IDEAS home Printed from https://ideas.repec.org/a/eee/jimfin/v115y2021ics0261560621000498.html
   My bibliography  Save this article

GEA tracker: A daily indicator of global economic activity

Author

Listed:
  • Diaz, Elena Maria
  • Perez-Quiros, Gabriel

Abstract

This paper develops a novel indicator of global economic activity, the GEA Tracker, which is based on commodity prices selected recursively through a genetic algorithm. The GEA Tracker allows for daily real-time knowledge of international business conditions using a minimum amount of information. We find that the GEA Tracker outperforms its competitors in forecasting stock returns, especially in emerging markets, and in predicting standard indicators of international business conditions. We show that an investor would have inexorably profited from using the forecasts provided by the GEA Tracker to weight a portfolio. Finally, the GEA Tracker allows us to present the daily evolution of global economic activity during the COVID-19 pandemic.

Suggested Citation

  • Diaz, Elena Maria & Perez-Quiros, Gabriel, 2021. "GEA tracker: A daily indicator of global economic activity," Journal of International Money and Finance, Elsevier, vol. 115(C).
  • Handle: RePEc:eee:jimfin:v:115:y:2021:i:c:s0261560621000498
    DOI: 10.1016/j.jimonfin.2021.102400
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0261560621000498
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jimonfin.2021.102400?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Simona Delle Chiaie & Laurent Ferrara & Domenico Giannone, 2022. "Common factors of commodity prices," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(3), pages 461-476, April.
    2. Kilian, Lutz, 2019. "Measuring global real economic activity: Do recent critiques hold up to scrutiny?," Economics Letters, Elsevier, vol. 178(C), pages 106-110.
    3. Van Robays, Ine & Belu Mănescu, Cristiana, 2014. "Forecasting the Brent oil price: addressing time-variation in forecast performance," Working Paper Series 1735, European Central Bank.
    4. Doz, Catherine & Giannone, Domenico & Reichlin, Lucrezia, 2011. "A two-step estimator for large approximate dynamic factor models based on Kalman filtering," Journal of Econometrics, Elsevier, vol. 164(1), pages 188-205, September.
    5. Ana María Herrera & Sandeep Kumar Rangaraju, 2020. "The effect of oil supply shocks on US economic activity: What have we learned?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(2), pages 141-159, March.
    6. Andrew Ang & Geert Bekaert, 2007. "Stock Return Predictability: Is it There?," The Review of Financial Studies, Society for Financial Studies, vol. 20(3), pages 651-707.
    7. Christiane Baumeister & Lutz Kilian, 2014. "What Central Bankers Need To Know About Forecasting Oil Prices," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 55, pages 869-889, August.
    8. Boivin, Jean & Ng, Serena, 2006. "Are more data always better for factor analysis?," Journal of Econometrics, Elsevier, vol. 132(1), pages 169-194, May.
    9. Bekaert, Geert & Harvey, Campbell R, 1995. "Time-Varying World Market Integration," Journal of Finance, American Finance Association, vol. 50(2), pages 403-444, June.
    10. Kilian, Lutz & Zhou, Xiaoqing, 2018. "Modeling fluctuations in the global demand for commodities," Journal of International Money and Finance, Elsevier, vol. 88(C), pages 54-78.
    11. Funashima, Yoshito, 2020. "Global economic activity indexes revisited," Economics Letters, Elsevier, vol. 193(C).
    12. repec:hal:journl:peer-00844811 is not listed on IDEAS
    13. Francis X. Diebold, 2015. "Comparing Predictive Accuracy, Twenty Years Later: A Personal Perspective on the Use and Abuse of Diebold-Mariano Tests," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(1), pages 1-1, January.
    14. Bai, Jushan & Ng, Serena, 2008. "Forecasting economic time series using targeted predictors," Journal of Econometrics, Elsevier, vol. 146(2), pages 304-317, October.
    15. Clark, Todd E. & West, Kenneth D., 2007. "Approximately normal tests for equal predictive accuracy in nested models," Journal of Econometrics, Elsevier, vol. 138(1), pages 291-311, May.
    16. Lutz Kilian, 2009. "Not All Oil Price Shocks Are Alike: Disentangling Demand and Supply Shocks in the Crude Oil Market," American Economic Review, American Economic Association, vol. 99(3), pages 1053-1069, June.
    17. Geert Bekaert & Campbell R. Harvey & Christian T. Lundblad & Stephan Siegel, 2011. "What Segments Equity Markets?," The Review of Financial Studies, Society for Financial Studies, vol. 24(12), pages 3841-3890.
    18. Imbs, Jean, 2006. "The real effects of financial integration," Journal of International Economics, Elsevier, vol. 68(2), pages 296-324, March.
    19. Francesco Ravazzolo & Joaquin Vespignani, 2020. "World steel production: A new monthly indicator of global real economic activity," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 53(2), pages 743-766, May.
    20. Xiaoqing Zhou, 2020. "Refining the workhorse oil market model," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(1), pages 130-140, January.
    21. Harry Markowitz, 1952. "Portfolio Selection," Journal of Finance, American Finance Association, vol. 7(1), pages 77-91, March.
    22. John Y. Campbell & Samuel B. Thompson, 2008. "Predicting Excess Stock Returns Out of Sample: Can Anything Beat the Historical Average?," The Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1509-1531, July.
    23. Alquist, Ron & Bhattarai, Saroj & Coibion, Olivier, 2020. "Commodity-price comovement and global economic activity," Journal of Monetary Economics, Elsevier, vol. 112(C), pages 41-56.
    24. Christiane Baumeister & James D. Hamilton, 2019. "Structural Interpretation of Vector Autoregressions with Incomplete Identification: Revisiting the Role of Oil Supply and Demand Shocks," American Economic Review, American Economic Association, vol. 109(5), pages 1873-1910, May.
    25. James D. Hamilton, 2021. "Measuring global economic activity," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(3), pages 293-303, April.
    26. Ilan Cooper & Richard Priestley, 2013. "The World Business Cycle and Expected Returns," Review of Finance, European Finance Association, vol. 17(3), pages 1029-1064.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Elisa Aracil & Elena Maria Diaz & Gonzalo Gómez-Bengoechea & Rosalía Mota & David Roch-Dupré, 2024. "Regional Socioeconomic Assessments with a Genetic Algorithm: An Application on Income Inequality Across Municipalities," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 173(2), pages 499-521, June.
    2. Diaz, Elena Maria & Cunado, Juncal & de Gracia, Fernando Perez, 2023. "Commodity price shocks, supply chain disruptions and U.S. inflation," Finance Research Letters, Elsevier, vol. 58(PC).
    3. Stolbov, Mikhail & Shchepeleva, Maria, 2022. "Modeling global real economic activity: Evidence from variable selection across quantiles," The Journal of Economic Asymmetries, Elsevier, vol. 25(C).
    4. Arabinda Basistha, "undated". "Estimates of Quarterly and Monthly Episodes of Global Recessions: Evidence from Markov-switching Dynamic Factor Models," Working Papers 24-07, Department of Economics, West Virginia University.
    5. Mantas Lukauskas & Vaida Pilinkienė & Jurgita Bruneckienė & Alina Stundžienė & Andrius Grybauskas & Tomas Ruzgas, 2022. "Economic Activity Forecasting Based on the Sentiment Analysis of News," Mathematics, MDPI, vol. 10(19), pages 1-22, September.
    6. Juan Pablo Cote-Barón & Karen L. Pulido-Mahecha & Nicol Valeria Rodríguez-Rodríguez & Carlos D. Rojas-Martínez, 2023. "El ISAE: Un Indicador para Monitorear la Actividad Económica Colombiana en Alta Frecuencia," Borradores de Economia 1225, Banco de la Republica de Colombia.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pérez-Quirós, Gabriel & Diaz, Elena, 2020. "Daily Tracker of Global Economic Activity. A Close-Up of the Covid-19 Pandemic," CEPR Discussion Papers 15451, C.E.P.R. Discussion Papers.
    2. Kilian, Lutz, 2022. "Facts and fiction in oil market modeling," Energy Economics, Elsevier, vol. 110(C).
    3. Arabinda Basistha & Richard Startz, 2024. "Measuring persistent global economic factors with output, commodity price, and commodity currency data," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(7), pages 2860-2885, November.
    4. Rausser, Gordon & Stuermer, Martin, 2020. "A Dynamic Analysis of Collusive Action: The Case of the World Copper Market, 1882-2016," MPRA Paper 104708, University Library of Munich, Germany.
    5. Baumeister, Christiane & Guérin, Pierre, 2021. "A comparison of monthly global indicators for forecasting growth," International Journal of Forecasting, Elsevier, vol. 37(3), pages 1276-1295.
    6. Simona Delle Chiaie & Laurent Ferrara & Domenico Giannone, 2022. "Common factors of commodity prices," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(3), pages 461-476, April.
    7. Funashima, Yoshito, 2020. "Global economic activity indexes revisited," Economics Letters, Elsevier, vol. 193(C).
    8. Kilian, Lutz, 2022. "Understanding the estimation of oil demand and oil supply elasticities," Energy Economics, Elsevier, vol. 107(C).
    9. Christiane Baumeister & Dimitris Korobilis & Thomas K. Lee, 2022. "Energy Markets and Global Economic Conditions," The Review of Economics and Statistics, MIT Press, vol. 104(4), pages 828-844, October.
    10. Jiménez-Rodríguez, Rebeca, 2022. "Oil shocks and global economy," Energy Economics, Elsevier, vol. 115(C).
    11. Stolbov, Mikhail & Shchepeleva, Maria, 2022. "Modeling global real economic activity: Evidence from variable selection across quantiles," The Journal of Economic Asymmetries, Elsevier, vol. 25(C).
    12. Nonejad, Nima, 2021. "The price of crude oil and (conditional) out-of-sample predictability of world industrial production," Journal of Commodity Markets, Elsevier, vol. 23(C).
    13. Nguyen, BH & Zhang, Bo, 2022. "Forecasting oil Prices: can large BVARs help?," Working Papers 2022-04, University of Tasmania, Tasmanian School of Business and Economics.
    14. Nonejad, Nima, 2022. "Understanding the conditional out-of-sample predictive impact of the price of crude oil on aggregate equity return volatility," The North American Journal of Economics and Finance, Elsevier, vol. 62(C).
    15. Zeina Alsalman, 2023. "Oil price shocks and US unemployment: evidence from disentangling the duration of unemployment spells in the labor market," Empirical Economics, Springer, vol. 65(1), pages 479-511, July.
    16. Mont'Alverne Duarte, Angelo & Gaglianone, Wagner Piazza & de Carvalho Guillén, Osmani Teixeira & Issler, João Victor, 2021. "Commodity prices and global economic activity: A derived-demand approach," Energy Economics, Elsevier, vol. 96(C).
    17. Rubaszek, Michał, 2021. "Forecasting crude oil prices with DSGE models," International Journal of Forecasting, Elsevier, vol. 37(2), pages 531-546.
    18. Jamie L. Cross & Bao H. Nguyen & Trung Duc Tran, 2022. "The role of precautionary and speculative demand in the global market for crude oil," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(5), pages 882-895, August.
    19. Wen, Xiaoqian & Xie, Yuxin & Pantelous, Athanasios A., 2022. "Extreme price co-movement of commodity futures and industrial production growth: An empirical evaluation," Energy Economics, Elsevier, vol. 108(C).
    20. Guo, Yangli & Ma, Feng & Li, Haibo & Lai, Xiaodong, 2022. "Oil price volatility predictability based on global economic conditions," International Review of Financial Analysis, Elsevier, vol. 82(C).

    More about this item

    Keywords

    Global economic activity; Commodity prices; Factor models; Variable selection; Genetic algorithm; Leading indicators;
    All these keywords.

    JEL classification:

    • F44 - International Economics - - Macroeconomic Aspects of International Trade and Finance - - - International Business Cycles
    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation
    • Q02 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - General - - - Commodity Market

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jimfin:v:115:y:2021:i:c:s0261560621000498. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/30443 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.