IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v353y2024ipas030626192301423x.html
   My bibliography  Save this article

Two-step deep learning framework with error compensation technique for short-term, half-hourly electricity price forecasting

Author

Listed:
  • Ghimire, Sujan
  • Deo, Ravinesh C.
  • Casillas-Pérez, David
  • Salcedo-Sanz, Sancho

Abstract

Prediction of electricity price is crucial for national electricity markets supporting sale prices, bidding strategies, electricity dispatch, control and market volatility management. High volatility, non-stationarity and multi-seasonality of electricity prices make it significantly challenging to estimate its future trend, especially over near real-time forecast horizons. An error compensation strategy that integrates Long Short-Term Memory (LSTM) network, Convolution Neural Network (CNN) and the Variational Mode Decomposition (VMD) algorithm is proposed to predict the half-hourly step electricity prices. A prediction model incorporating VMD and CLSTM is first used to obtain an initial prediction. To improve its predictive accuracy, a novel error compensation framework, which is built using the VMD and a Random Forest Regression (RF) algorithm, is also used. The proposed VMD-CLSTM-VMD-ERCRF model is evaluated using electricity prices from Queensland, Australia. The results reveal highly accurate predictive performance for all datasets considered, including the winter, autumn, spring, summer, and yearly predictions. As compared with a predictive model without error compensation (i.e., the VMD-CLSTM model), the proposed VMD-CLSTM-VMD-ERCRF model outperforms the benchmark models. For winter, autumn, spring, summer, and yearly predictions, the average Legates and McCabe Index is seen to increase by 15.97%, 16.31%, 20.23%, 10.24%, and 14.03%, respectively, relative to the benchmark models. According to the tests performed on independent datasets, the proposed VMD-CLSTM-VMD-ERCRF model can be a practical stratagem useful for short-term, half-hourly electricity price forecasting. Therefore the research outcomes demonstrate that the proposed error compensation framework is an effective decision-support tool for improving the predictive accuracy of electricity price. It could be of practical value to energy companies, energy policymakers and national electricity market operators to develop their insight analysis, electricity distribution and market optimization strategies.

Suggested Citation

  • Ghimire, Sujan & Deo, Ravinesh C. & Casillas-Pérez, David & Salcedo-Sanz, Sancho, 2024. "Two-step deep learning framework with error compensation technique for short-term, half-hourly electricity price forecasting," Applied Energy, Elsevier, vol. 353(PA).
  • Handle: RePEc:eee:appene:v:353:y:2024:i:pa:s030626192301423x
    DOI: 10.1016/j.apenergy.2023.122059
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626192301423X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.122059?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Brusaferri, Alessandro & Matteucci, Matteo & Portolani, Pietro & Vitali, Andrea, 2019. "Bayesian deep learning based method for probabilistic forecast of day-ahead electricity prices," Applied Energy, Elsevier, vol. 250(C), pages 1158-1175.
    2. Zhang, Jinliang & Tan, Zhongfu & Wei, Yiming, 2020. "An adaptive hybrid model for short term electricity price forecasting," Applied Energy, Elsevier, vol. 258(C).
    3. Chang, Zihan & Zhang, Yang & Chen, Wenbo, 2019. "Electricity price prediction based on hybrid model of adam optimized LSTM neural network and wavelet transform," Energy, Elsevier, vol. 187(C).
    4. AL-Musaylh, Mohanad S. & Deo, Ravinesh C. & Li, Yan & Adamowski, Jan F., 2018. "Two-phase particle swarm optimized-support vector regression hybrid model integrated with improved empirical mode decomposition with adaptive noise for multiple-horizon electricity demand forecasting," Applied Energy, Elsevier, vol. 217(C), pages 422-439.
    5. Forrest, Sam & MacGill, Iain, 2013. "Assessing the impact of wind generation on wholesale prices and generator dispatch in the Australian National Electricity Market," Energy Policy, Elsevier, vol. 59(C), pages 120-132.
    6. Li, Wei & Becker, Denis Mike, 2021. "Day-ahead electricity price prediction applying hybrid models of LSTM-based deep learning methods and feature selection algorithms under consideration of market coupling," Energy, Elsevier, vol. 237(C).
    7. Wang, Shuai & Wang, Jianzhou & Lu, Haiyan & Zhao, Weigang, 2021. "A novel combined model for wind speed prediction – Combination of linear model, shallow neural networks, and deep learning approaches," Energy, Elsevier, vol. 234(C).
    8. Dimitrios Kontogiannis & Dimitrios Bargiotas & Aspassia Daskalopulu & Athanasios Ioannis Arvanitidis & Lefteri H. Tsoukalas, 2022. "Error Compensation Enhanced Day-Ahead Electricity Price Forecasting," Energies, MDPI, vol. 15(4), pages 1-21, February.
    9. Lin, Whei-Min & Gow, Hong-Jey & Tsai, Ming-Tang, 2010. "An enhanced radial basis function network for short-term electricity price forecasting," Applied Energy, Elsevier, vol. 87(10), pages 3226-3234, October.
    10. Wang, Jianzhou & Zhang, Linyue & Li, Zhiwu, 2022. "Interval forecasting system for electricity load based on data pre-processing strategy and multi-objective optimization algorithm," Applied Energy, Elsevier, vol. 305(C).
    11. Umut Ugurlu & Ilkay Oksuz & Oktay Tas, 2018. "Electricity Price Forecasting Using Recurrent Neural Networks," Energies, MDPI, vol. 11(5), pages 1-23, May.
    12. Gabrielli, Paolo & Wüthrich, Moritz & Blume, Steffen & Sansavini, Giovanni, 2022. "Data-driven modeling for long-term electricity price forecasting," Energy, Elsevier, vol. 244(PB).
    13. Yang, Wendong & Wang, Jianzhou & Niu, Tong & Du, Pei, 2019. "A hybrid forecasting system based on a dual decomposition strategy and multi-objective optimization for electricity price forecasting," Applied Energy, Elsevier, vol. 235(C), pages 1205-1225.
    14. Gerardo J. Osório & Mohamed Lotfi & Miadreza Shafie-khah & Vasco M. A. Campos & João P. S. Catalão, 2018. "Hybrid Forecasting Model for Short-Term Electricity Market Prices with Renewable Integration," Sustainability, MDPI, vol. 11(1), pages 1-15, December.
    15. Wang, Deyun & Luo, Hongyuan & Grunder, Olivier & Lin, Yanbing & Guo, Haixiang, 2017. "Multi-step ahead electricity price forecasting using a hybrid model based on two-layer decomposition technique and BP neural network optimized by firefly algorithm," Applied Energy, Elsevier, vol. 190(C), pages 390-407.
    16. Yiyuan Chen & Yufeng Wang & Jianhua Ma & Qun Jin, 2019. "BRIM: An Accurate Electricity Spot Price Prediction Scheme-Based Bidirectional Recurrent Neural Network and Integrated Market," Energies, MDPI, vol. 12(12), pages 1-18, June.
    17. Xiong, Xiaoping & Qing, Guohua, 2023. "A hybrid day-ahead electricity price forecasting framework based on time series," Energy, Elsevier, vol. 264(C).
    18. Wang, Ying & Wang, Jianzhou & Li, Zhiwu & Yang, Hufang & Li, Hongmin, 2021. "Design of a combined system based on two-stage data preprocessing and multi-objective optimization for wind speed prediction," Energy, Elsevier, vol. 231(C).
    19. Najeh Chaâbane, 2014. "A novel auto-regressive fractionally integrated moving average--least-squares support vector machine model for electricity spot prices prediction," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(3), pages 635-651, March.
    20. Heidarpanah, Mohammadreza & Hooshyaripor, Farhad & Fazeli, Meysam, 2023. "Daily electricity price forecasting using artificial intelligence models in the Iranian electricity market," Energy, Elsevier, vol. 263(PE).
    21. Kaijian He & Hongqian Wang & Jiangze Du & Yingchao Zou, 2016. "Forecasting Electricity Market Risk Using Empirical Mode Decomposition (EMD)—Based Multiscale Methodology," Energies, MDPI, vol. 9(11), pages 1-11, November.
    22. Despotovic, Milan & Nedic, Vladimir & Despotovic, Danijela & Cvetanovic, Slobodan, 2015. "Review and statistical analysis of different global solar radiation sunshine models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1869-1880.
    23. Francis X. Diebold, 2015. "Comparing Predictive Accuracy, Twenty Years Later: A Personal Perspective on the Use and Abuse of Diebold-Mariano Tests," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(1), pages 1-1, January.
    24. Yangrui Zhang & Peng Tao & Xiangming Wu & Chenguang Yang & Guang Han & Hui Zhou & Yinlong Hu, 2022. "Hourly Electricity Price Prediction for Electricity Market with High Proportion of Wind and Solar Power," Energies, MDPI, vol. 15(4), pages 1-13, February.
    25. Billé, Anna Gloria & Gianfreda, Angelica & Del Grosso, Filippo & Ravazzolo, Francesco, 2023. "Forecasting electricity prices with expert, linear, and nonlinear models," International Journal of Forecasting, Elsevier, vol. 39(2), pages 570-586.
    26. Ghimire, Sujan & Deo, Ravinesh C. & Casillas-Pérez, David & Salcedo-Sanz, Sancho, 2022. "Boosting solar radiation predictions with global climate models, observational predictors and hybrid deep-machine learning algorithms," Applied Energy, Elsevier, vol. 316(C).
    27. Lago, Jesus & De Ridder, Fjo & De Schutter, Bart, 2018. "Forecasting spot electricity prices: Deep learning approaches and empirical comparison of traditional algorithms," Applied Energy, Elsevier, vol. 221(C), pages 386-405.
    28. Qiao, Weibiao & Yang, Zhe, 2020. "Forecast the electricity price of U.S. using a wavelet transform-based hybrid model," Energy, Elsevier, vol. 193(C).
    29. Vasudharini Sridharan & Mingjian Tuo & Xingpeng Li, 2022. "Wholesale Electricity Price Forecasting Using Integrated Long-Term Recurrent Convolutional Network Model," Energies, MDPI, vol. 15(20), pages 1-16, October.
    30. Yang, Haolin & Schell, Kristen R., 2021. "Real-time electricity price forecasting of wind farms with deep neural network transfer learning and hybrid datasets," Applied Energy, Elsevier, vol. 299(C).
    31. Peng, Lu & Liu, Shan & Liu, Rui & Wang, Lin, 2018. "Effective long short-term memory with differential evolution algorithm for electricity price prediction," Energy, Elsevier, vol. 162(C), pages 1301-1314.
    32. Athanasios Ioannis Arvanitidis & Dimitrios Bargiotas & Dimitrios Kontogiannis & Athanasios Fevgas & Miltiadis Alamaniotis, 2022. "Optimized Data-Driven Models for Short-Term Electricity Price Forecasting Based on Signal Decomposition and Clustering Techniques," Energies, MDPI, vol. 15(21), pages 1-24, October.
    33. Shang, Jingyi & Gao, Jinfeng & Jiang, Xin & Liu, Mingguang & Liu, Dunnan, 2023. "Optimal configuration of hybrid energy systems considering power to hydrogen and electricity-price prediction: A two-stage multi-objective bi-level framework," Energy, Elsevier, vol. 263(PF).
    34. Ghimire, Sujan & Nguyen-Huy, Thong & AL-Musaylh, Mohanad S. & Deo, Ravinesh C. & Casillas-Pérez, David & Salcedo-Sanz, Sancho, 2023. "A novel approach based on integration of convolutional neural networks and echo state network for daily electricity demand prediction," Energy, Elsevier, vol. 275(C).
    35. Ping-Huan Kuo & Chiou-Jye Huang, 2018. "An Electricity Price Forecasting Model by Hybrid Structured Deep Neural Networks," Sustainability, MDPI, vol. 10(4), pages 1-17, April.
    36. Sujan Ghimire & Ravinesh C. Deo & Hua Wang & Mohanad S. Al-Musaylh & David Casillas-Pérez & Sancho Salcedo-Sanz, 2022. "Stacked LSTM Sequence-to-Sequence Autoencoder with Feature Selection for Daily Solar Radiation Prediction: A Review and New Modeling Results," Energies, MDPI, vol. 15(3), pages 1-39, January.
    37. Yang, Zhang & Ce, Li & Lian, Li, 2017. "Electricity price forecasting by a hybrid model, combining wavelet transform, ARMA and kernel-based extreme learning machine methods," Applied Energy, Elsevier, vol. 190(C), pages 291-305.
    38. Dedinec, Aleksandra & Filiposka, Sonja & Dedinec, Aleksandar & Kocarev, Ljupco, 2016. "Deep belief network based electricity load forecasting: An analysis of Macedonian case," Energy, Elsevier, vol. 115(P3), pages 1688-1700.
    39. Wei Li & Denis Mike Becker, 2021. "Day-ahead electricity price prediction applying hybrid models of LSTM-based deep learning methods and feature selection algorithms under consideration of market coupling," Papers 2101.05249, arXiv.org, revised Jul 2021.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Paweł Pijarski & Adrian Belowski, 2024. "Application of Methods Based on Artificial Intelligence and Optimisation in Power Engineering—Introduction to the Special Issue," Energies, MDPI, vol. 17(2), pages 1-42, January.
    2. Nie, Ying & Li, Ping & Wang, Jianzhou & Zhang, Lifang, 2024. "A novel multivariate electrical price bi-forecasting system based on deep learning, a multi-input multi-output structure and an operator combination mechanism," Applied Energy, Elsevier, vol. 366(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chai, Shanglei & Li, Qiang & Abedin, Mohammad Zoynul & Lucey, Brian M., 2024. "Forecasting electricity prices from the state-of-the-art modeling technology and the price determinant perspectives," Research in International Business and Finance, Elsevier, vol. 67(PA).
    2. Meng, Anbo & Wang, Peng & Zhai, Guangsong & Zeng, Cong & Chen, Shun & Yang, Xiaoyi & Yin, Hao, 2022. "Electricity price forecasting with high penetration of renewable energy using attention-based LSTM network trained by crisscross optimization," Energy, Elsevier, vol. 254(PA).
    3. Lago, Jesus & Marcjasz, Grzegorz & De Schutter, Bart & Weron, Rafał, 2021. "Forecasting day-ahead electricity prices: A review of state-of-the-art algorithms, best practices and an open-access benchmark," Applied Energy, Elsevier, vol. 293(C).
    4. Nie, Ying & Li, Ping & Wang, Jianzhou & Zhang, Lifang, 2024. "A novel multivariate electrical price bi-forecasting system based on deep learning, a multi-input multi-output structure and an operator combination mechanism," Applied Energy, Elsevier, vol. 366(C).
    5. Sergio Cantillo-Luna & Ricardo Moreno-Chuquen & Jesus Lopez-Sotelo & David Celeita, 2023. "An Intra-Day Electricity Price Forecasting Based on a Probabilistic Transformer Neural Network Architecture," Energies, MDPI, vol. 16(19), pages 1-24, September.
    6. Jiang, Ping & Nie, Ying & Wang, Jianzhou & Huang, Xiaojia, 2023. "Multivariable short-term electricity price forecasting using artificial intelligence and multi-input multi-output scheme," Energy Economics, Elsevier, vol. 117(C).
    7. Yang, Haolin & Schell, Kristen R., 2021. "Real-time electricity price forecasting of wind farms with deep neural network transfer learning and hybrid datasets," Applied Energy, Elsevier, vol. 299(C).
    8. Yang, Haolin & Schell, Kristen R., 2022. "GHTnet: Tri-Branch deep learning network for real-time electricity price forecasting," Energy, Elsevier, vol. 238(PC).
    9. Hakan Acaroğlu & Fausto Pedro García Márquez, 2021. "Comprehensive Review on Electricity Market Price and Load Forecasting Based on Wind Energy," Energies, MDPI, vol. 14(22), pages 1-23, November.
    10. Loizidis, Stylianos & Kyprianou, Andreas & Georghiou, George E., 2024. "Electricity market price forecasting using ELM and Bootstrap analysis: A case study of the German and Finnish Day-Ahead markets," Applied Energy, Elsevier, vol. 363(C).
    11. Jasiński, Tomasz, 2020. "Use of new variables based on air temperature for forecasting day-ahead spot electricity prices using deep neural networks: A new approach," Energy, Elsevier, vol. 213(C).
    12. Fang Guo & Shangyun Deng & Weijia Zheng & An Wen & Jinfeng Du & Guangshan Huang & Ruiyang Wang, 2022. "Short-Term Electricity Price Forecasting Based on the Two-Layer VMD Decomposition Technique and SSA-LSTM," Energies, MDPI, vol. 15(22), pages 1-20, November.
    13. Lu, Xin & Qiu, Jing & Lei, Gang & Zhu, Jianguo, 2022. "Scenarios modelling for forecasting day-ahead electricity prices: Case studies in Australia," Applied Energy, Elsevier, vol. 308(C).
    14. Daniel Manfre Jaimes & Manuel Zamudio López & Hamidreza Zareipour & Mike Quashie, 2023. "A Hybrid Model for Multi-Day-Ahead Electricity Price Forecasting considering Price Spikes," Forecasting, MDPI, vol. 5(3), pages 1-23, July.
    15. Ehsani, Behdad & Pineau, Pierre-Olivier & Charlin, Laurent, 2024. "Price forecasting in the Ontario electricity market via TriConvGRU hybrid model: Univariate vs. multivariate frameworks," Applied Energy, Elsevier, vol. 359(C).
    16. Qiao, Weibiao & Yang, Zhe, 2020. "Forecast the electricity price of U.S. using a wavelet transform-based hybrid model," Energy, Elsevier, vol. 193(C).
    17. Richter, Lucas & Lehna, Malte & Marchand, Sophie & Scholz, Christoph & Dreher, Alexander & Klaiber, Stefan & Lenk, Steve, 2022. "Artificial Intelligence for Electricity Supply Chain automation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    18. AL-Alimi, Dalal & AlRassas, Ayman Mutahar & Al-qaness, Mohammed A.A. & Cai, Zhihua & Aseeri, Ahmad O. & Abd Elaziz, Mohamed & Ewees, Ahmed A., 2023. "TLIA: Time-series forecasting model using long short-term memory integrated with artificial neural networks for volatile energy markets," Applied Energy, Elsevier, vol. 343(C).
    19. Xiong, Xiaoping & Qing, Guohua, 2023. "A hybrid day-ahead electricity price forecasting framework based on time series," Energy, Elsevier, vol. 264(C).
    20. Liu, Luyao & Bai, Feifei & Su, Chenyu & Ma, Cuiping & Yan, Ruifeng & Li, Hailong & Sun, Qie & Wennersten, Ronald, 2022. "Forecasting the occurrence of extreme electricity prices using a multivariate logistic regression model," Energy, Elsevier, vol. 247(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:353:y:2024:i:pa:s030626192301423x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.