My bibliography
Save this item
Forecasting with Many Predictors
In: Handbook of Economic Forecasting
Citations
Blog mentions
As found by EconAcademics.org, the blog aggregator for Economics research:- Big Data, Rich Data, Many Predictors, and Data Reduction
by Clive Jones in Business Forecasting on 2012-07-05 21:19:40 - Dimension Reduction With Principal Components
by Clive Jones in Business Forecasting on 2014-05-24 01:50:00 - Forecasting and Data Analysis – Principal Component Regression
by Clive Jones in Business Forecasting on 2014-02-26 23:29:37 - Principal Components
by Clive Jones in Business Forecasting on 2012-07-11 02:37:19
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Katja Drechsel & Laurent Maurin, 2011.
"Flow of conjunctural information and forecast of euro area economic activity,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 30(3), pages 336-354, April.
- Maurin, Laurent & Drechsel, Katja, 2008. "Flow of conjunctural information and forecast of euro area economic activity," Working Paper Series 925, European Central Bank.
- Li, W. & Fok, D. & Franses, Ph.H.B.F., 2019. "Forecasting own brand sales: Does incorporating competition help?," Econometric Institute Research Papers EI2019-35, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
- Rossi, Barbara, 2013.
"Advances in Forecasting under Instability,"
Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1203-1324,
Elsevier.
- Barbara Rossi, 2011. "Advances in Forecasting Under Instability," Working Papers 11-20, Duke University, Department of Economics.
- Aikman, David & Kiley, Michael & Lee, Seung Jung & Palumbo, Michael G. & Warusawitharana, Missaka, 2017.
"Mapping heat in the U.S. financial system,"
Journal of Banking & Finance, Elsevier, vol. 81(C), pages 36-64.
- David Aikman & Michael T. Kiley & Seung Jung Lee & Michael G. Palumbo & Missaka Warusawitharana, 2015. "Mapping Heat in the U.S. Financial System," Finance and Economics Discussion Series 2015-59, Board of Governors of the Federal Reserve System (U.S.).
- Jean-Armand Gnagne & Kevin Moran, 2020. "Forecasting Bank Failures in a Data-Rich Environment," Working Papers 20-13, Chair in macroeconomics and forecasting, University of Quebec in Montreal's School of Management.
- Carlo Altavilla & Matteo Ciccarelli, 2006.
"Inflation Forecasts, Monetary Policy and Unemployment Dynamics: Evidence from the US and the Euro Area,"
Discussion Papers
7_2006, D.E.S. (Department of Economic Studies), University of Naples "Parthenope", Italy.
- Matteo Ciccarelli & Carlo Altavilla, 2007. "Inflation Forecasts, Monetary Policy and Unemployment Dynamics: Evidence from the US and the Euro area," 2007 Meeting Papers 315, Society for Economic Dynamics.
- Ciccarelli, Matteo & Altavilla, Carlo, 2007. "Inflation Forecasts, monetary policy and unemployment dynamics: evidence from the US and the euro area," Working Paper Series 725, European Central Bank.
- Nektarios A. Michail & Christos S. Savva & Demetris Koursaros, 2017. "Size Effects of Fiscal Policy and Business Confidence in the Euro Area," IJFS, MDPI, vol. 5(4), pages 1-15, November.
- Kitov, Ivan & KItov, Oleg, 2013.
"Inflation, unemployment, and labor force. Phillips curves and long-term projections for Japan,"
MPRA Paper
49388, University Library of Munich, Germany.
- Ivan Kitov & Oleg Kitov, 2013. "Inflation, unemployment, and labor force. Phillips curves and long-term projections for Japan," Papers 1309.1757, arXiv.org.
- Zhao, Albert Bo & Cheng, Tingting, 2022. "Stock return prediction: Stacking a variety of models," Journal of Empirical Finance, Elsevier, vol. 67(C), pages 288-317.
- Vladimir Kuzin & Massimiliano Marcellino & Christian Schumacher, 2009.
"Pooling versus Model Selection for Nowcasting with Many Predictors: An Application to German GDP,"
Economics Working Papers
ECO2009/13, European University Institute.
- Kuzin, Vladimir N. & Marcellino, Massimiliano & Schumacher, Christian, 2009. "Pooling versus model selection for nowcasting with many predictors: an application to German GDP," Discussion Paper Series 1: Economic Studies 2009,03, Deutsche Bundesbank.
- Schumacher, Christian & Marcellino, Massimiliano & Kuzin, Vladimir, 2009. "Pooling versus model selection for nowcasting with many predictors: An application to German GDP," CEPR Discussion Papers 7197, C.E.P.R. Discussion Papers.
- Heij, Christiaan & Groenen, Patrick J.F. & van Dijk, Dick, 2007.
"Forecast comparison of principal component regression and principal covariate regression,"
Computational Statistics & Data Analysis, Elsevier, vol. 51(7), pages 3612-3625, April.
- Heij, C. & Groenen, P.J.F. & van Dijk, D.J.C., 2005. "Forecast comparison of principal component regression and principal covariate regression," Econometric Institute Research Papers EI 2005-28, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
- Robert Lehmann, 2016. "Economic Growth and Business Cycle Forecasting at the Regional Level," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 65.
- Antipa, Pamfili & Barhoumi, Karim & Brunhes-Lesage, Véronique & Darné, Olivier, 2012.
"Nowcasting German GDP: A comparison of bridge and factor models,"
Journal of Policy Modeling, Elsevier, vol. 34(6), pages 864-878.
- Antipa, P. & Barhoumi, K. & Brunhes-Lesage, V. & Darné, O., 2012. "Nowcasting German GDP: A comparison of bridge and factor models," Working papers 401, Banque de France.
- Considine, Jennifer & Galkin, Phillip & Hatipoglu, Emre & Aldayel, Abdullah, 2023. "The effects of a shock to critical minerals prices on the world oil price and inflation," Energy Economics, Elsevier, vol. 127(PB).
- Antonio Gargano & Davide Pettenuzzo & Allan Timmermann, 2019.
"Bond Return Predictability: Economic Value and Links to the Macroeconomy,"
Management Science, INFORMS, vol. 65(2), pages 508-540, February.
- Davide Pettenuzzo & Antonio Gargano & Allan Timmermann, 2014. "Bond Return Predictability: Economic Value and Links to the Macroeconomy," Working Papers 75, Brandeis University, Department of Economics and International Business School.
- Davide Pettenuzzo & Antonio Gargano & Allan Timmermann, 2014. "Bond Return Predictability: Economic Value and Links to the Macroeconomy," Working Papers 75R, Brandeis University, Department of Economics and International Business School, revised Jul 2016.
- Timmermann, Allan & Pettenuzzo, Davide & Gargano, Antonio, 2014. "Bond Return Predictability: Economic Value and Links to the Macroeconomy," CEPR Discussion Papers 10104, C.E.P.R. Discussion Papers.
- Oleg Itskhoki, 2006. "Model selection and paradoxes of prediction (in Russian)," Quantile, Quantile, issue 1, pages 43-51, September.
- Sandra Eickmeier & Christina Ziegler, 2008. "How successful are dynamic factor models at forecasting output and inflation? A meta-analytic approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 27(3), pages 237-265.
- Derek Bunn, Julien Chevallier, Yannick Le Pen, and Benoit Sevi, 2017.
"Fundamental and Financial Influences on the Co-movement of Oil and Gas Prices,"
The Energy Journal, International Association for Energy Economics, vol. 0(Number 2).
- Derek Bunn & Julien Chevallier & Yannick Le Pen & Benoît Sévi, 2017. "Fundamental and Financial Influences on the Co-movement of Oil and Gas prices," Post-Print hal-01619890, HAL.
- Marcellino, Massimiliano & Eickmeier, Sandra & Lemke, Wolfgang, 2011.
"Classical time-varying FAVAR models - Estimation, forecasting and structural analysis,"
CEPR Discussion Papers
8321, C.E.P.R. Discussion Papers.
- Eickmeier, Sandra & Lemke, Wolfgang & Marcellino, Massimiliano, 2011. "Classical time-varying FAVAR models - estimation, forecasting and structural analysis," Discussion Paper Series 1: Economic Studies 2011,04, Deutsche Bundesbank.
- Kollmann, Robert & Zeugner, Stefan, 2012.
"Leverage as a predictor for real activity and volatility,"
Journal of Economic Dynamics and Control, Elsevier, vol. 36(8), pages 1267-1283.
- Kollmann, Robert & Zeugner, Stefan, 2011. "Leverage as a Predictor for Real Activity and Volatility," CEPR Discussion Papers 8327, C.E.P.R. Discussion Papers.
- Robert Kollmann & Stefan Zeugner, 2011. "Leverage as a Predictor for Real Activity and Volatility," Working Papers ECARES ECARES 2011-009, ULB -- Universite Libre de Bruxelles.
- Ballarin, Giovanni & Dellaportas, Petros & Grigoryeva, Lyudmila & Hirt, Marcel & van Huellen, Sophie & Ortega, Juan-Pablo, 2024.
"Reservoir computing for macroeconomic forecasting with mixed-frequency data,"
International Journal of Forecasting, Elsevier, vol. 40(3), pages 1206-1237.
- Giovanni Ballarin & Petros Dellaportas & Lyudmila Grigoryeva & Marcel Hirt & Sophie van Huellen & Juan-Pablo Ortega, 2022. "Reservoir Computing for Macroeconomic Forecasting with Mixed Frequency Data," Papers 2211.00363, arXiv.org, revised Jan 2024.
- Mandalinci, Zeyyad, 2017.
"Forecasting inflation in emerging markets: An evaluation of alternative models,"
International Journal of Forecasting, Elsevier, vol. 33(4), pages 1082-1104.
- Zeyyad Mandalinci, 2015. "Forecasting Inflation in Emerging Markets: An Evaluation of Alternative Models," CReMFi Discussion Papers 3, CReMFi, School of Economics and Finance, QMUL.
- Massimiliano Marcellino & Christian Schumacher, 2008. "Factor-MIDAS for Now- and Forecasting with Ragged-Edge Data: A Model Comparison for German GDP1," Working Papers 333, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
- Anindya Banerjee & Massimiliano Marcellino & Igor Masten, 2008.
"Forecasting Macroeconomic Variables Using Diffusion Indexes in Short Samples with Structural Change,"
Working Papers
334, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
- Anindya Banerjee & Massimiliano Marcellino & Igor Masten, 2008. "Forecasting Macroeconomic Variables Using Diffusion Indexes in Short Samples with Structural Change," Economics Working Papers ECO2008/17, European University Institute.
- Banerjee, Anindya & Marcellino, Massimiliano & Masten, Igor, 2008. "Forecasting Macroeconomic Variables Using Diffusion Indexes in Short Samples with Structural Change," CEPR Discussion Papers 6706, C.E.P.R. Discussion Papers.
- Bai, Jushan & Ng, Serena, 2008. "Forecasting economic time series using targeted predictors," Journal of Econometrics, Elsevier, vol. 146(2), pages 304-317, October.
- Timmermann, Allan & Pettenuzzo, Davide & Valkanov, Rossen, 2014.
"A Bayesian MIDAS Approach to Modeling First and Second Moment Dynamics,"
CEPR Discussion Papers
10160, C.E.P.R. Discussion Papers.
- Davide Pettenuzzo & Rossen Valkanov & Allan Timmermann, 2014. "A Bayesian MIDAS Approach to Modeling First and Second Moment Dynamics," Working Papers 76, Brandeis University, Department of Economics and International Business School.
- Eckert, Florian & Hyndman, Rob J. & Panagiotelis, Anastasios, 2021.
"Forecasting Swiss exports using Bayesian forecast reconciliation,"
European Journal of Operational Research, Elsevier, vol. 291(2), pages 693-710.
- Florian Eckert & Rob J Hyndman & Anastasios Panagiotelis, 2019. "Forecasting Swiss Exports using Bayesian Forecast Reconciliation," KOF Working papers 19-457, KOF Swiss Economic Institute, ETH Zurich.
- Florian Eckert & Rob J Hyndman & Anastasios Panagiotelis, 2019. "Forecasting Swiss Exports Using Bayesian Forecast Reconciliation," Monash Econometrics and Business Statistics Working Papers 14/19, Monash University, Department of Econometrics and Business Statistics.
- Jiang, Yu & Guo, Yongji & Zhang, Yihao, 2017. "Forecasting China's GDP growth using dynamic factors and mixed-frequency data," Economic Modelling, Elsevier, vol. 66(C), pages 132-138.
- George Papadopoulos & Savas Papadopoulos & Thomas Sager, 2016. "Credit risk stress testing for EU15 banks: a model combination approach," Working Papers 203, Bank of Greece.
- Davide Pettenuzzo & Francesco Ravazzolo, 2016.
"Optimal Portfolio Choice Under Decision‐Based Model Combinations,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 31(7), pages 1312-1332, November.
- Davide Pettenuzzo & Francesco Ravazzolo, 2014. "Optimal portfolio choice under decision-based model combinations," Working Paper 2014/15, Norges Bank.
- Davide Pettenuzzo & Francesco Ravazzolo, 2015. "Optimal Portfolio Choice under Decision-Based Model Combinations," Working Papers No 9/2015, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
- Davide Pettenuzzo & Francesco Ravazzolo, 2014. "Optimal Portfolio Choice under Decision-Based Model Combinations," Working Papers 80, Brandeis University, Department of Economics and International Business School.
- Exterkate, Peter & Groenen, Patrick J.F. & Heij, Christiaan & van Dijk, Dick, 2016.
"Nonlinear forecasting with many predictors using kernel ridge regression,"
International Journal of Forecasting, Elsevier, vol. 32(3), pages 736-753.
- Peter Exterkate & Patrick J.F. Groenen & Christiaan Heij & Dick van Dijk, 2011. "Nonlinear Forecasting with Many Predictors using Kernel Ridge Regression," Tinbergen Institute Discussion Papers 11-007/4, Tinbergen Institute.
- Peter Exterkate & Patrick J.F. Groenen & Christiaan Heij & Dick van Dijk, 2013. "Nonlinear Forecasting With Many Predictors Using Kernel Ridge Regression," CREATES Research Papers 2013-16, Department of Economics and Business Economics, Aarhus University.
- Onatski, Alexei, 2015. "Asymptotic analysis of the squared estimation error in misspecified factor models," Journal of Econometrics, Elsevier, vol. 186(2), pages 388-406.
- Qing Zhou & Robert Faff, 2017. "The complementary role of cross-sectional and time-series information in forecasting stock returns," Australian Journal of Management, Australian School of Business, vol. 42(1), pages 113-139, February.
- Esteban Fernández-Vázquez & Blanca Moreno, 2017. "Entropy Econometrics for combining regional economic forecasts: A Data-Weighted Prior Estimator," Journal of Geographical Systems, Springer, vol. 19(4), pages 349-370, October.
- Clive Bowsher & Roland Meeks, 2006.
"High Dimensional Yield Curves: Models and Forecasting,"
Economics Series Working Papers
2006-FE-11, University of Oxford, Department of Economics.
- Clive G. Bowsher & Roland Meeks, 2006. "High Dimensional Yield Curves: Models and Forecasting," OFRC Working Papers Series 2006fe11, Oxford Financial Research Centre.
- Clive Bowsher & Roland Meeks, 2006. "High Dimensional Yield Curves: Models and Forecasting," Economics Papers 2006-W12, Economics Group, Nuffield College, University of Oxford.
- repec:zbw:bofitp:2008_002 is not listed on IDEAS
- Poncela, Pilar, 2012. "More is not always better : back to the Kalman filter in dynamic factor models," DES - Working Papers. Statistics and Econometrics. WS ws122317, Universidad Carlos III de Madrid. Departamento de EstadÃstica.
- Chen, Qitong & Hong, Yongmiao & Li, Haiqi, 2024. "Time-varying forecast combination for factor-augmented regressions with smooth structural changes," Journal of Econometrics, Elsevier, vol. 240(1).
- Hansen, Bruce E., 2010. "Averaging estimators for autoregressions with a near unit root," Journal of Econometrics, Elsevier, vol. 158(1), pages 142-155, September.
- Stock, James H. & Watson, Mark, 2011. "Dynamic Factor Models," Scholarly Articles 28469541, Harvard University Department of Economics.
- Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2018.
"Measuring Uncertainty and Its Impact on the Economy,"
The Review of Economics and Statistics, MIT Press, vol. 100(5), pages 799-815, December.
- Andrea Carriero & Todd E. Clark & Marcellino Massimiliano, 2016. "Measuring Uncertainty and Its Impact on the Economy," Working Papers (Old Series) 1622, Federal Reserve Bank of Cleveland.
- Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2016. "Measuring Uncertainty and Its Impact on the Economy," BAFFI CAREFIN Working Papers 1639, BAFFI CAREFIN, Centre for Applied Research on International Markets Banking Finance and Regulation, Universita' Bocconi, Milano, Italy.
- Yongsung Chang & Sunoong Hwang, 2015.
"Asymmetric Phase Shifts in U.S. Industrial Production Cycles,"
The Review of Economics and Statistics, MIT Press, vol. 97(1), pages 116-133, March.
- Yongsung Chang & Sunoong Hwang, 2011. "Asymmetric Phase Shifts in the U.S. Industrial Production Cycles," RCER Working Papers 564, University of Rochester - Center for Economic Research (RCER).
- Sunoong Hwang & Yongsung Chang, 2011. "Asymmetric Phase Shifts in U.S. Industrial Production Cycles," 2011 Meeting Papers 31, Society for Economic Dynamics.
- Knut Are Aastveit & Francesco Ravazzolo & Herman K. van Dijk, 2018.
"Combined Density Nowcasting in an Uncertain Economic Environment,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 36(1), pages 131-145, January.
- Knut Are Aastveit & Francesco Ravazzolo & Herman K. van Dijk, 2014. "Combined Density Nowcasting in an uncertain economic environment," Working Paper 2014/17, Norges Bank.
- Knut Are Aastveit & Francesco Ravazzolo & Herman K. van Dijk, 2014. "Combined Density Nowcasting in an Uncertain Economic Environment," Tinbergen Institute Discussion Papers 14-152/III, Tinbergen Institute.
- Raffaella Giacomini, 2015.
"Economic theory and forecasting: lessons from the literature,"
Econometrics Journal, Royal Economic Society, vol. 18(2), pages 22-41, June.
- Raffaella Giacomini, 2014. "Economic theory and forecasting: lessons from the literature," CeMMAP working papers CWP41/14, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Giacomini, Raffaella, 2014. "Economic theory and forecasting: lessons from the literature," CEPR Discussion Papers 10201, C.E.P.R. Discussion Papers.
- Boriss Siliverstovs & Daniel S. Wochner, 2021. "State‐dependent evaluation of predictive ability," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(3), pages 547-574, April.
- Charles Engel & Nelson C. Mark & Kenneth D. West, 2015.
"Factor Model Forecasts of Exchange Rates,"
Econometric Reviews, Taylor & Francis Journals, vol. 34(1-2), pages 32-55, February.
- Nelson Mark, 2008. "Factor Model Forecasts of Exchange Rates," Working Papers 012, University of Notre Dame, Department of Economics, revised Jan 2012.
- Charles Engel & Nelson C. Mark & Kenneth D. West, 2012. "Factor Model Forecasts of Exchange Rates," NBER Working Papers 18382, National Bureau of Economic Research, Inc.
- Chen, Sophia & Ranciere, Romain, 2019.
"Financial information and macroeconomic forecasts,"
International Journal of Forecasting, Elsevier, vol. 35(3), pages 1160-1174.
- Sophia Chen & Mr. Romain Ranciere, 2016. "Financial Information and Macroeconomic Forecasts," IMF Working Papers 2016/251, International Monetary Fund.
- Karlsson, Sune, 2013.
"Forecasting with Bayesian Vector Autoregression,"
Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 791-897,
Elsevier.
- Karlsson, Sune, 2012. "Forecasting with Bayesian Vector Autoregressions," Working Papers 2012:12, Örebro University, School of Business.
- Marijn A. Bolhuis & Brett Rayner, 2020. "Deus ex Machina? A Framework for Macro Forecasting with Machine Learning," IMF Working Papers 2020/045, International Monetary Fund.
- Pettenuzzo, Davide & Timmermann, Allan & Valkanov, Rossen, 2014.
"Forecasting stock returns under economic constraints,"
Journal of Financial Economics, Elsevier, vol. 114(3), pages 517-553.
- Timmermann, Allan & Pettenuzzo, Davide & Valkanov, Rossen, 2013. "Forecasting Stock Returns under Economic Constraints," CEPR Discussion Papers 9377, C.E.P.R. Discussion Papers.
- Davide Pettenuzzo & Allan Timmermann & Rossen Valkanov, 2013. "Forecasting Stock Returns under Economic Constraints," Working Papers 57, Brandeis University, Department of Economics and International Business School.
- Barbarino, Alessandro & Bura, Efstathia, 2024. "Forecasting Near-equivalence of Linear Dimension Reduction Methods in Large Panels of Macro-variables," Econometrics and Statistics, Elsevier, vol. 31(C), pages 1-18.
- Massimo Guidolin & Manuela Pedio, 2021. "Forecasting commodity futures returns with stepwise regressions: Do commodity-specific factors help?," Annals of Operations Research, Springer, vol. 299(1), pages 1317-1356, April.
- Lasse Bork, 2009.
"Estimating US Monetary Policy Shocks Using a Factor-Augmented Vector Autoregression: An EM Algorithm Approach,"
CREATES Research Papers
2009-11, Department of Economics and Business Economics, Aarhus University.
- Bork, Lasse, 2009. "Estimating US Monetary Policy Shocks Using a Factor-Augmented Vector Autoregression: An EM Algorithm Approach," Finance Research Group Working Papers F-2009-03, University of Aarhus, Aarhus School of Business, Department of Business Studies.
- Pettenuzzo, Davide & Timmermann, Allan & Valkanov, Rossen, 2016. "A MIDAS approach to modeling first and second moment dynamics," Journal of Econometrics, Elsevier, vol. 193(2), pages 315-334.
- Arvid Raknerud & Terje Skjerpen & Anders Rygh Swensen, 2010.
"Forecasting key macroeconomic variables from a large number of predictors: a state space approach,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 29(4), pages 367-387.
- Arvid Raknerud & Terje Skjerpen & Anders Rygh Swensen, 2007. "Forecasting key macroeconomic variables from a large number of predictors: A state space approach," Discussion Papers 504, Statistics Norway, Research Department.
- Kristensen Johannes Tang, 2014.
"Factor-based forecasting in the presence of outliers: Are factors better selected and estimated by the median than by the mean?,"
Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 18(3), pages 309-338, May.
- Johannes Tang Kristensen, 2012. "Factor-Based Forecasting in the Presence of Outliers: Are Factors Better Selected and Estimated by the Median than by The Mean?," CREATES Research Papers 2012-28, Department of Economics and Business Economics, Aarhus University.
- Wagner Piazza Gaglianone & João Victor Issler & Silvia Maria Matos, 2017.
"Applying a microfounded-forecasting approach to predict Brazilian inflation,"
Empirical Economics, Springer, vol. 53(1), pages 137-163, August.
- Wagner Piazza Gaglianone & João Victor Issler & Silvia Maria Matos, 2016. "Applying a Microfounded-Forecasting Approach to Predict Brazilian Inflation," Working Papers Series 436, Central Bank of Brazil, Research Department.
- Zhenzhong Wang & Zhengyuan Zhu & Cindy Yu, 2020. "Variable Selection in Macroeconomic Forecasting with Many Predictors," Papers 2007.10160, arXiv.org.
- Baltagi, Badi H., 2013. "Panel Data Forecasting," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 995-1024, Elsevier.
- Francesco Lisi & Ismail Shah, 2024. "Joint Component Estimation for Electricity Price Forecasting Using Functional Models," Energies, MDPI, vol. 17(14), pages 1-18, July.
- Dai, Zhifeng & Chang, Xiaoming, 2021. "Forecasting stock market volatility: Can the risk aversion measure exert an important role?," The North American Journal of Economics and Finance, Elsevier, vol. 58(C).
- Michael Bleaney & Paul Mizen & Veronica Veleanu, 2016.
"Bond Spreads and Economic Activity in Eight European Economies,"
Economic Journal, Royal Economic Society, vol. 126(598), pages 2257-2291, December.
- Michael Bleaney & Paul Mizen & Veronica Veleanu, 2013. "Bond Spreads and Economic Activity in Eight European Economies," Discussion Papers 2013/09, University of Nottingham, Centre for Finance, Credit and Macroeconomics (CFCM).
- Robert Lehmann & Klaus Wohlrabe, 2014.
"Forecasting gross value-added at the regional level: are sectoral disaggregated predictions superior to direct ones?,"
Review of Regional Research: Jahrbuch für Regionalwissenschaft, Springer;Gesellschaft für Regionalforschung (GfR), vol. 34(1), pages 61-90, February.
- Lehmann, Robert & Wohlrabe, Klaus, 2013. "Sectoral gross value-added forecasts at the regional level: Is there any information gain?," MPRA Paper 46765, University Library of Munich, Germany.
- Robert Lehmann & Klaus Wohlrabe, 2013. "Forecasting gross value-added at the regional level: Are sectoral disaggregated predictions superior to direct ones?," ifo Working Paper Series 171, ifo Institute - Leibniz Institute for Economic Research at the University of Munich.
- Mohitosh Kejriwal & Linh Nguyen & Xuewen Yu, 2023. "Multistep Forecast Averaging with Stochastic and Deterministic Trends," Econometrics, MDPI, vol. 11(4), pages 1-44, December.
- Safari, Ali & Davallou, Maryam, 2018. "Oil price forecasting using a hybrid model," Energy, Elsevier, vol. 148(C), pages 49-58.
- Pilar Poncela & Esther Ruiz, 2016.
"Small- Versus Big-Data Factor Extraction in Dynamic Factor Models: An Empirical Assessment,"
Advances in Econometrics, in: Dynamic Factor Models, volume 35, pages 401-434,
Emerald Group Publishing Limited.
- Poncela, Pilar, 2015. "Small versus big-data factor extraction in Dynamic Factor Models: An empirical assessment," DES - Working Papers. Statistics and Econometrics. WS ws1502, Universidad Carlos III de Madrid. Departamento de EstadÃstica.
- Bokun, Kathryn O. & Jackson, Laura E. & Kliesen, Kevin L. & Owyang, Michael T., 2023.
"FRED-SD: A real-time database for state-level data with forecasting applications,"
International Journal of Forecasting, Elsevier, vol. 39(1), pages 279-297.
- Kathryn Bokun & Laura E. Jackson & Kevin L. Kliesen & Michael T. Owyang, 2020. "FRED-SD: A Real-Time Database for State-Level Data with Forecasting Applications," Working Papers 2020-031, Federal Reserve Bank of St. Louis, revised 01 Aug 2021.
- Bräuning, Falk & Koopman, Siem Jan, 2014.
"Forecasting macroeconomic variables using collapsed dynamic factor analysis,"
International Journal of Forecasting, Elsevier, vol. 30(3), pages 572-584.
- Falk Brauning & Siem Jan Koopman, 2012. "Forecasting Macroeconomic Variables using Collapsed Dynamic Factor Analysis," Tinbergen Institute Discussion Papers 12-042/4, Tinbergen Institute.
- Ryan Greenaway‐McGrevy & Nelson C. Mark & Donggyu Sul & Jyh‐Lin Wu, 2018.
"Identifying Exchange Rate Common Factors,"
International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 59(4), pages 2193-2218, November.
- Ryan Greenaway-McGrevy & Donggyu Sul & Nelson Mark & Jyh-Lin Wu, 2017. "Identifying Exchange Rate Common Factors," NBER Working Papers 23726, National Bureau of Economic Research, Inc.
- Michael W. McCracken & Serena Ng, 2016.
"FRED-MD: A Monthly Database for Macroeconomic Research,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(4), pages 574-589, October.
- Michael W. McCracken & Serena Ng, 2015. "FRED-MD: A Monthly Database for Macroeconomic Research," Working Papers 2015-12, Federal Reserve Bank of St. Louis.
- Iseringhausen, Martin & Petrella, Ivan & Theodoridis, Konstantinos, 2021.
"Aggregate Skewness and the Business Cycle,"
Cardiff Economics Working Papers
E2021/30, Cardiff University, Cardiff Business School, Economics Section.
- Martin Iseringhausen & Ivan Petrella & Konstantinos Theodoridis, 2022. "Aggregate skewness and the business cycle," Working Papers 53, European Stability Mechanism.
- Iseringhausen, Martin & Petrella, Ivan & Theodoridis, Konstantinos, 2022. "Aggregate Skewness and the Business Cycle," CEPR Discussion Papers 17162, C.E.P.R. Discussion Papers.
- Mark F. J. Steel, 2020.
"Model Averaging and Its Use in Economics,"
Journal of Economic Literature, American Economic Association, vol. 58(3), pages 644-719, September.
- Steel, Mark F. J., 2017. "Model Averaging and its Use in Economics," MPRA Paper 81568, University Library of Munich, Germany.
- Steel, Mark F. J., 2017. "Model Averaging and its Use in Economics," MPRA Paper 90110, University Library of Munich, Germany, revised 16 Nov 2018.
- Ivan Kitov & Oleg Kitov, 2013.
"Does Banque de France control inflation and unemployment?,"
Papers
1311.1097, arXiv.org.
- Kitov, Ivan & KItov, Oleg, 2013. "Does Banque de France control inflation and unemployment?," MPRA Paper 50239, University Library of Munich, Germany.
- Marcella Lucchetta & Mr. Gianni De Nicolo, 2010. "Systemic Risks and the Macroeconomy," IMF Working Papers 2010/029, International Monetary Fund.
- Wagner Piazza Gaglianone & João Victor Issler, 2014.
"Microfounded Forecasting,"
Working Papers Series
372, Central Bank of Brazil, Research Department.
- Gaglianone, Wagner Piazza & Issler, João Victor, 2019. "Microfounded forecasting," FGV EPGE Economics Working Papers (Ensaios Economicos da EPGE) 813, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil).
- Gaglianone, Wagner Piazza & Issler, João Victor, 2015. "Microfounded forecasting," FGV EPGE Economics Working Papers (Ensaios Economicos da EPGE) 766, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil).
- Hui ‘Fox’ Ling & Douglas B. Stone, 2016. "Time-varying forecasts by variational approximation of sequential Bayesian inference," Quantitative Finance, Taylor & Francis Journals, vol. 16(1), pages 43-67, January.
- West, Kenneth D. & Wong, Ka-Fu, 2014. "A factor model for co-movements of commodity prices," Journal of International Money and Finance, Elsevier, vol. 42(C), pages 289-309.
- Gregor Bäurle & Elizabeth Steiner, 2015.
"How do Individual Sectors Respond to Macroeconomic Shocks? A Structural Dynamic Factor Approach Applied to Swiss Data,"
Swiss Journal of Economics and Statistics (SJES), Swiss Society of Economics and Statistics (SSES), vol. 151(III), pages 167-225, September.
- Dr. Gregor Bäurle & Elizabeth Steiner, 2013. "How do individual sectors respond to macroeconomic shocks? A structural dynamic factor approach applied to Swiss data," Working Papers 2013-09, Swiss National Bank.
- Andrea Carriero & George Kapetanios & Massimiliano Marcellino, 2011.
"Forecasting large datasets with Bayesian reduced rank multivariate models,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 26(5), pages 735-761, August.
- Andrea Carriero & George Kapetanios & Massimiliano Marcellino, 2009. "Forecasting Large Datasets with Bayesian Reduced Rank Multivariate Models," Economics Working Papers ECO2009/31, European University Institute.
- Marcellino, Massimiliano & Kapetanios, George & Carriero, Andrea, 2009. "Forecasting Large Datasets with Bayesian Reduced Rank Multivariate Models," CEPR Discussion Papers 7446, C.E.P.R. Discussion Papers.
- Kapetanios, George & Labhard, Vincent & Price, Simon, 2008.
"Forecasting Using Bayesian and Information-Theoretic Model Averaging: An Application to U.K. Inflation,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 26, pages 33-41, January.
- George Kapetanios & Vincent Labhard & Simon Price, 2005. "Forecasting using Bayesian and information theoretic model averaging: an application to UK inflation," Bank of England working papers 268, Bank of England.
- Kapetanios, G. & Labhard, V. & Price, S., 2007. "Forecasting using Bayesian and information theoretic model averaging: an application to UK inflation," Working Papers 07/15, Department of Economics, City University London.
- George Kapetanios & Vincent Labhard & Simon Price, 2006. "Forecasting using Bayesian and Information Theoretic Model Averaging: An Application to UK Inflation," Working Papers 566, Queen Mary University of London, School of Economics and Finance.
- Phillip Monin, 2017. "The OFR Financial Stress Index," Working Papers 17-04, Office of Financial Research, US Department of the Treasury.
- Simon Lineu Umbach, 2020. "Forecasting with supervised factor models," Empirical Economics, Springer, vol. 58(1), pages 169-190, January.
- Kian Tehranian, 2023. "Can Machine Learning Catch Economic Recessions Using Economic and Market Sentiments?," Papers 2308.16200, arXiv.org.
- Massimo Guidolin & Manuela Pedio, 2018. "Forecasting Commodity Futures Returns: An Economic Value Analysis of Macroeconomic vs. Specific Factors," BAFFI CAREFIN Working Papers 1886, BAFFI CAREFIN, Centre for Applied Research on International Markets Banking Finance and Regulation, Universita' Bocconi, Milano, Italy.
- Heij, Christiaan & van Dijk, Dick & Groenen, Patrick J.F., 2011.
"Real-time macroeconomic forecasting with leading indicators: An empirical comparison,"
International Journal of Forecasting, Elsevier, vol. 27(2), pages 466-481.
- Heij, Christiaan & van Dijk, Dick & Groenen, Patrick J.F., 2011. "Real-time macroeconomic forecasting with leading indicators: An empirical comparison," International Journal of Forecasting, Elsevier, vol. 27(2), pages 466-481, April.
- repec:hum:wpaper:sfb649dp2014-004 is not listed on IDEAS
- Smeekes, Stephan & Wijler, Etienne, 2018.
"Macroeconomic forecasting using penalized regression methods,"
International Journal of Forecasting, Elsevier, vol. 34(3), pages 408-430.
- Smeekes, Stephan & Wijler, Etiënne, 2016. "Macroeconomic Forecasting Using Penalized Regression Methods," Research Memorandum 039, Maastricht University, Graduate School of Business and Economics (GSBE).
- Paul Viefers & Ferdinand Fichtner & Simon Junker & Maximilian Podstawski, 2014. "Filtering German Economic Conditions from a Large Dataset: The New DIW Economic Barometer," Discussion Papers of DIW Berlin 1414, DIW Berlin, German Institute for Economic Research.
- Buncic, Daniel & Tischhauser, Martin, 2017.
"Macroeconomic factors and equity premium predictability,"
International Review of Economics & Finance, Elsevier, vol. 51(C), pages 621-644.
- Buncic, Daniel & Tischhauser, Martin, 2015. "Macroeconomic Factors and Equity Premium Predictability," Economics Working Paper Series 1522, University of St. Gallen, School of Economics and Political Science.
- Mayr, Johannes, 2010. "Forecasting Macroeconomic Aggregates," Munich Dissertations in Economics 11140, University of Munich, Department of Economics.
- Golinelli, Roberto & Parigi, Giuseppe, 2014.
"Tracking world trade and GDP in real time,"
International Journal of Forecasting, Elsevier, vol. 30(4), pages 847-862.
- Roberto Golinelli & Giuseppe Parigi, 2013. "Tracking world trade and GDP in real time," Temi di discussione (Economic working papers) 920, Bank of Italy, Economic Research and International Relations Area.
- Andrew J. Patton & Allan Timmermann, 2008. "The Resolution of Macroeconomic Uncertainty: Evidence from Survey Forecast," CREATES Research Papers 2008-54, Department of Economics and Business Economics, Aarhus University.
- Dias, Gustavo Fruet & Kapetanios, George, 2018.
"Estimation and forecasting in vector autoregressive moving average models for rich datasets,"
Journal of Econometrics, Elsevier, vol. 202(1), pages 75-91.
- Gustavo Fruet Dias & George Kapetanios, 2014. "Estimation and Forecasting in Vector Autoregressive Moving Average Models for Rich Datasets," CREATES Research Papers 2014-37, Department of Economics and Business Economics, Aarhus University.
- Kim, Hyun Hak & Swanson, Norman R., 2018. "Mining big data using parsimonious factor, machine learning, variable selection and shrinkage methods," International Journal of Forecasting, Elsevier, vol. 34(2), pages 339-354.
- Hyunju Kang & Bok-Keun Yu & Jongmin Yu, 2016.
"Global Liquidity and Commodity Prices,"
Review of International Economics, Wiley Blackwell, vol. 24(1), pages 20-36, February.
- Hyunju Kang & Bok-Keun Yu & Jongmin Yu, 2015. "Global Liquidity and Commodity Prices," Working Papers 2015-14, Economic Research Institute, Bank of Korea.
- Chen, Yi-Ting & Liu, Chu-An, 2023.
"Model averaging for asymptotically optimal combined forecasts,"
Journal of Econometrics, Elsevier, vol. 235(2), pages 592-607.
- Yi-Ting Chen & Chu-An Liu, 2021. "Model Averaging for Asymptotically Optimal Combined Forecasts," IEAS Working Paper : academic research 21-A002, Institute of Economics, Academia Sinica, Taipei, Taiwan.
- Gianluca Cubadda & Alain Hecq, 2022.
"Dimension Reduction for High‐Dimensional Vector Autoregressive Models,"
Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 84(5), pages 1123-1152, October.
- Gianluca Cubadda & Alain Hecq, 2020. "Dimension Reduction for High Dimensional Vector Autoregressive Models," Papers 2009.03361, arXiv.org, revised Feb 2022.
- Gianluca Cubadda & Alain Hecq, 2022. "Dimension Reduction for High Dimensional Vector Autoregressive Models," CEIS Research Paper 534, Tor Vergata University, CEIS, revised 24 Mar 2022.
- Sean P. Grover & Kevin L. Kliesen & Michael W. McCracken, 2016. "A Macroeconomic News Index for Constructing Nowcasts of U.S. Real Gross Domestic Product Growth," Review, Federal Reserve Bank of St. Louis, vol. 98(4), pages 277-296.
- Issler, João Victor & Lima, Luiz Renato, 2009.
"A panel data approach to economic forecasting: The bias-corrected average forecast,"
Journal of Econometrics, Elsevier, vol. 152(2), pages 153-164, October.
- Lima, Luiz Renato Regis de Oliveira & Issler, João Victor, 2007. "A panel data approach to economic forecasting: the bias-corrected average forecast," FGV EPGE Economics Working Papers (Ensaios Economicos da EPGE) 650, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil).
- Lima, Luiz Renato Regis de Oliveira & Issler, João Victor, 2008. "A panel data approach to economic forecasting: the bias-corrected average forecast," FGV EPGE Economics Working Papers (Ensaios Economicos da EPGE) 668, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil).
- Issler, João Victor & Lima, Luiz Renato Regis de Oliveira, 2007. "A panel data approach to economic forecasting: the bias-corrected average forecast," FGV EPGE Economics Working Papers (Ensaios Economicos da EPGE) 642, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil).
- repec:dau:papers:123456789/6800 is not listed on IDEAS
- Zhang, Yaojie & Ma, Feng & Wang, Yudong, 2019. "Forecasting crude oil prices with a large set of predictors: Can LASSO select powerful predictors?," Journal of Empirical Finance, Elsevier, vol. 54(C), pages 97-117.
- Nicholson, William B. & Matteson, David S. & Bien, Jacob, 2017. "VARX-L: Structured regularization for large vector autoregressions with exogenous variables," International Journal of Forecasting, Elsevier, vol. 33(3), pages 627-651.
- Hannes Mueller & Christopher Rauh, 2022.
"The Hard Problem of Prediction for Conflict Prevention,"
Journal of the European Economic Association, European Economic Association, vol. 20(6), pages 2440-2467.
- Mueller, Hannes & Rauh, Christopher, 2019. "The Hard Problem of Prediction for Conflict Prevention," CEPR Discussion Papers 13748, C.E.P.R. Discussion Papers.
- Hannes Mueller & Christopher Rauh, 2019. "The hard problem of prediction for conflict prevention," Cahiers de recherche 2019-02, Universite de Montreal, Departement de sciences economiques.
- Hannes Mueller & Christopher Rauh, 2021. "The Hard Problem of Prediction for Conflict Prevention," Working Papers 1244, Barcelona School of Economics.
- Mueller, H. & Rauh, C., 2021. "The Hard Problem of Prediction for Conflict Prevention," Cambridge Working Papers in Economics 2103, Faculty of Economics, University of Cambridge.
- Mueller, H. & Rauh, C., 2020. "The Hard Problem of Prediction for Conflict Prevention," Cambridge Working Papers in Economics 2015, Faculty of Economics, University of Cambridge.
- Hannes Mueller & Christopher Rauh, 2019. "The Hard Problem of Prediction for Conflict Prevention," Cahiers de recherche 02-2019, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
- Hyun Hak Kim & Norman Swanson, 2013. "Mining Big Data Using Parsimonious Factor and Shrinkage Methods," Departmental Working Papers 201316, Rutgers University, Department of Economics.
- Pinkwart, Nicolas, 2018. "Short-term forecasting economic activity in Germany: A supply and demand side system of bridge equations," Discussion Papers 36/2018, Deutsche Bundesbank.
- Huiyu Huang & Tae-Hwy Lee, 2010.
"To Combine Forecasts or to Combine Information?,"
Econometric Reviews, Taylor & Francis Journals, vol. 29(5-6), pages 534-570.
- Huiyu Huang & Tae-Hwy Lee, 2006. "To Combine Forecasts or to Combine Information?," Working Papers 200806, University of California at Riverside, Department of Economics, revised Feb 2009.
- Buchen, Teresa & Wohlrabe, Klaus, 2011.
"Forecasting with many predictors: Is boosting a viable alternative?,"
Economics Letters, Elsevier, vol. 113(1), pages 16-18, October.
- Buchen, Teresa & Wohlrabe, Klaus, 2010. "Forecasting with many predictors - Is boosting a viable alternative?," Discussion Papers in Economics 11788, University of Munich, Department of Economics.
- Barbara Rossi & Yiru Wang, 2019.
"Vector autoregressive-based Granger causality test in the presence of instabilities,"
Stata Journal, StataCorp LP, vol. 19(4), pages 883-899, December.
- Rossi, Barbara & Wang, Yiru, 2019. "Vector autoregressive-based Granger causality test in the presence of instabilities," MPRA Paper 101492, University Library of Munich, Germany.
- Boriss Siliverstovs & Daniel Wochner, 2019.
"Recessions as Breadwinner for Forecasters State-Dependent Evaluation of Predictive Ability: Evidence from Big Macroeconomic US Data,"
KOF Working papers
19-463, KOF Swiss Economic Institute, ETH Zurich.
- Boriss Siliverstovs & Daniel Wochner, 2020. "Recessions as Breadwinner for Forecasters State-Dependent Evaluation of Predictive Ability: Evidence from Big Macroeconomic US Data," Working Papers 2020/02, Latvijas Banka.
- Kitov, Ivan, 2013.
"Inflation, unemployment, and labour force. Phillips curves and long-term projections for Austria,"
MPRA Paper
49700, University Library of Munich, Germany.
- Ivan Kitov & Oleg Kitov, 2013. "Inflation, unemployment, and labour force. Phillips curves and long-term projections for Austria," Papers 1310.1786, arXiv.org.
- Chrystalleni Aristidou & Kevin Lee & Kalvinder Shields, 2015. "Real-Time Data should be used in Forecasting Output Growth and Recessionary Events in the US," Discussion Papers 2015/13, University of Nottingham, Centre for Finance, Credit and Macroeconomics (CFCM).
- Simon Freyaldenhoven, 2017.
"A Generalized Factor Model with Local Factors,"
2017 Papers
pfr361, Job Market Papers.
- Simon Freyaldenhoven, 2019. "A Generalized Factor Model with Local Factors," Working Papers 19-23, Federal Reserve Bank of Philadelphia.
- Johannes Tang Kristensen, 2013. "Diffusion Indexes with Sparse Loadings," CREATES Research Papers 2013-22, Department of Economics and Business Economics, Aarhus University.
- Jana Eklund & Sune Karlsson, 2007.
"Forecast Combination and Model Averaging Using Predictive Measures,"
Econometric Reviews, Taylor & Francis Journals, vol. 26(2-4), pages 329-363.
- Eklund, Jana & Karlsson, Sune, 2005. "Forecast Combination and Model Averaging using Predictive Measures," Working Paper Series 191, Sveriges Riksbank (Central Bank of Sweden).
- Eklund, Jana & Karlsson, Sune, 2005. "Forecast Combination and Model Averaging Using Predictive Measures," CEPR Discussion Papers 5268, C.E.P.R. Discussion Papers.
- Nelson Mark, 2012.
"Exchange Rates as Exchange Rate Common Factors,"
Working Papers
011, University of Notre Dame, Department of Economics, revised Mar 2012.
- Ryan Greenaway-McGrevy & Nelson C. Mark & Donggyu Sul & Jyh-Lin Wu, 2012. "Exchange Rates as Exchange Rate Common Factors," Working Papers 212012, Hong Kong Institute for Monetary Research.
- Andrea Carriero & George Kapetanios & Massimiliano Marcellino, 2007.
"Forecasting Large Datasets with Reduced Rank Multivariate Models,"
Working Papers
617, Queen Mary University of London, School of Economics and Finance.
- Andrea Carriero & George Kapetanios & Massimiliano Marcellino, 2007. "Forecasting Large Datasets with Reduced Rank Multivariate Models," Working Papers 617, Queen Mary University of London, School of Economics and Finance.
- Alessandro Girardi & Roberto Golinelli & Carmine Pappalardo, 2017.
"The role of indicator selection in nowcasting euro-area GDP in pseudo-real time,"
Empirical Economics, Springer, vol. 53(1), pages 79-99, August.
- A. Girardi & R. Golinelli & C. Pappalardo, 2014. "The Role of Indicator Selection in Nowcasting Euro Area GDP in Pseudo Real Time," Working Papers wp919, Dipartimento Scienze Economiche, Universita' di Bologna.
- Hanxiong Zhang & Robert Hudson & Hugh Metcalf & Viktor Manahov, 2017. "Investigation of institutional changes in the UK housing market using structural break tests and time-varying parameter models," Empirical Economics, Springer, vol. 53(2), pages 617-640, September.
- Branimir Jovanovic & Magdalena Petrovska, 2010. "Forecasting Macedonian GDP: Evaluation of different models for short-term forecasting," Working Papers 2010-02, National Bank of the Republic of North Macedonia, revised Aug 2010.
- Cheng, Xu & Hansen, Bruce E., 2015.
"Forecasting with factor-augmented regression: A frequentist model averaging approach,"
Journal of Econometrics, Elsevier, vol. 186(2), pages 280-293.
- Xu Cheng & Bruce E. Hansen, 2012. "Forecasting with Factor-Augmented Regression: A Frequentist Model Averaging Approach," PIER Working Paper Archive 12-046, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
- Bowsher, Clive G. & Meeks, Roland, 2008.
"The Dynamics of Economic Functions: Modeling and Forecasting the Yield Curve,"
Journal of the American Statistical Association, American Statistical Association, vol. 103(484), pages 1419-1437.
- Clive Bowsher & Roland Meeks, 2008. "The Dynamics of Economic Functions: Modelling and Forecasting the Yield Curve," OFRC Working Papers Series 2008fe24, Oxford Financial Research Centre.
- Clive G. Bowsher & Roland Meeks, 2008. "The dynamics of economics functions: modelling and forecasting the yield curve," Working Papers 0804, Federal Reserve Bank of Dallas.
- Clive G. Bowsher & Roland Meeks, 2008. "The Dynamics of Economic Functions: Modelling and Forecasting the Yield Curve," Economics Papers 2008-W05, Economics Group, Nuffield College, University of Oxford.
- Yunjung Kim & Cheolbeom Park, 2020.
"Are exchange rates disconnected from macroeconomic variables? Evidence from the factor approach,"
Empirical Economics, Springer, vol. 58(4), pages 1713-1747, April.
- Yunjung Kim & Cheolbeom Park, 2016. "Are Exchange Rates Disconnected from Macroeconomic Variables? Evidence from the Factor Approach," Discussion Paper Series 1606, Institute of Economic Research, Korea University.
- John H. Rogers & Jiawen Xu, 2019. "How Well Does Economic Uncertainty Forecast Economic Activity?," Finance and Economics Discussion Series 2019-085, Board of Governors of the Federal Reserve System (U.S.).
- Catherine Doz & Peter Fuleky, 2019.
"Dynamic Factor Models,"
Working Papers
2019-4, University of Hawaii Economic Research Organization, University of Hawaii at Manoa.
- Catherine Doz & Peter Fuleky, 2019. "Dynamic Factor Models," PSE Working Papers halshs-02262202, HAL.
- Catherine Doz & Peter Fuleky, 2020. "Dynamic Factor Models," Post-Print halshs-02491811, HAL.
- Catherine Doz & Peter Fuleky, 2020. "Dynamic Factor Models," PSE-Ecole d'économie de Paris (Postprint) halshs-02491811, HAL.
- Catherine Doz & Peter Fuleky, 2019. "Dynamic Factor Models," Working Papers halshs-02262202, HAL.
- Yi, Yongsheng & Ma, Feng & Zhang, Yaojie & Huang, Dengshi, 2019. "Forecasting stock returns with cycle-decomposed predictors," International Review of Financial Analysis, Elsevier, vol. 64(C), pages 250-261.
- Anna Pestova, 2015. "Leading Indicators of the Business Cycle: Dynamic Logit Models for OECD Countries and Russia," HSE Working papers WP BRP 94/EC/2015, National Research University Higher School of Economics.
- Marius M. Mihai, 2020. "Do credit booms predict US recessions?," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(6), pages 887-910, September.
- De Mol, Christine & Giannone, Domenico & Reichlin, Lucrezia, 2008.
"Forecasting using a large number of predictors: Is Bayesian shrinkage a valid alternative to principal components?,"
Journal of Econometrics, Elsevier, vol. 146(2), pages 318-328, October.
- De Mol, Christine & Giannone, Domenico & Reichlin, Lucrezia, 2006. "Forecasting using a large number of predictors: is Bayesian regression a valid alternative to principal components?," Discussion Paper Series 1: Economic Studies 2006,32, Deutsche Bundesbank.
- Reichlin, Lucrezia & Giannone, Domenico & De Mol, Christine, 2006. "Forecasting Using a Large Number of Predictors: Is Bayesian Regression a Valid Alternative to Principal Components?," CEPR Discussion Papers 5829, C.E.P.R. Discussion Papers.
- Giannone, Domenico & Reichlin, Lucrezia & De Mol, Christine, 2006. "Forecasting using a large number of predictors: Is Bayesian regression a valid alternative to principal components?," Working Paper Series 700, European Central Bank.
- Alessandro Hill & Jürgen W. Böse, 0. "A decision support system for improved resource planning and truck routing at logistic nodes," Information Technology and Management, Springer, vol. 0, pages 1-11.
- Kelly, Bryan & Pruitt, Seth, 2015. "The three-pass regression filter: A new approach to forecasting using many predictors," Journal of Econometrics, Elsevier, vol. 186(2), pages 294-316.
- Barbara Rossi & Yiru Wang, 2019.
"VAR-Based Granger-Causality Test in the Presence of Instabilities,"
Working Papers
1083, Barcelona School of Economics.
- Yiru Wang & Barbara Rossi, 2019. "VAR-based Granger-causality test in the presence of instabilities," Economics Working Papers 1642, Department of Economics and Business, Universitat Pompeu Fabra.
- Kevin Moran & Simplice Aimé Nono & Imad Rherrad, 2018. "Forecasting with Many Predictors: How Useful are National and International Confidence Data?," Cahiers de recherche 1814, Centre de recherche sur les risques, les enjeux économiques, et les politiques publiques.
- Grimme, Christian & Lehmann, Robert & Noeller, Marvin, 2021.
"Forecasting imports with information from abroad,"
Economic Modelling, Elsevier, vol. 98(C), pages 109-117.
- Christian Grimme & Robert Lehmann & Marvin Noeller, 2018. "Forecasting Imports with Information from Abroad," CESifo Working Paper Series 7079, CESifo.
- Christian Grimme & Robert Lehmann & Marvin Noeller, 2019. "Forecasting Imports with Information from Abroad," ifo Working Paper Series 294, ifo Institute - Leibniz Institute for Economic Research at the University of Munich.
- Salisu, Afees A. & Vo, Xuan Vinh, 2020. "Predicting stock returns in the presence of COVID-19 pandemic: The role of health news," International Review of Financial Analysis, Elsevier, vol. 71(C).
- repec:dau:papers:123456789/11692 is not listed on IDEAS
- Gianni De Nicolò & Marcella Lucchetta, 2011.
"Systemic Risks and the Macroeconomy,"
NBER Chapters, in: Quantifying Systemic Risk, pages 113-148,
National Bureau of Economic Research, Inc.
- Gianni De Nicolò & Marcella Lucchetta, 2011. "Systemic Risks and the Macroeconomy," NBER Working Papers 16998, National Bureau of Economic Research, Inc.
- Christiana Anaxagorou & Nicoletta Pashourtidou, 2022. "Forecasting economic activity using preselected predictors: the case of Cyprus," Cyprus Economic Policy Review, University of Cyprus, Economics Research Centre, vol. 16(1), pages 11-36, June.
- Duangnate, Kannika & Mjelde, James W., 2017. "Comparison of data-rich and small-scale data time series models generating probabilistic forecasts: An application to U.S. natural gas gross withdrawals," Energy Economics, Elsevier, vol. 65(C), pages 411-423.
- Knut Are Aastveit & Jamie L. Cross & Herman K. van Dijk, 2023.
"Quantifying Time-Varying Forecast Uncertainty and Risk for the Real Price of Oil,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 41(2), pages 523-537, April.
- Knut Are Aastveit & Jamie L. Cross & Herman K. van Dijk, 2021. "Quantifying time-varying forecast uncertainty and risk for the real price of oil," Working Paper 2021/3, Norges Bank.
- Knut Are Aastveit & Jamie Cross & Herman K. van Dijk, 2021. "Quantifying time-varying forecast uncertainty and risk for the real price of oil," Tinbergen Institute Discussion Papers 21-053/III, Tinbergen Institute.
- Knut Are Aastveit & Jamie Cross & Herman K. Djik, 2021. "Quantifying time-varying forecast uncertainty and risk for the real price of oil," Working Papers No 03/2021, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
- Marijn A. Bolhuis & Brett Rayner, 2020. "The More the Merrier? A Machine Learning Algorithm for Optimal Pooling of Panel Data," IMF Working Papers 2020/044, International Monetary Fund.
- Luciani, Matteo, 2014.
"Forecasting with approximate dynamic factor models: The role of non-pervasive shocks,"
International Journal of Forecasting, Elsevier, vol. 30(1), pages 20-29.
- Matteo Luciani, 2011. "Forecasting with Approximate Dynamic Factor Models: the Role of Non-Pervasive Shocks," Working Papers ECARES ECARES 2011‐022, ULB -- Universite Libre de Bruxelles.
- Robert Lehmann & Klaus Wohlrabe, 2013. "Sektorale Prognosen und deren Machbarkeit auf regionaler Ebene – Das Beispiel Sachsen," ifo Dresden berichtet, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 20(04), pages 22-29, August.
- Gonzalo, Jesús & Pitarakis, Jean-Yves, 2024.
"Out-of-sample predictability in predictive regressions with many predictor candidates,"
International Journal of Forecasting, Elsevier, vol. 40(3), pages 1166-1178.
- Pitarakis, Jean-Yves, 2020. "Out of sample predictability in predictive regressions with many predictor candidates," UC3M Working papers. Economics 31554, Universidad Carlos III de Madrid. Departamento de EconomÃa.
- Jesus Gonzalo & Jean-Yves Pitarakis, 2023. "Out of Sample Predictability in Predictive Regressions with Many Predictor Candidates," Papers 2302.02866, arXiv.org, revised Oct 2023.
- Phillip J. Monin, 2019. "The OFR Financial Stress Index," Risks, MDPI, vol. 7(1), pages 1-21, February.
- Raffaella Giacomini & Barbara Rossi, 2015.
"Forecasting in Nonstationary Environments: What Works and What Doesn't in Reduced-Form and Structural Models,"
Annual Review of Economics, Annual Reviews, vol. 7(1), pages 207-229, August.
- Raffaella Giacomini & Barbara Rossi, 2014. "Forecasting in nonstationary environments: What works and what doesn't in reduced-form and structural models," Economics Working Papers 1476, Department of Economics and Business, Universitat Pompeu Fabra.
- Raffaella Giacomini & Barbara Rossi, 2014. "Forecasting in Nonstationary Environments: What Works and What Doesn't in Reduced-Form and Structural Models," Working Papers 819, Barcelona School of Economics.
- repec:ipg:wpaper:2014-414 is not listed on IDEAS
- Esteban Gómez & Andrés Murcia & Nancy Zamundio, 2011.
"Financial Conditions Index: Early and Leading Indicator for Colombia,"
Revista ESPE - Ensayos sobre Política Económica, Banco de la Republica de Colombia, vol. 29(66), pages 174-220, December.
- Esteban Gómez & Andrés Murcia & Nancy Zamudio, 2011. "Financial Conditions Index: Early and Leading Indicator for Colombia," Revista ESPE - Ensayos Sobre Política Económica, Banco de la República, vol. 29(66), pages 174-220, December.
- Esteban Gómez & Andrés Murcia Pabón & Nancy Zamudio Gómez, 2011. "Financial Conditions Index: Early and Leading Indicator for Colombia?," Temas de Estabilidad Financiera 055, Banco de la Republica de Colombia.
- Rahman, Abdul & Khan, Muhammad Arshad & Charfeddine, Lanouar, 2021. "Regime-specific impact of financial reforms on economic growth in Pakistan," Journal of Policy Modeling, Elsevier, vol. 43(1), pages 161-182.
- Anton Grui & Roman Lysenko, 2017. "Nowcasting Ukraine's GDP Using a Factor-Augmented VAR (FAVAR) Model," Visnyk of the National Bank of Ukraine, National Bank of Ukraine, issue 242, pages 5-13.
- Dimitris Korobilis, 2013.
"Var Forecasting Using Bayesian Variable Selection,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 28(2), pages 204-230, March.
- Korobilis, Dimitris, 2009. "VAR forecasting using Bayesian variable selection," MPRA Paper 21124, University Library of Munich, Germany.
- KOROBILIS, Dimitris, 2011. "VAR forecasting using Bayesian variable selection," LIDAM Discussion Papers CORE 2011022, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Dimitris Korobilis, 2010. "VAR Forecasting Using Bayesian Variable Selection," Working Paper series 51_10, Rimini Centre for Economic Analysis, revised Apr 2011.
- Rapach, David & Zhou, Guofu, 2013. "Forecasting Stock Returns," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 328-383, Elsevier.
- Kevin Moran & Dalibor Stevanovic & Adam Kader Touré, 2022.
"Macroeconomic uncertainty and the COVID‐19 pandemic: Measure and impacts on the Canadian economy,"
Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 55(S1), pages 379-405, February.
- Kevin Moran & Dalibor Stevanovic & Adam Kader Toure, 2020. "Macroeconomic Uncertainty and the COVID-19 Pandemic: Measure and Impacts on the Canadian Economy," Working Papers 20-18, Chair in macroeconomics and forecasting, University of Quebec in Montreal's School of Management, revised Dec 2020.
- Kevin Moran & Dalibor Stevanovic & Adam Abdel Kader Touré, 2020. "Macroeconomic Uncertainty and the COVID-19 Pandemic: Measure and Impacts on the Canadian Economy," CIRANO Working Papers 2020s-47, CIRANO.
- Chu‐An Liu & Biing‐Shen Kuo, 2016.
"Model averaging in predictive regressions,"
Econometrics Journal, Royal Economic Society, vol. 19(2), pages 203-231, June.
- Liu, Chu-An & Kuo, Biing-Shen, 2014. "Model Averaging in Predictive Regressions," MPRA Paper 54198, University Library of Munich, Germany.
- IIBOSHI Hirokuni, 2012. "Measuring the Effects of Monetary Policy: A DSGE-DFM Approach," ESRI Discussion paper series 292, Economic and Social Research Institute (ESRI).
- Branimir, Jovanovic & Magdalena, Petrovska, 2010. "Forecasting Macedonian GDP: Evaluation of different models for short-term forecasting," MPRA Paper 43162, University Library of Munich, Germany.
- Gang Cheng & Sicong Wang & Yuhong Yang, 2015. "Forecast Combination under Heavy-Tailed Errors," Econometrics, MDPI, vol. 3(4), pages 1-28, November.
- Klaus Abberger, 2007. "Forecasting Quarter-on-Quarter Changes of German GDP with Monthly Business Tendency Survey Results," ifo Working Paper Series 40, ifo Institute - Leibniz Institute for Economic Research at the University of Munich.
- Kitlinski, Tobias, 2015. "With or without you: Do financial data help to forecast industrial production?," Ruhr Economic Papers 558, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
- Liew, Freddy, 2012. "Forecasting inflation in Asian economies," MPRA Paper 36781, University Library of Munich, Germany.
- Ryan Greenaway-McGrevy, 2013. "A Multivariate Approach to Seasonal Adjustment," BEA Working Papers 0100, Bureau of Economic Analysis.
- French, Declan & McKillop, Donal & Sharma, Tripti, 2018. "What determines UK housing equity withdrawal in later life?," Regional Science and Urban Economics, Elsevier, vol. 73(C), pages 143-154.
- Bellégo, C. & Ferrara, L., 2009. "Forecasting Euro-area recessions using time-varying binary response models for financial," Working papers 259, Banque de France.
- Petrevski, Goran & Exterkate, Peter & Tevdovski, Dragan & Bogoev, Jane, 2015. "The transmission of foreign shocks to South Eastern European economies: A Bayesian VAR approach," Economic Systems, Elsevier, vol. 39(4), pages 632-643.
- Ergemen, Yunus Emre & Rodríguez-Caballero, C. Vladimir, 2023.
"Estimation of a dynamic multi-level factor model with possible long-range dependence,"
International Journal of Forecasting, Elsevier, vol. 39(1), pages 405-430.
- Rodríguez Caballero, Carlos Vladimir, 2017. "Estimation of a Dynamic Multilevel Factor Model with possible long-range dependence," DES - Working Papers. Statistics and Econometrics. WS 24614, Universidad Carlos III de Madrid. Departamento de EstadÃstica.
- Guido Bulligan & Roberto Golinelli & Giuseppe Parigi, 2010. "Forecasting monthly industrial production in real-time: from single equations to factor-based models," Empirical Economics, Springer, vol. 39(2), pages 303-336, October.
- Laurini, Márcio Poletti & Ohashi, Alberto, 2015.
"A noisy principal component analysis for forward rate curves,"
European Journal of Operational Research, Elsevier, vol. 246(1), pages 140-153.
- Marcio Laurini & Alberto Ohashi, 2014. "A Noisy Principal Component Analysis for Forward Rate Curves," Papers 1408.6279, arXiv.org.
- Mirakyan, Atom & Meyer-Renschhausen, Martin & Koch, Andreas, 2017. "Composite forecasting approach, application for next-day electricity price forecasting," Energy Economics, Elsevier, vol. 66(C), pages 228-237.
- repec:cte:wsrepe:23974 is not listed on IDEAS
- Christiansen, Charlotte & Eriksen, Jonas Nygaard & Møller, Stig Vinther, 2014.
"Forecasting US recessions: The role of sentiment,"
Journal of Banking & Finance, Elsevier, vol. 49(C), pages 459-468.
- Charlotte Christiansen & Jonas Nygaard Eriksen & Stig V. Møller, 2013. "Forecasting US Recessions: The Role of Sentiments," CREATES Research Papers 2013-14, Department of Economics and Business Economics, Aarhus University.
- Brunhes-Lesage, Véronique & Darné, Olivier, 2012. "Nowcasting the French index of industrial production: A comparison from bridge and factor models," Economic Modelling, Elsevier, vol. 29(6), pages 2174-2182.
- Tomaso Pompili & Michela Martinoia, 2011. "Building Synthetic Indicators For Aspects Of Territorial Capital Towards Their Impact On Regional Performance," ERSA conference papers ersa11p1528, European Regional Science Association.
- Wei-Chun Hsu & Lin Lin & Chen-Yu Li, 2014. "Forecasting automobile sales: the Peña-Box approach," Transportation Planning and Technology, Taylor & Francis Journals, vol. 37(6), pages 568-580, August.
- Dragan Tevdovski & Goran Petrevski & Jane Bogoev, 2019.
"The effects of macroeconomic policies under fixed exchange rates: A Bayesian VAR analysis,"
Economic Research-Ekonomska Istraživanja, Taylor & Francis Journals, vol. 32(1), pages 2138-2160, January.
- Tevdovski, Dragan & Petrevski, Goran & Bogoev, Jane, 2016. "The effects of macroeconomic policies under fixed exchange rates: A Bayesian VAR analysis," MPRA Paper 73461, University Library of Munich, Germany, revised 21 Jun 2016.
- Risse, Marian & Ohl, Ludwig, 2017. "Using dynamic model averaging in state space representation with dynamic Occam’s window and applications to the stock and gold market," Journal of Empirical Finance, Elsevier, vol. 44(C), pages 158-176.
- Lütkepohl, Helmut, 2014.
"Structural vector autoregressive analysis in a data rich environment: A survey,"
SFB 649 Discussion Papers
2014-004, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
- Helmut Lütkepohl, 2014. "Structural Vector Autoregressive Analysis in a Data Rich Environment: A Survey," Discussion Papers of DIW Berlin 1351, DIW Berlin, German Institute for Economic Research.
- Di Giorgio, Laura & Filippini, Massimo & Masiero, Giuliano, 2014.
"Implications of global budget payment system on nursing home costs,"
Health Policy, Elsevier, vol. 115(2), pages 237-248.
- Laura Di Giorgio & Massimo Filippini & Giuliano Masiero, 2012. "Implications of global budget payment system on nursing home costs," CEPRA working paper 1301, USI Università della Svizzera italiana.
- Fantazzini, Dean & Toktamysova, Zhamal, 2015.
"Forecasting German car sales using Google data and multivariate models,"
International Journal of Production Economics, Elsevier, vol. 170(PA), pages 97-135.
- Fantazzini, Dean & Toktamysova, Zhamal, 2015. "Forecasting German Car Sales Using Google Data and Multivariate Models," MPRA Paper 67110, University Library of Munich, Germany.
- Eric Hillebrand & Tae-Hwy Lee, 2012.
"Stein-Rule Estimation and Generalized Shrinkage Methods for Forecasting Using Many Predictors,"
Advances in Econometrics, in: 30th Anniversary Edition, pages 171-196,
Emerald Group Publishing Limited.
- Eric Hillebrand & Tae-Hwy Lee, 2012. "Stein-Rule Estimation and Generalized Shrinkage Methods for Forecasting Using Many Predictors," CREATES Research Papers 2012-18, Department of Economics and Business Economics, Aarhus University.
- Boot, Tom & Nibbering, Didier, 2019.
"Forecasting using random subspace methods,"
Journal of Econometrics, Elsevier, vol. 209(2), pages 391-406.
- Tom Boot & Didier Nibbering, 2016. "Forecasting Using Random Subspace Methods," Tinbergen Institute Discussion Papers 16-073/III, Tinbergen Institute, revised 11 Aug 2017.
- Aaron Mehrotra & José Sánchez-Fung, 2008.
"Forecasting inflation in China,"
China Economic Journal, Taylor & Francis Journals, vol. 1(3), pages 317-322.
- Mehrotra, Aaron & Sánchez-Fung, José R., 2008. "Forecasting inflation in China," BOFIT Discussion Papers 2/2008, Bank of Finland Institute for Emerging Economies (BOFIT).
- Oliver J. Rutz & Michael Trusov & Randolph E. Bucklin, 2011. "Modeling Indirect Effects of Paid Search Advertising: Which Keywords Lead to More Future Visits?," Marketing Science, INFORMS, vol. 30(4), pages 646-665, July.
- Thomadakis, Apostolos, 2016. "Do Combination Forecasts Outperform the Historical Average? Economic and Statistical Evidence," MPRA Paper 71589, University Library of Munich, Germany.
- Jennifer Castle & David Hendry & Oleg Kitov, 2013. "Forecasting and Nowcasting Macroeconomic Variables: A Methodological Overview," Economics Series Working Papers 674, University of Oxford, Department of Economics.
- Kevin Moran & Simplice Aime Nono, 2016. "Using Confidence Data to Forecast the Canadian Business Cycle," Cahiers de recherche 1606, Centre de recherche sur les risques, les enjeux économiques, et les politiques publiques.
- Barhoumi, K. & Brunhes-Lesage, V. & Darné, O. & Ferrara, L. & Pluyaud, B. & Rouvreau, B., 2008. "Monthly forecasting of French GDP: A revised version of the OPTIM model," Working papers 222, Banque de France.
- Choi, In, 2012.
"Efficient Estimation Of Factor Models,"
Econometric Theory, Cambridge University Press, vol. 28(2), pages 274-308, April.
- In Choi, 2007. "Efficient Estimation of Factor Models," Working Papers 0701, Nam Duck-Woo Economic Research Institute, Sogang University (Former Research Institute for Market Economy), revised Dec 2010.
- Schumacher Christian, 2011. "Forecasting with Factor Models Estimated on Large Datasets: A Review of the Recent Literature and Evidence for German GDP," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 231(1), pages 28-49, February.
- Elliott, Graham & Gargano, Antonio & Timmermann, Allan, 2013.
"Complete subset regressions,"
Journal of Econometrics, Elsevier, vol. 177(2), pages 357-373.
- Elliott, Graham & Gargano, Antonio & Timmermann, Allan, 2013. "Complete subset regressions," University of California at San Diego, Economics Working Paper Series qt1st3n7z7, Department of Economics, UC San Diego.
- Milan Christian Wet & Ilse Botha, 2022. "Constructing and Characterising the Aggregate South African Financial Cycle: A Markov Regime-Switching Approach," Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 18(1), pages 37-67, March.
- Ciner, Cetin, 2019. "Do industry returns predict the stock market? A reprise using the random forest," The Quarterly Review of Economics and Finance, Elsevier, vol. 72(C), pages 152-158.
- Graham Elliott & Allan Timmermann, 2016.
"Forecasting in Economics and Finance,"
Annual Review of Economics, Annual Reviews, vol. 8(1), pages 81-110, October.
- Timmermann, Allan & Elliott, Graham, 2016. "Forecasting in Economics and Finance," CEPR Discussion Papers 11354, C.E.P.R. Discussion Papers.
- Elliott, Graham & Timmermann, Allan G, 2016. "Forecasting in Economics and Finance," University of California at San Diego, Economics Working Paper Series qt6z55v472, Department of Economics, UC San Diego.
- Jean Armand Gnagne & Kevin Moran, 2018. "Monitoring Bank Failures in a Data-Rich Environment," Cahiers de recherche 1815, Centre de recherche sur les risques, les enjeux économiques, et les politiques publiques.
- Mestekemper, Thomas & Windmann, Michael & Kauermann, Göran, 2010. "Functional hourly forecasting of water temperature," International Journal of Forecasting, Elsevier, vol. 26(4), pages 684-699, October.
- Michela Martinoia & Tomaso Pompili, 2015. "Building synthetic indicators for aspects of territorial capital," LIUC Papers in Economics 290, Cattaneo University (LIUC).
- Kapetanios, George & Marcellino, Massimiliano & Papailias, Fotis, 2016. "Forecasting inflation and GDP growth using heuristic optimisation of information criteria and variable reduction methods," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 369-382.
- James Sampi, 2016. "High Dimensional Factor Models: An Empirical Bayes Approach," Working Papers 75, Peruvian Economic Association.
- Stanislav Anatolyev, 2007.
"Inference about predictive ability when there are many predictors,"
Working Papers
w0096, New Economic School (NES).
- Stanislav Anatolyev, 2007. "Inference about predictive ability when there are many predictors," Working Papers w0096, Center for Economic and Financial Research (CEFIR).
- Michael Bleaney & Paul Mizen & Veronica Veleanu, 2012. "Bond Spreads as Predictors of Economic Activity in Eight European Economies," Discussion Papers 12/11, University of Nottingham, Centre for Finance, Credit and Macroeconomics (CFCM).
- Raffaella Giacomini, 2014. "Economic theory and forecasting: lessons from the literature," CeMMAP working papers 41/14, Institute for Fiscal Studies.
- Helena Chuliá & Montserrat Guillén & Jorge M. Uribe, 2015. "Mortality and Longevity Risks in the United Kingdom: Dynamic Factor Models and Copula-Functions," Working Papers 2015-03, Universitat de Barcelona, UB Riskcenter.
- Jianhao Lin & Jiacheng Fan & Yifan Zhang & Liangyuan Chen, 2023. "Real‐time macroeconomic projection using narrative central bank communication," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 38(2), pages 202-221, March.
- Andrew G. Haldane & Arthur E. Turrell, 2019. "Drawing on different disciplines: macroeconomic agent-based models," Journal of Evolutionary Economics, Springer, vol. 29(1), pages 39-66, March.
- Brownlees, Christian & Souza, André B.M., 2021. "Backtesting global Growth-at-Risk," Journal of Monetary Economics, Elsevier, vol. 118(C), pages 312-330.
- Hyun Hak Kim, 2013. "Forecasting Macroeconomic Variables Using Data Dimension Reduction Methods: The Case of Korea," Working Papers 2013-26, Economic Research Institute, Bank of Korea.
- repec:dau:papers:123456789/11663 is not listed on IDEAS
- Mehrotra, Aaron & Sánchez-Fung, José R., 2008. "Forecasting inflation in China," BOFIT Discussion Papers 2/2008, Bank of Finland, Institute for Economies in Transition.
- Zeng, Jing, 2014. "Forecasting Aggregates with Disaggregate Variables: Does boosting help to select the most informative predictors?," VfS Annual Conference 2014 (Hamburg): Evidence-based Economic Policy 100310, Verein für Socialpolitik / German Economic Association.
- Povilas Lastauskas & Julius Stakenas, 2019.
"Does It Matter When Labor Market Reforms Are Implemented? The Role of the Monetary Policy Environment,"
Bank of Lithuania Working Paper Series
66, Bank of Lithuania.
- Povilas Lastauskas & Julius Stakénas, 2019. "Does It Matter When Labor Market Reforms Are Implemented? The Role of the Monetary Policy Environment," CESifo Working Paper Series 7844, CESifo.
- Patton, Andrew J. & Timmermann, Allan, 2010. "Why do forecasters disagree? Lessons from the term structure of cross-sectional dispersion," Journal of Monetary Economics, Elsevier, vol. 57(7), pages 803-820, October.
- Alessandro Hill & Jürgen W. Böse, 2017. "A decision support system for improved resource planning and truck routing at logistic nodes," Information Technology and Management, Springer, vol. 18(3), pages 241-251, September.
- Drachal, Krzysztof, 2018. "Comparison between Bayesian and information-theoretic model averaging: Fossil fuels prices example," Energy Economics, Elsevier, vol. 74(C), pages 208-251.
- Kock, Anders Bredahl & Callot, Laurent, 2015.
"Oracle inequalities for high dimensional vector autoregressions,"
Journal of Econometrics, Elsevier, vol. 186(2), pages 325-344.
- Anders Bredahl Kock & Laurent A.F. Callot, 2012. "Oracle Inequalities for High Dimensional Vector Autoregressions," CREATES Research Papers 2012-16, Department of Economics and Business Economics, Aarhus University.
- Jing Zeng, 2014. "Forecasting Aggregates with Disaggregate Variables: Does Boosting Help to Select the Most Relevant Predictors?," Working Paper Series of the Department of Economics, University of Konstanz 2014-20, Department of Economics, University of Konstanz.
- Tan, Xueping & Sirichand, Kavita & Vivian, Andrew & Wang, Xinyu, 2022. "Forecasting European carbon returns using dimension reduction techniques: Commodity versus financial fundamentals," International Journal of Forecasting, Elsevier, vol. 38(3), pages 944-969.
- Issler, João Victor & Rodrigues, Claudia & Burjack, Rafael, 2014.
"Using common features to understand the behavior of metal-commodity prices and forecast them at different horizons,"
Journal of International Money and Finance, Elsevier, vol. 42(C), pages 310-335.
- Issler, João Victor & Rodrigues, Claudia Ferreira & Burjack, Rafael, 2013. "Using common features to understand the behavior of metal-commodity prices and forecast them at different horizons," FGV EPGE Economics Working Papers (Ensaios Economicos da EPGE) 744, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil).
- Issler, João Victor & Rodrigues, Claudia Ferreira & Burjack, Rafael, 2013. "Using common features to understand the behavior of metal-commodity prices and forecast them at different horizons," FGV EPGE Economics Working Papers (Ensaios Economicos da EPGE) 735, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil).
- Kim, Hyun Hak & Swanson, Norman R., 2014.
"Forecasting financial and macroeconomic variables using data reduction methods: New empirical evidence,"
Journal of Econometrics, Elsevier, vol. 178(P2), pages 352-367.
- Huyn Hak Kim & Norman R. Swanson, 2011. "Forecasting Financial and Macroeconomic Variables Using Data Reduction Methods: New Empirical Evidence," Departmental Working Papers 201119, Rutgers University, Department of Economics.
- Zhuo Chen & Gregory Connor & Robert A Korajczyk, 2018.
"A Performance Comparison of Large-n Factor Estimators,"
The Review of Asset Pricing Studies, Society for Financial Studies, vol. 8(1), pages 153-182.
- Gregory Connor & Zhuo Chen & Robert A. Korajczyk, 2014. "A Performance Comparison of Large-n Factor Estimators," Economics Department Working Paper Series n255-14.pdf, Department of Economics, National University of Ireland - Maynooth.
- Dichtl, Hubert & Drobetz, Wolfgang & Neuhierl, Andreas & Wendt, Viktoria-Sophie, 2021. "Data snooping in equity premium prediction," International Journal of Forecasting, Elsevier, vol. 37(1), pages 72-94.
- In Choi & Seong Jin Hwang, 2012. "Forecasting Korean inflation," Working Papers 1202, Nam Duck-Woo Economic Research Institute, Sogang University (Former Research Institute for Market Economy).
- Altavilla, Carlo & Ciccarelli, Matteo, 2010. "Evaluating the effect of monetary policy on unemployment with alternative inflation forecasts," Economic Modelling, Elsevier, vol. 27(1), pages 237-253, January.
- Ko, Byoung Wook, 2010. "An application of dynamic factor model to dry Bulk Market - focusing on the analysis of synchronicity and idiosyncrasy in the sub-markets with different ship - size," MPRA Paper 32572, University Library of Munich, Germany.
- Mont'Alverne Duarte, Angelo & Gaglianone, Wagner Piazza & de Carvalho Guillén, Osmani Teixeira & Issler, João Victor, 2021.
"Commodity prices and global economic activity: A derived-demand approach,"
Energy Economics, Elsevier, vol. 96(C).
- Angelo Mont’Alverne Duarte & Wagner Piazza Gaglianone & Osmani Teixeira de Carvalho Guillén & João Victor Issler, 2020. "Commodity Prices and Global Economic Activity: a derived-demand approach," Working Papers Series 539, Central Bank of Brazil, Research Department.
- Karim Barhoumi & Olivier Darné & Laurent Ferrara, 2010.
"Are disaggregate data useful for factor analysis in forecasting French GDP?,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 29(1-2), pages 132-144.
- Barhoumi, K. & Darné, O. & Ferrara, L., 2009. "Are disaggregate data useful for factor analysis in forecasting French GDP?," Working papers 232, Banque de France.
- Marcellino, Massimiliano & Schumacher, Christian, 2007.
"Factor-MIDAS for now- and forecasting with ragged-edge data: a model comparison for German GDP,"
Discussion Paper Series 1: Economic Studies
2007,34, Deutsche Bundesbank.
- Massimiliano Marcellino & Christian Schumacher, 2008. "Factor-MIDAS for Now- and Forecasting with Ragged-Edge Data: A Model Comparison for German GDP," Economics Working Papers ECO2008/16, European University Institute.
- Schumacher, Christian & Marcellino, Massimiliano, 2008. "Factor-MIDAS for now- and forecasting with ragged-edge data: A model comparison for German GDP," CEPR Discussion Papers 6708, C.E.P.R. Discussion Papers.
- Hongwei Zhang & Qiang He & Ben Jacobsen & Fuwei Jiang, 2020. "Forecasting stock returns with model uncertainty and parameter instability," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(5), pages 629-644, August.
- Ard den Reijer, 2007. "Identifying Regional and Sectoral Dynamics of the Dutch Staffing Labour Cycle," DNB Working Papers 153, Netherlands Central Bank, Research Department.
- repec:zbw:bofitp:2017_019 is not listed on IDEAS
- Heij, Christiaan & van Dijk, Dick & Groenen, Patrick J.F., 2008. "Macroeconomic forecasting with matched principal components," International Journal of Forecasting, Elsevier, vol. 24(1), pages 87-100.
- Schumacher, Christian, 2010.
"Factor forecasting using international targeted predictors: The case of German GDP,"
Economics Letters, Elsevier, vol. 107(2), pages 95-98, May.
- Schumacher, Christian, 2009. "Factor forecasting using international targeted predictors: the case of German GDP," Discussion Paper Series 1: Economic Studies 2009,10, Deutsche Bundesbank.
- Ng, Serena, 2013. "Variable Selection in Predictive Regressions," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 752-789, Elsevier.
- Sagaert, Yves R. & Aghezzaf, El-Houssaine & Kourentzes, Nikolaos & Desmet, Bram, 2018. "Tactical sales forecasting using a very large set of macroeconomic indicators," European Journal of Operational Research, Elsevier, vol. 264(2), pages 558-569.
- Heij, C. & van Dijk, D.J.C. & Groenen, P.J.F., 2009. "Macroeconomic forecasting with real-time data: an empirical comparison," Econometric Institute Research Papers EI 2009-27, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
- Grassi, Stefano & Proietti, Tommaso & Frale, Cecilia & Marcellino, Massimiliano & Mazzi, Gianluigi, 2015.
"EuroMInd-C: A disaggregate monthly indicator of economic activity for the Euro area and member countries,"
International Journal of Forecasting, Elsevier, vol. 31(3), pages 712-738.
- Cecilia Frale & Stefano Grassi & Massimiliano Marcellino & Gianluigi Mazzi & Tommaso Proietti, 2013. "EuroMInd-C: a Disaggregate Monthly Indicator of Economic Activity for the Euro Area and member countries," CEIS Research Paper 287, Tor Vergata University, CEIS, revised 01 Oct 2013.
- Hansen, Bruce E., 2008. "Least-squares forecast averaging," Journal of Econometrics, Elsevier, vol. 146(2), pages 342-350, October.
- Yasutomo Murasawa, 2009. "Do coincident indicators have one-factor structure?," Empirical Economics, Springer, vol. 36(2), pages 339-365, May.
- Macias, Paweł & Stelmasiak, Damian & Szafranek, Karol, 2023. "Nowcasting food inflation with a massive amount of online prices," International Journal of Forecasting, Elsevier, vol. 39(2), pages 809-826.
- Cheng, Mingmian & Swanson, Norman R. & Yang, Xiye, 2021. "Forecasting volatility using double shrinkage methods," Journal of Empirical Finance, Elsevier, vol. 62(C), pages 46-61.
- IIBOSHI Hirokuni & MATSUMAE Tatsuyoshi & NISHIYAMA Shin-Ichi, 2014. "Sources of the Great Recession:A Bayesian Approach of a Data-Rich DSGE model with Time-Varying Volatility Shocks," ESRI Discussion paper series 313, Economic and Social Research Institute (ESRI).
- Tumala, Mohammed M & Olubusoye, Olusanya E & Yaaba, Baba N & Yaya, OlaOluwa S & Akanbi, Olawale B, 2017. "Forecasting Nigerian Inflation using Model Averaging methods: Modelling Frameworks to Central Banks," MPRA Paper 88754, University Library of Munich, Germany, revised Feb 2018.
- Steven D. Silver, 2016. "A QUAIDS Model of Need-Based Structure in U.S. Personal Consumption 2006–2012," Atlantic Economic Journal, Springer;International Atlantic Economic Society, vol. 44(3), pages 303-323, September.
- Rachida Ouysse, 2017.
"Constrained principal components estimation of large approximate factor models,"
Discussion Papers
2017-12, School of Economics, The University of New South Wales.
- Rachida Ouysse, 2019. "Constrained principal components estimation of large approximate factor models," Discussion Papers 2017-12a, School of Economics, The University of New South Wales.
- Giglio, Stefano & Kelly, Bryan & Pruitt, Seth, 2016.
"Systemic risk and the macroeconomy: An empirical evaluation,"
Journal of Financial Economics, Elsevier, vol. 119(3), pages 457-471.
- Stefano Giglio & Bryan T. Kelly & Seth Pruitt, 2015. "Systemic Risk and the Macroeconomy: An Empirical Evaluation," NBER Working Papers 20963, National Bureau of Economic Research, Inc.
- Borus Jungbacker & Siem Jan Koopman, 2015. "Likelihood‐based dynamic factor analysis for measurement and forecasting," Econometrics Journal, Royal Economic Society, vol. 18(2), pages 1-21, June.
- Marcella Lucchetta & Mr. Gianni De Nicolo, 2012. "Systemic Real and Financial Risks: Measurement, Forecasting, and Stress Testing," IMF Working Papers 2012/058, International Monetary Fund.
- Mikosch, Heiner & Solanko, Laura, 2017. "Should one follow movements in the oil price or in money supply? Forecasting quarterly GDP growth in Russia with higher-frequency indicators," BOFIT Discussion Papers 19/2017, Bank of Finland, Institute for Economies in Transition.
- Hollstein, Fabian & Prokopczuk, Marcel & Wese Simen, Chardin, 2017. "How to Estimate Beta?," Hannover Economic Papers (HEP) dp-617, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
- Andrea Carriero & Todd E. Clark & Massimiliano Marcellino & Elmar Mertens, 2020.
"Measuring Uncertainty and Its Effects in the COVID-19 Era,"
Working Papers
20-32R, Federal Reserve Bank of Cleveland, revised 05 Jan 2022.
- Marcellino, Massimiliano & Carriero, Andrea & Clark, Todd & Mertens, Elmar, 2021. "Measuring Uncertainty and Its Effects in the COVID-19 Era," CEPR Discussion Papers 15965, C.E.P.R. Discussion Papers.
- Hollstein, Fabian & Prokopczuk, Marcel & Wese Simen, Chardin, 2019. "Estimating beta: Forecast adjustments and the impact of stock characteristics for a broad cross-section," Journal of Financial Markets, Elsevier, vol. 44(C), pages 91-118.
- De Gooijer, Jan G. & Zerom, Dawit, 2019. "Semiparametric quantile averaging in the presence of high-dimensional predictors," International Journal of Forecasting, Elsevier, vol. 35(3), pages 891-909.
- Çepni, Oğuzhan & Gül, Selçuk & Hacıhasanoğlu, Yavuz Selim & Yılmaz, Muhammed Hasan, 2020. "Global uncertainties and portfolio flow dynamics of the BRICS countries," Research in International Business and Finance, Elsevier, vol. 54(C).
- Massimo Guidolin & Manuela Pedio, 2020. "Distilling Large Information Sets to Forecast Commodity Returns: Automatic Variable Selection or HiddenMarkov Models?," BAFFI CAREFIN Working Papers 20140, BAFFI CAREFIN, Centre for Applied Research on International Markets Banking Finance and Regulation, Universita' Bocconi, Milano, Italy.
- Xu Cheng & Bruce E. Hansen, 2012. "Forecasting with Factor-Augmented Regression: A Frequentist Model Averaging Approach, Second Version," PIER Working Paper Archive 13-061, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania, revised 03 Sep 2013.
- Karsten R. Gerdrup & Anne Sofie Jore & Christie Smith & Leif Anders Thorsrud, 2009. "Evaluating ensemble density combination - forecasting GDP and inflation," Working Paper 2009/19, Norges Bank.
- Daniel Wochner, 2020. "Dynamic Factor Trees and Forests – A Theory-led Machine Learning Framework for Non-Linear and State-Dependent Short-Term U.S. GDP Growth Predictions," KOF Working papers 20-472, KOF Swiss Economic Institute, ETH Zurich.
- Yongsheng Yi & Feng Ma & Dengshi Huang & Yaojie Zhang, 2019. "Interest rate level and stock return predictability," Review of Financial Economics, John Wiley & Sons, vol. 37(4), pages 506-522, October.
- Heaton, Chris & Solo, Victor, 2012. "Estimation of high-dimensional linear factor models with grouped variables," Journal of Multivariate Analysis, Elsevier, vol. 105(1), pages 348-367.
- Aparicio, Diego & Bertolotto, Manuel I., 2020. "Forecasting inflation with online prices," International Journal of Forecasting, Elsevier, vol. 36(2), pages 232-247.
- Borus Jungbacker & Siem Jan Koopman, 2008. "Likelihood-based Analysis for Dynamic Factor Models," Tinbergen Institute Discussion Papers 08-007/4, Tinbergen Institute, revised 20 Mar 2014.
- Andrea Carriero & George Kapetanios & Massimiliano Marcellino, 2008. "Forecasting with Dynamic Models using Shrinkage-based Estimation," Working Papers 635, Queen Mary University of London, School of Economics and Finance.
- Elliott, Graham & Gargano, Antonio & Timmermann, Allan, 2015. "Complete subset regressions with large-dimensional sets of predictors," Journal of Economic Dynamics and Control, Elsevier, vol. 54(C), pages 86-110.
- Andrea Carriero & George Kapetanios & Massimiliano Marcellino, 2008.
"Forecasting with Dynamic Models using Shrinkage-based Estimation,"
Working Papers
635, Queen Mary University of London, School of Economics and Finance.
- Andrea Carriero & George Kapetanios & Massimiliano Marcellino, 2008. "Forecasting with Dynamic Models using Shrinkage-based Estimation," Working Papers 635, Queen Mary University of London, School of Economics and Finance.
- Emilio Blanco & Fiorella Dogliolo & Lorena Garegnani, 2022. "Nowcasting during the Pandemic: Lessons from Argentina," BCRA Working Paper Series 202299, Central Bank of Argentina, Economic Research Department.
- Daniel Felix Ahelegbey & Monica Billio & Roberto Casarin, 2016.
"Sparse Graphical Vector Autoregression: A Bayesian Approach,"
Annals of Economics and Statistics, GENES, issue 123-124, pages 333-361.
- Roberto Casarin & Daniel Felix Ahelegbey & Monica Billio, 2014. "Sparse Graphical Vector Autoregression: A Bayesian Approach," Working Papers 2014:29, Department of Economics, University of Venice "Ca' Foscari".
- Tang, Wenjin & Ding, Saijie & Chen, Hao, 2021. "Economic uncertainty and its spillover networks: Evidence from the Asia-Pacific countries," Pacific-Basin Finance Journal, Elsevier, vol. 67(C).
- Mariola Pilatowska, 2009. "The Combined Forecasts Using the Akaike Weights," Dynamic Econometric Models, Uniwersytet Mikolaja Kopernika, vol. 9, pages 5-16.
- Proietti, Tommaso, 2008. "Estimation of Common Factors under Cross-Sectional and Temporal Aggregation Constraints: Nowcasting Monthly GDP and its Main Components," MPRA Paper 6860, University Library of Munich, Germany.
- Ard Reijer & Andreas Johansson, 2019. "Nowcasting Swedish GDP with a large and unbalanced data set," Empirical Economics, Springer, vol. 57(4), pages 1351-1373, October.
- Lorenzo Boldrini & Eric Hillebrand, 2015. "Supervision in Factor Models Using a Large Number of Predictors," CREATES Research Papers 2015-38, Department of Economics and Business Economics, Aarhus University.
- repec:fgv:epgewp:736 is not listed on IDEAS
- Dimitra Lamprou, 2015. "Nowcasting GDP in Greece: A Note on Forecasting Improvements from the Use of Bridge Models," South-Eastern Europe Journal of Economics, Association of Economic Universities of South and Eastern Europe and the Black Sea Region, vol. 13(1), pages 85-100.
- Dimitris P. Louzis, 2014. "Macroeconomic and credit forecasts in a small economy during crisis: A large Bayesian VAR approach," Working Papers 184, Bank of Greece.