding Liquidity," CEPR Discussion Papers 6179, C.E.P.R. Discussion Papers.
- Clark, Todd E. & McCracken, Michael W., 2015.
"Nested forecast model comparisons: A new approach to testing equal accuracy,"
Journal of Econometrics, Elsevier, vol. 186(1), pages 160-177.
- Todd E. Clark & Michael W. McCracken, 2009. "Nested forecast model comparisons: a new approach to testing equal accuracy," Research Working Paper RWP 09-11, Federal Reserve Bank of Kansas City.
- Todd E. Clark & Michael W. McCracken, 2009. "Nested forecast model comparisons: a new approach to testing equal accuracy," Working Papers 2009-050, Federal Reserve Bank of St. Louis.
- Junsoo Lee & Mark C. Strazicich, 2003. "Minimum Lagrange Multiplier Unit Root Test with Two Structural Breaks," The Review of Economics and Statistics, MIT Press, vol. 85(4), pages 1082-1089, November.
- Narayan, Paresh Kumar & Gupta, Rangan, 2015.
"Has oil price predicted stock returns for over a century?,"
Energy Economics, Elsevier, vol. 48(C), pages 18-23.
- Paresh K. Narayan & Rangan Gupta, 2014. "Has Oil Pirce Predicted Stock Returns for Over a Century?," Working Papers 201446, University of Pretoria, Department of Economics.
- Narayan, Paresh Kumar & Gupta, Rangan, 2015. "Has oil price predicted stock returns for over a century?," Working Papers fe_2015_08, Deakin University, Department of Economics.
- Lutz Kilian, 2009.
"Not All Oil Price Shocks Are Alike: Disentangling Demand and Supply Shocks in the Crude Oil Market,"
American Economic Review, American Economic Association, vol. 99(3), pages 1053-1069, June.
- Kilian, Lutz, 2006. "Not All Oil Price Shocks Are Alike: Disentangling Demand and Supply Shocks in the Crude Oil Market," CEPR Discussion Papers 5994, C.E.P.R. Discussion Papers.
- Mehmet Balcilar & Stelios Bekiros & Rangan Gupta, 2017.
"The role of news-based uncertainty indices in predicting oil markets: a hybrid nonparametric quantile causality method,"
Empirical Economics, Springer, vol. 53(3), pages 879-889, November.
- Mehmet Balcilar & Stelios Bekiros & Rangan Gupta, 2015. "The Role of News-Based Uncertainty Indices in Predicting Oil Markets: A Hybrid Nonparametric Quantile Causality Method," Working Papers 201522, University of Pretoria, Department of Economics.
- Mehmet Balcilar & Rangan Gupta & STELIOS BEKIROS, 2015. "The Role Of News-Based Uncertainty Indices In Predicting Oil Markets: A Hybrid Nonparametric Quantile Causality Method," Working Papers 15-02, Eastern Mediterranean University, Department of Economics.
- Grassi, Stefano & Santucci de Magistris, Paolo, 2014.
"When long memory meets the Kalman filter: A comparative study,"
Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 301-319.
- Stefano Grassi & Paolo Santucci de Magistris, 2011. "When Long Memory Meets the Kalman Filter: A Comparative Study," CREATES Research Papers 2011-14, Department of Economics and Business Economics, Aarhus University.
- Nima Nonejad, 2019. "Modeling Persistence and Parameter Instability in Historical Crude Oil Price Data Using a Gibbs Sampling Approach," Computational Economics, Springer;Society for Computational Economics, vol. 53(4), pages 1687-1710, April.
- Francesco Ravazzolo & Philip Rothman, 2013.
"Oil and U.S. GDP: A Real-Time Out-of-Sample Examination,"
Journal of Money, Credit and Banking, Blackwell Publishing, vol. 45(2-3), pages 449-463, March.
- Francesco Ravazzolo & Philip Rothman, 2013. "Oil and U.S. GDP: A Real‐Time Out‐of‐Sample Examination," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 45(2‐3), pages 449-463, March.
- Francesco Ravazzolo & Philip Rothman, 2010. "Oil and US GDP: A real-time out-of-sample examination," Working Paper 2010/18, Norges Bank.
- Francesco Ravazzolo & Philip Rothman, 2011. "Oil and US GDP: A Real-Time out-of Sample Examination," Working Papers No 2/2011, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
- Hamilton, James D, 1983. "Oil and the Macroeconomy since World War II," Journal of Political Economy, University of Chicago Press, vol. 91(2), pages 228-248, April.
- Conlon, Thomas & Cotter, John & Eyiah-Donkor, Emmanuel, 2022.
"The illusion of oil return predictability: The choice of data matters!,"
Journal of Banking & Finance, Elsevier, vol. 134(C).
- Thomas Conlon & John Cotter & Emmanuel Eyiah-Donkor, 2022. "The illusion of oil return predictability: The choice of data matters!," Post-Print hal-03519860, HAL.
- Qingxiang Han & Mengxi He & Yaojie Zhang & Muhammad Umar, 2023. "Default return spread: A powerful predictor of crude oil price returns," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(7), pages 1786-1804, November.
- Zhang, Yaojie & Ma, Feng & Wang, Yudong, 2019. "Forecasting crude oil prices with a large set of predictors: Can LASSO select powerful predictors?," Journal of Empirical Finance, Elsevier, vol. 54(C), pages 97-117.
- Wang, Yudong & Liu, Li & Diao, Xundi & Wu, Chongfeng, 2015. "Forecasting the real prices of crude oil under economic and statistical constraints," Energy Economics, Elsevier, vol. 51(C), pages 599-608.
- Dickey, David A & Fuller, Wayne A, 1981. "Likelihood Ratio Statistics for Autoregressive Time Series with a Unit Root," Econometrica, Econometric Society, vol. 49(4), pages 1057-1072, June.
- Paye, Bradley S., 2012. "‘Déjà vol’: Predictive regressions for aggregate stock market volatility using macroeconomic variables," Journal of Financial Economics, Elsevier, vol. 106(3), pages 527-546.
- Diebold, Francis X & Mariano, Roberto S, 2002.
"Comparing Predictive Accuracy,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
- Diebold, Francis X & Mariano, Roberto S, 1995. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(3), pages 253-263, July.
- Francis X. Diebold & Roberto S. Mariano, 1994. "Comparing Predictive Accuracy," NBER Technical Working Papers 0169, National Bureau of Economic Research, Inc.
- repec:mcb:jmoncb:v:45:y:2013:i::p:449-463 is not listed on IDEAS
- Francis X. Diebold, 2015.
"Comparing Predictive Accuracy, Twenty Years Later: A Personal Perspective on the Use and Abuse of Diebold-Mariano Tests,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(1), pages 1-1, January.
- Francis X. Diebold, 2012. "Comparing Predictive Accuracy, Twenty Years Later: A Personal Perspective on the Use and Abuse of Diebold-Mariano Tests," PIER Working Paper Archive 12-035, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
- Francis X. Diebold, 2012. "Comparing Predictive Accuracy, Twenty Years Later: A Personal Perspective on the Use and Abuse of Diebold-Mariano Tests," NBER Working Papers 18391, National Bureau of Economic Research, Inc.
- Perron, Pierre, 1989.
"The Great Crash, the Oil Price Shock, and the Unit Root Hypothesis,"
Econometrica, Econometric Society, vol. 57(6), pages 1361-1401, November.
- Perron, P, 1988. "The Great Crash, The Oil Price Shock And The Unit Root Hypothesis," Papers 338, Princeton, Department of Economics - Econometric Research Program.
- Funk, Christoph, 2018. "Forecasting the real price of oil - Time-variation and forecast combination," Energy Economics, Elsevier, vol. 76(C), pages 288-302.
- Kim, Dukpa & Perron, Pierre, 2009.
"Unit root tests allowing for a break in the trend function at an unknown time under both the null and alternative hypotheses,"
Journal of Econometrics, Elsevier, vol. 148(1), pages 1-13, January.
- Mohitosh Kejriwal & Pierre Perron, 2006. "Unit Root Tests Allowing for a Break in the Trend Function at an Unknown Time Under Both the Null and Alternative Hypotheses," Boston University - Department of Economics - Working Papers Series WP2006-052, Boston University - Department of Economics.
- Harvey, David & Leybourne, Stephen & Newbold, Paul, 1997. "Testing the equality of prediction mean squared errors," International Journal of Forecasting, Elsevier, vol. 13(2), pages 281-291, June.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Nonejad, Nima, 2021. "The price of crude oil and (conditional) out-of-sample predictability of world industrial production," Journal of Commodity Markets, Elsevier, vol. 23(C).
- Nonejad, Nima, 2021. "Predicting the return on the spot price of crude oil out-of-sample by conditioning on news-based uncertainty measures: Some new empirical results," Energy Economics, Elsevier, vol. 104(C).
- Nonejad, Nima, 2022. "Understanding the conditional out-of-sample predictive impact of the price of crude oil on aggregate equity return volatility," The North American Journal of Economics and Finance, Elsevier, vol. 62(C).
- Nonejad, Nima, 2022. "Equity premium prediction using the price of crude oil: Uncovering the nonlinear predictive impact," Energy Economics, Elsevier, vol. 115(C).
- Wang, Yudong & Hao, Xianfeng, 2023. "Forecasting the real prices of crude oil: What is the role of parameter instability?," Energy Economics, Elsevier, vol. 117(C).
- Nonejad, Nima, 2023. "Modeling the out-of-sample predictive relationship between equity premium, returns on the price of crude oil and economic policy uncertainty using multivariate time-varying dimension models," Energy Economics, Elsevier, vol. 126(C).
- Nonejad, Nima, 2023. "Conditional out-of-sample predictability of aggregate equity returns and aggregate equity return volatility using economic variables," Journal of Empirical Finance, Elsevier, vol. 70(C), pages 91-122.
- Degiannakis, Stavros & Filis, George, 2023.
"Oil price assumptions for macroeconomic policy,"
Energy Economics, Elsevier, vol. 117(C).
- Degiannakis, Stavros & Filis, George, 2020. "Oil price assumptions for macroeconomic policy," MPRA Paper 100705, University Library of Munich, Germany.
- Nima Nonejad, 2021. "Should crude oil price volatility receive more attention than the price of crude oil? An empirical investigation via a large‐scale out‐of‐sample forecast evaluation of US macroeconomic data," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(5), pages 769-791, August.
- Ellwanger, Reinhard & Snudden, Stephen, 2023. "Forecasts of the real price of oil revisited: Do they beat the random walk?," Journal of Banking & Finance, Elsevier, vol. 154(C).
- Conlon, Thomas & Cotter, John & Eyiah-Donkor, Emmanuel, 2024. "Forecasting the price of oil: A cautionary note," Journal of Commodity Markets, Elsevier, vol. 33(C).
- Nonejad, Nima, 2020. "A comprehensive empirical analysis of the predictive impact of the price of crude oil on aggregate equity return volatility," Journal of Commodity Markets, Elsevier, vol. 20(C).
- Liu, Li & Wang, Yudong & Yang, Li, 2018. "Predictability of crude oil prices: An investor perspective," Energy Economics, Elsevier, vol. 75(C), pages 193-205.
- Dbouk, Wassim & Jamali, Ibrahim, 2018. "Predicting daily oil prices: Linear and non-linear models," Research in International Business and Finance, Elsevier, vol. 46(C), pages 149-165.
- Xing, Li-Min & Zhang, Yue-Jun, 2022. "Forecasting crude oil prices with shrinkage methods: Can nonconvex penalty and Huber loss help?," Energy Economics, Elsevier, vol. 110(C).
- Nonejad, Nima, 2019. "Forecasting aggregate equity return volatility using crude oil price volatility: The role of nonlinearities and asymmetries," The North American Journal of Economics and Finance, Elsevier, vol. 50(C).
- Nonejad, Nima, 2020. "Crude oil price volatility and equity return predictability: A comparative out-of-sample study," International Review of Financial Analysis, Elsevier, vol. 71(C).
- Nima Nonejad, 2019. "Modeling Persistence and Parameter Instability in Historical Crude Oil Price Data Using a Gibbs Sampling Approach," Computational Economics, Springer;Society for Computational Economics, vol. 53(4), pages 1687-1710, April.
- Nima Nonejad, 2022. "New Findings Regarding the Out-of-Sample Predictive Impact of the Price of Crude Oil on the United States Industrial Production," Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 18(1), pages 1-35, March.
- Lan Bai & Xiafei Li & Yu Wei & Guiwu Wei, 2022. "Does crude oil futures price really help to predict spot oil price? New evidence from density forecasting," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(3), pages 3694-3712, July.
More about this item
Keywords
Crude oil price; Fractional integration; Out-of-sample relative predictability; Random-walk model;All these keywords.
JEL classification:
- C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General
- C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
- C43 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Index Numbers and Aggregation
- C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
- G1 - Financial Economics - - General Financial Markets
- Q47 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Energy Forecasting
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:empeco:v:67:y:2024:i:4:d:10.1007_s00181-024-02599-8. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.