IDEAS home Printed from https://ideas.repec.org/p/baf/cbafwp/cbafwp20140.html
   My bibliography  Save this paper

Distilling Large Information Sets to Forecast Commodity Returns: Automatic Variable Selection or HiddenMarkov Models?

Author

Listed:
  • Massimo Guidolin
  • Manuela Pedio

Abstract

We investigate the out-of-sample, recursive predictive accuracy for (fully hedged) commodity future returns of two sets of forecasting models, i.e., hidden Markov chain models in which the coefficients of predictive regressions follow a regime switching process and stepwise variable selection algorithms in which the coefficients of predictors not selected are set to zero. We perform the analysis under four alternative loss functions, i.e., squared and the absolute value, and the realized, portfolio Sharpe ratio and MV utility when the portfolio is built upon optimal weights computed solving a standard MV portfolio problem. We find that neither HMM or stepwise regressions manage to systematically (or even just frequently) outperform a plain vanilla AR benchmark according to RMSFE or MAFE statistical loss functions. However, in particular stepwise variable selection methods create economic value in out-of-sample meanvariance portfolio tests. Because we impose transaction costs not only ex post but also ex ante, so that an investor uses the forecasts of a model only when they increase expected utility, the economic value improvement is maximum when transaction costs are taken into account.

Suggested Citation

  • Massimo Guidolin & Manuela Pedio, 2020. "Distilling Large Information Sets to Forecast Commodity Returns: Automatic Variable Selection or HiddenMarkov Models?," BAFFI CAREFIN Working Papers 20140, BAFFI CAREFIN, Centre for Applied Research on International Markets Banking Finance and Regulation, Universita' Bocconi, Milano, Italy.
  • Handle: RePEc:baf:cbafwp:cbafwp20140
    as

    Download full text from publisher

    File URL: https://repec.unibocconi.it/baffic/baf/papers/cbafwp20140.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cenesizoglu, Tolga & Timmermann, Allan, 2012. "Do return prediction models add economic value?," Journal of Banking & Finance, Elsevier, vol. 36(11), pages 2974-2987.
    2. Grechanovsky, Eugene & Pinsker, Ilia, 1995. "Conditional p-values for the F-statistic in a forward selection procedure," Computational Statistics & Data Analysis, Elsevier, vol. 20(3), pages 239-263, September.
    3. Ing, Ching-Kang & Wei, Ching-Zong, 2003. "On same-realization prediction in an infinite-order autoregressive process," Journal of Multivariate Analysis, Elsevier, vol. 85(1), pages 130-155, April.
    4. Gao, Xin & Nardari, Federico, 2018. "Do Commodities Add Economic Value in Asset Allocation? New Evidence from Time-Varying Moments," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 53(1), pages 365-393, February.
    5. Sydney C. Ludvigson & Serena Ng, 2009. "Macro Factors in Bond Risk Premia," The Review of Financial Studies, Society for Financial Studies, vol. 22(12), pages 5027-5067, December.
    6. Bessembinder, Hendrik & Chan, Kalok, 1992. "Time-varying risk premia and forecastable returns in futures markets," Journal of Financial Economics, Elsevier, vol. 32(2), pages 169-193, October.
    7. Date, Paresh & Mamon, Rogemar & Tenyakov, Anton, 2013. "Filtering and forecasting commodity futures prices under an HMM framework," Energy Economics, Elsevier, vol. 40(C), pages 1001-1013.
    8. T. Speed & Bin Yu, 1993. "Model selection and prediction: Normal regression," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 45(1), pages 35-54, March.
    9. Lombardi, Marco J. & Ravazzolo, Francesco, 2016. "On the correlation between commodity and equity returns: Implications for portfolio allocation," Journal of Commodity Markets, Elsevier, vol. 2(1), pages 45-57.
    10. Geweke, John & Meese, Richard, 1981. "Estimating regression models of finite but unknown order," Journal of Econometrics, Elsevier, vol. 16(1), pages 162-162, May.
    11. Mei, Xiaoling & Nogales, Francisco J., 2018. "Portfolio selection with proportional transaction costs and predictability," Journal of Banking & Finance, Elsevier, vol. 94(C), pages 131-151.
    12. Acharya, Viral V. & Lochstoer, Lars A. & Ramadorai, Tarun, 2013. "Limits to arbitrage and hedging: Evidence from commodity markets," Journal of Financial Economics, Elsevier, vol. 109(2), pages 441-465.
    13. Frans A. De Roon & Theo E. Nijman & Chris Veld, 2000. "Hedging Pressure Effects in Futures Markets," Journal of Finance, American Finance Association, vol. 55(3), pages 1437-1456, June.
    14. Yan, Lei & Garcia, Philip, 2017. "Portfolio investment: Are commodities useful?," Journal of Commodity Markets, Elsevier, vol. 8(C), pages 43-55.
    15. Michael E. Tipping & Christopher M. Bishop, 1999. "Probabilistic Principal Component Analysis," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(3), pages 611-622.
    16. de Groot, Wilma & Karstanje, Dennis & Zhou, Weili, 2014. "Exploiting commodity momentum along the futures curves," Journal of Banking & Finance, Elsevier, vol. 48(C), pages 79-93.
    17. Breeden, Douglas T, 1980. "Consumption Risk in Futures Markets," Journal of Finance, American Finance Association, vol. 35(2), pages 503-520, May.
    18. Andrew Papanicolaou & Ronnie Sircar, 2014. "A regime-switching Heston model for VIX and S&P 500 implied volatilities," Quantitative Finance, Taylor & Francis Journals, vol. 14(10), pages 1811-1827, October.
    19. Yang, Fan, 2013. "Investment shocks and the commodity basis spread," Journal of Financial Economics, Elsevier, vol. 110(1), pages 164-184.
    20. Ng, Serena, 2013. "Variable Selection in Predictive Regressions," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 752-789, Elsevier.
    21. Ana‐Maria Fuertes & Joëlle Miffre & Adrian Fernandez‐Perez, 2015. "Commodity Strategies Based on Momentum, Term Structure, and Idiosyncratic Volatility," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 35(3), pages 274-297, March.
    22. Rapach, David & Zhou, Guofu, 2013. "Forecasting Stock Returns," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 328-383, Elsevier.
    23. Abhyankar, Abhay & Basu, Devraj & Stremme, Alexander, 2012. "The Optimal Use of Return Predictability: An Empirical Study," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 47(5), pages 973-1001, October.
    24. Giampietro, Marta & Guidolin, Massimo & Pedio, Manuela, 2018. "Estimating stochastic discount factor models with hidden regimes: Applications to commodity pricing," European Journal of Operational Research, Elsevier, vol. 265(2), pages 685-702.
    25. Chris Chatfield, 1995. "Model Uncertainty, Data Mining and Statistical Inference," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 158(3), pages 419-444, May.
    26. Dangl, Thomas & Halling, Michael, 2012. "Predictive regressions with time-varying coefficients," Journal of Financial Economics, Elsevier, vol. 106(1), pages 157-181.
    27. Gary B. Gorton & Fumio Hayashi & K. Geert Rouwenhorst, 2013. "The Fundamentals of Commodity Futures Returns," Review of Finance, European Finance Association, vol. 17(1), pages 35-105.
    28. Stock, James H. & Watson, Mark W., 2006. "Forecasting with Many Predictors," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 10, pages 515-554, Elsevier.
    29. Henkel, Sam James & Martin, J. Spencer & Nardari, Federico, 2011. "Time-varying short-horizon predictability," Journal of Financial Economics, Elsevier, vol. 99(3), pages 560-580, March.
    30. Cavanaugh, Joseph E., 1997. "Unifying the derivations for the Akaike and corrected Akaike information criteria," Statistics & Probability Letters, Elsevier, vol. 33(2), pages 201-208, April.
    31. G. Elliott & C. Granger & A. Timmermann (ed.), 2013. "Handbook of Economic Forecasting," Handbook of Economic Forecasting, Elsevier, edition 1, volume 2, number 2.
    32. Bossaerts, Peter & Hillion, Pierre, 1999. "Implementing Statistical Criteria to Select Return Forecasting Models: What Do We Learn?," The Review of Financial Studies, Society for Financial Studies, vol. 12(2), pages 405-428.
    33. David Hirshleifer, 1988. "Residual Risk, Trading Costs, and Commodity Futures Risk Premia," The Review of Financial Studies, Society for Financial Studies, vol. 1(2), pages 173-193.
    34. Daskalaki, Charoula & Skiadopoulos, George, 2011. "Should investors include commodities in their portfolios after all? New evidence," Journal of Banking & Finance, Elsevier, vol. 35(10), pages 2606-2626, October.
    35. Massimo Guidolin & Manuela Pedio, 2018. "Forecasting Commodity Futures Returns: An Economic Value Analysis of Macroeconomic vs. Specific Factors," BAFFI CAREFIN Working Papers 1886, BAFFI CAREFIN, Centre for Applied Research on International Markets Banking Finance and Regulation, Universita' Bocconi, Milano, Italy.
    36. Basu, Devraj & Miffre, Joëlle, 2013. "Capturing the risk premium of commodity futures: The role of hedging pressure," Journal of Banking & Finance, Elsevier, vol. 37(7), pages 2652-2664.
    37. Stock J.H. & Watson M.W., 2002. "Forecasting Using Principal Components From a Large Number of Predictors," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1167-1179, December.
    38. Gargano, Antonio & Timmermann, Allan, 2014. "Forecasting commodity price indexes using macroeconomic and financial predictors," International Journal of Forecasting, Elsevier, vol. 30(3), pages 825-843.
    39. Leitch, Gordon & Tanner, J Ernest, 1991. "Economic Forecast Evaluation: Profits versus the Conventional Error Measures," American Economic Review, American Economic Association, vol. 81(3), pages 580-590, June.
    40. James D. Hamilton & Jing Cynthia Wu, 2015. "Effects Of Index‐Fund Investing On Commodity Futures Prices," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 56, pages 187-205, February.
    41. Nikolay Gospodinov & Serena Ng, 2013. "Commodity Prices, Convenience Yields, and Inflation," The Review of Economics and Statistics, MIT Press, vol. 95(1), pages 206-219, March.
    42. Henk Kiers & Age Smilde, 2007. "A comparison of various methods for multivariate regression with highly collinear variables," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 16(2), pages 193-228, August.
    43. Phillips, Peter C B & Ploberger, Werner, 1996. "An Asymptotic Theory of Bayesian Inference for Time Series," Econometrica, Econometric Society, vol. 64(2), pages 381-412, March.
    44. Ahmed, Shamim & Tsvetanov, Daniel, 2016. "The predictive performance of commodity futures risk factors," Journal of Banking & Finance, Elsevier, vol. 71(C), pages 20-36.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Massimo Guidolin & Manuela Pedio, 2022. "Switching Coefficients or Automatic Variable Selection: An Application in Forecasting Commodity Returns," Forecasting, MDPI, vol. 4(1), pages 1-32, February.
    2. Massimo Guidolin & Manuela Pedio, 2018. "Forecasting Commodity Futures Returns: An Economic Value Analysis of Macroeconomic vs. Specific Factors," BAFFI CAREFIN Working Papers 1886, BAFFI CAREFIN, Centre for Applied Research on International Markets Banking Finance and Regulation, Universita' Bocconi, Milano, Italy.
    3. Massimo Guidolin & Manuela Pedio, 2021. "Forecasting commodity futures returns with stepwise regressions: Do commodity-specific factors help?," Annals of Operations Research, Springer, vol. 299(1), pages 1317-1356, April.
    4. Sakkas, Athanasios & Tessaromatis, Nikolaos, 2020. "Factor based commodity investing," Journal of Banking & Finance, Elsevier, vol. 115(C).
    5. Ahmed, Shamim & Tsvetanov, Daniel, 2016. "The predictive performance of commodity futures risk factors," Journal of Banking & Finance, Elsevier, vol. 71(C), pages 20-36.
    6. Ng, Serena, 2013. "Variable Selection in Predictive Regressions," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 752-789, Elsevier.
    7. Daskalaki, Charoula & Kostakis, Alexandros & Skiadopoulos, George, 2014. "Are there common factors in individual commodity futures returns?," Journal of Banking & Finance, Elsevier, vol. 40(C), pages 346-363.
    8. Cotter, John & Eyiah-Donkor, Emmanuel & Potì, Valerio, 2017. "Predictability and diversification benefits of investing in commodity and currency futures," International Review of Financial Analysis, Elsevier, vol. 50(C), pages 52-66.
    9. Cotter, John & Eyiah-Donkor, Emmanuel & Potì, Valerio, 2023. "Commodity futures return predictability and intertemporal asset pricing," Journal of Commodity Markets, Elsevier, vol. 31(C).
    10. Loïc Maréchal, 2023. "A tale of two premiums revisited," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 43(5), pages 580-614, May.
    11. Gurdip Bakshi & Xiaohui Gao & Alberto G. Rossi, 2019. "Understanding the Sources of Risk Underlying the Cross Section of Commodity Returns," Management Science, INFORMS, vol. 65(2), pages 619-641, February.
    12. Giovannelli, Alessandro & Massacci, Daniele & Soccorsi, Stefano, 2021. "Forecasting stock returns with large dimensional factor models," Journal of Empirical Finance, Elsevier, vol. 63(C), pages 252-269.
    13. Davide Pettenuzzo & Francesco Ravazzolo, 2016. "Optimal Portfolio Choice Under Decision‐Based Model Combinations," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 31(7), pages 1312-1332, November.
    14. Miffre, Joëlle, 2016. "Long-short commodity investing: A review of the literature," Journal of Commodity Markets, Elsevier, vol. 1(1), pages 3-13.
    15. Dichtl, Hubert & Drobetz, Wolfgang & Neuhierl, Andreas & Wendt, Viktoria-Sophie, 2021. "Data snooping in equity premium prediction," International Journal of Forecasting, Elsevier, vol. 37(1), pages 72-94.
    16. Bätje, Fabian & Menkhoff, Lukas, 2016. "Predicting the equity premium via its components," VfS Annual Conference 2016 (Augsburg): Demographic Change 145789, Verein für Socialpolitik / German Economic Association.
    17. Giulia Dal Pra & Massimo Guidolin & Manuela Pedio & Fabiola Vasile, 2016. "Do Regimes in Excess Stock Return Predictability Create Economic Value? An Out-of-Sample Portfolio Analysis," BAFFI CAREFIN Working Papers 1637, BAFFI CAREFIN, Centre for Applied Research on International Markets Banking Finance and Regulation, Universita' Bocconi, Milano, Italy.
    18. Marta Giampietro & Massimo Guidolin & Manuela Pedio, 2015. "Can No-Arbitrage SDF Models with Regime Shifts Explain the Correlations Between Commodity, Stock, and Bond Returns?," BAFFI CAREFIN Working Papers 1619, BAFFI CAREFIN, Centre for Applied Research on International Markets Banking Finance and Regulation, Universita' Bocconi, Milano, Italy.
    19. Buncic, Daniel & Tischhauser, Martin, 2017. "Macroeconomic factors and equity premium predictability," International Review of Economics & Finance, Elsevier, vol. 51(C), pages 621-644.
    20. Derek Bunn, Julien Chevallier, Yannick Le Pen, and Benoit Sevi, 2017. "Fundamental and Financial Influences on the Co-movement of Oil and Gas Prices," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2).

    More about this item

    Keywords

    Backward and forward stepwise regressions; hidden Markov models; out-of-sample forecasting; commodity futures returns; mean-variance portfolios.;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:baf:cbafwp:cbafwp20140. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Michela Pozzi (email available below). General contact details of provider: https://edirc.repec.org/data/cbbocit.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.