Forecast comparison of principal component regression and principal covariate regression
Author
Abstract
Suggested Citation
Download full text from publisher
Other versions of this item:
- Heij, Christiaan & Groenen, Patrick J.F. & van Dijk, Dick, 2007. "Forecast comparison of principal component regression and principal covariate regression," Computational Statistics & Data Analysis, Elsevier, vol. 51(7), pages 3612-3625, April.
References listed on IDEAS
- Heij, C. & Groenen, P.J.F. & van Dijk, D.J.C., 2006. "Time series forecasting by principal covariate regression," Econometric Institute Research Papers EI 2006-37, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
- Stock, James H. & Watson, Mark W., 1999.
"Forecasting inflation,"
Journal of Monetary Economics, Elsevier, vol. 44(2), pages 293-335, October.
- James H. Stock & Mark W. Watson, 1999. "Forecasting Inflation," NBER Working Papers 7023, National Bureau of Economic Research, Inc.
- Marianne Sensier & Dick van Dijk, 2004.
"Testing for Volatility Changes in U.S. Macroeconomic Time Series,"
The Review of Economics and Statistics, MIT Press, vol. 86(3), pages 833-839, August.
- M Sensier & D van Dijk, 2003. "Testing for Volatility Changes in US Macroeconomic Time Series," Centre for Growth and Business Cycle Research Discussion Paper Series 36, Economics, The University of Manchester.
- Jushan Bai & Serena Ng, 2002.
"Determining the Number of Factors in Approximate Factor Models,"
Econometrica, Econometric Society, vol. 70(1), pages 191-221, January.
- Jushan Bai & Serena Ng, 2000. "Determining the Number of Factors in Approximate Factor Models," Boston College Working Papers in Economics 440, Boston College Department of Economics.
- Jushan Bai & Serena Ng, 2000. "Determining the Number of Factors in Approximate Factor Models," Econometric Society World Congress 2000 Contributed Papers 1504, Econometric Society.
- Stock, James H & Watson, Mark W, 2002. "Macroeconomic Forecasting Using Diffusion Indexes," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(2), pages 147-162, April.
- Stock, James H. & Watson, Mark W., 2006. "Forecasting with Many Predictors," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 10, pages 515-554, Elsevier.
- Boivin, Jean & Ng, Serena, 2006.
"Are more data always better for factor analysis?,"
Journal of Econometrics, Elsevier, vol. 132(1), pages 169-194, May.
- Jean Boivin & Serena Ng, 2003. "Are More Data Always Better for Factor Analysis?," NBER Working Papers 9829, National Bureau of Economic Research, Inc.
- Stock J.H. & Watson M.W., 2002. "Forecasting Using Principal Components From a Large Number of Predictors," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1167-1179, December.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Cornillon, P.-A. & Imam, W. & Matzner-Lober, E., 2008. "Forecasting time series using principal component analysis with respect to instrumental variables," Computational Statistics & Data Analysis, Elsevier, vol. 52(3), pages 1269-1280, January.
- Vortelinos, Dimitrios I., 2017. "Forecasting realized volatility: HAR against Principal Components Combining, neural networks and GARCH," Research in International Business and Finance, Elsevier, vol. 39(PB), pages 824-839.
- Mestekemper, Thomas & Windmann, Michael & Kauermann, Göran, 2010. "Functional hourly forecasting of water temperature," International Journal of Forecasting, Elsevier, vol. 26(4), pages 684-699, October.
- Tsay, Ruey S. & Ando, Tomohiro, 2012. "Bayesian panel data analysis for exploring the impact of subprime financial crisis on the US stock market," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3345-3365.
- Peter Exterkate & Dick Van Dijk & Christiaan Heij & Patrick J. F. Groenen, 2013.
"Forecasting the Yield Curve in a Data‐Rich Environment Using the Factor‐Augmented Nelson–Siegel Model,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 32(3), pages 193-214, April.
- Exterkate, P. & van Dijk, D.J.C. & Heij, C. & Groenen, P.J.F., 2010. "Forecasting the Yield Curve in a Data-Rich Environment using the Factor-Augmented Nelson-Siegel Model," Econometric Institute Research Papers EI 2010-06, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
- Poncela, Pilar & Rodríguez, Julio & Sánchez-Mangas, Rocío & Senra, Eva, 2011.
"Forecast combination through dimension reduction techniques,"
International Journal of Forecasting, Elsevier, vol. 27(2), pages 224-237.
- Poncela, Pilar & Rodríguez, Julio & Sánchez-Mangas, Rocío & Senra, Eva, 2011. "Forecast combination through dimension reduction techniques," International Journal of Forecasting, Elsevier, vol. 27(2), pages 224-237, April.
- Guidolin, Massimo & Hyde, Stuart, 2012. "Simple VARs cannot approximate Markov switching asset allocation decisions: An out-of-sample assessment," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3546-3566.
- Heij, C. & Groenen, P.J.F. & van Dijk, D.J.C., 2006. "Time series forecasting by principal covariate regression," Econometric Institute Research Papers EI 2006-37, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
- Aguilera, Ana M. & Escabias, Manuel & Valderrama, Mariano J., 2008. "Forecasting binary longitudinal data by a functional PC-ARIMA model," Computational Statistics & Data Analysis, Elsevier, vol. 52(6), pages 3187-3197, February.
- Simon Lineu Umbach, 2020. "Forecasting with supervised factor models," Empirical Economics, Springer, vol. 58(1), pages 169-190, January.
- Aguilera, Ana M. & Escabias, Manuel & Valderrama, Mariano J., 2008. "Discussion of different logistic models with functional data. Application to Systemic Lupus Erythematosus," Computational Statistics & Data Analysis, Elsevier, vol. 53(1), pages 151-163, September.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Kim, Hyun Hak & Swanson, Norman R., 2018. "Mining big data using parsimonious factor, machine learning, variable selection and shrinkage methods," International Journal of Forecasting, Elsevier, vol. 34(2), pages 339-354.
- Sandra Eickmeier & Christina Ziegler, 2008. "How successful are dynamic factor models at forecasting output and inflation? A meta-analytic approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 27(3), pages 237-265.
- Kim, Hyun Hak & Swanson, Norman R., 2014.
"Forecasting financial and macroeconomic variables using data reduction methods: New empirical evidence,"
Journal of Econometrics, Elsevier, vol. 178(P2), pages 352-367.
- Huyn Hak Kim & Norman R. Swanson, 2011. "Forecasting Financial and Macroeconomic Variables Using Data Reduction Methods: New Empirical Evidence," Departmental Working Papers 201119, Rutgers University, Department of Economics.
- Karim Barhoumi & Olivier Darné & Laurent Ferrara, 2010.
"Are disaggregate data useful for factor analysis in forecasting French GDP?,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 29(1-2), pages 132-144.
- Barhoumi, K. & Darné, O. & Ferrara, L., 2009. "Are disaggregate data useful for factor analysis in forecasting French GDP?," Working papers 232, Banque de France.
- Guido Bulligan & Roberto Golinelli & Giuseppe Parigi, 2010. "Forecasting monthly industrial production in real-time: from single equations to factor-based models," Empirical Economics, Springer, vol. 39(2), pages 303-336, October.
- Proietti, Tommaso, 2008. "Estimation of Common Factors under Cross-Sectional and Temporal Aggregation Constraints: Nowcasting Monthly GDP and its Main Components," MPRA Paper 6860, University Library of Munich, Germany.
- Issler, João Victor & Lima, Luiz Renato, 2009.
"A panel data approach to economic forecasting: The bias-corrected average forecast,"
Journal of Econometrics, Elsevier, vol. 152(2), pages 153-164, October.
- Lima, Luiz Renato Regis de Oliveira & Issler, João Victor, 2007. "A panel data approach to economic forecasting: the bias-corrected average forecast," FGV EPGE Economics Working Papers (Ensaios Economicos da EPGE) 650, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil).
- Lima, Luiz Renato Regis de Oliveira & Issler, João Victor, 2008. "A panel data approach to economic forecasting: the bias-corrected average forecast," FGV EPGE Economics Working Papers (Ensaios Economicos da EPGE) 668, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil).
- Issler, João Victor & Lima, Luiz Renato Regis de Oliveira, 2007. "A panel data approach to economic forecasting: the bias-corrected average forecast," FGV EPGE Economics Working Papers (Ensaios Economicos da EPGE) 642, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil).
- Catherine Doz & Peter Fuleky, 2019.
"Dynamic Factor Models,"
Working Papers
halshs-02262202, HAL.
- Catherine Doz & Peter Fuleky, 2020. "Dynamic Factor Models," PSE-Ecole d'économie de Paris (Postprint) halshs-02491811, HAL.
- Catherine Doz & Peter Fuleky, 2020. "Dynamic Factor Models," Post-Print halshs-02491811, HAL.
- Catherine Doz & Peter Fuleky, 2019. "Dynamic Factor Models," Working Papers 2019-4, University of Hawaii Economic Research Organization, University of Hawaii at Manoa.
- Catherine Doz & Peter Fuleky, 2019. "Dynamic Factor Models," PSE Working Papers halshs-02262202, HAL.
- repec:dau:papers:123456789/11663 is not listed on IDEAS
- Stock, J.H. & Watson, M.W., 2016. "Dynamic Factor Models, Factor-Augmented Vector Autoregressions, and Structural Vector Autoregressions in Macroeconomics," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 415-525, Elsevier.
- Kelly, Bryan & Pruitt, Seth, 2015. "The three-pass regression filter: A new approach to forecasting using many predictors," Journal of Econometrics, Elsevier, vol. 186(2), pages 294-316.
- Antipa, Pamfili & Barhoumi, Karim & Brunhes-Lesage, Véronique & Darné, Olivier, 2012.
"Nowcasting German GDP: A comparison of bridge and factor models,"
Journal of Policy Modeling, Elsevier, vol. 34(6), pages 864-878.
- Antipa, P. & Barhoumi, K. & Brunhes-Lesage, V. & Darné, O., 2012. "Nowcasting German GDP: A comparison of bridge and factor models," Working papers 401, Banque de France.
- Anindya Banerjee & Massimiliano Marcellino & Igor Masten, 2008.
"Forecasting Macroeconomic Variables Using Diffusion Indexes in Short Samples with Structural Change,"
Working Papers
334, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
- Anindya Banerjee & Massimiliano Marcellino & Igor Masten, 2008. "Forecasting Macroeconomic Variables Using Diffusion Indexes in Short Samples with Structural Change," Economics Working Papers ECO2008/17, European University Institute.
- Banerjee, Anindya & Marcellino, Massimiliano & Masten, Igor, 2008. "Forecasting Macroeconomic Variables Using Diffusion Indexes in Short Samples with Structural Change," CEPR Discussion Papers 6706, C.E.P.R. Discussion Papers.
- Luciani, Matteo, 2014.
"Forecasting with approximate dynamic factor models: The role of non-pervasive shocks,"
International Journal of Forecasting, Elsevier, vol. 30(1), pages 20-29.
- Matteo Luciani, 2011. "Forecasting with Approximate Dynamic Factor Models: the Role of Non-Pervasive Shocks," Working Papers ECARES ECARES 2011‐022, ULB -- Universite Libre de Bruxelles.
- Demetrescu, Matei & Hacıoğlu Hoke, Sinem, 2019.
"Predictive regressions under asymmetric loss: Factor augmentation and model selection,"
International Journal of Forecasting, Elsevier, vol. 35(1), pages 80-99.
- Demetrescu, Matei & Hacioglu Hoke, Sinem, 2018. "Predictive regressions under asymmetric loss: factor augmentation and model selection," Bank of England working papers 723, Bank of England.
- Gupta, Rangan & Kabundi, Alain, 2011.
"A large factor model for forecasting macroeconomic variables in South Africa,"
International Journal of Forecasting, Elsevier, vol. 27(4), pages 1076-1088, October.
- Alain Kabundi & Rangan Gupta, 2009. "A Large Factor Model for Forecasting Macroeconomic Variables in South Africa," Working Papers 137, Economic Research Southern Africa.
- Sagaert, Yves R. & Aghezzaf, El-Houssaine & Kourentzes, Nikolaos & Desmet, Bram, 2018. "Tactical sales forecasting using a very large set of macroeconomic indicators," European Journal of Operational Research, Elsevier, vol. 264(2), pages 558-569.
- Kihwan Kim & Hyun Hak Kim & Norman R. Swanson, 2023. "Mixing mixed frequency and diffusion indices in good times and in bad: an assessment based on historical data around the great recession of 2008," Empirical Economics, Springer, vol. 64(3), pages 1421-1469, March.
- Francisco Dias & Maximiano Pinheiro & António Rua, 2010.
"Forecasting using targeted diffusion indexes,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 29(3), pages 341-352.
- António Rua & Francisco Craveiro Dias, 2008. "Forecasting Using Targeted Diffusion Indexes," Working Papers w200807, Banco de Portugal, Economics and Research Department.
- Groen, Jan J.J. & Kapetanios, George, 2016.
"Revisiting useful approaches to data-rich macroeconomic forecasting,"
Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 221-239.
- Jan J. J. Groen & George Kapetanios, 2008. "Revisiting useful approaches to data-rich macroeconomic forecasting," Staff Reports 327, Federal Reserve Bank of New York.
- Jan J.J. Groen & George Kapetanios, 2008. "Revisiting Useful Approaches to Data-Rich Macroeconomic Forecasting," Working Papers 624, Queen Mary University of London, School of Economics and Finance.
- Christian Schumacher, 2007.
"Forecasting German GDP using alternative factor models based on large datasets,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 26(4), pages 271-302.
- Schumacher, Christian, 2005. "Forecasting German GDP using alternative factor models based on large datasets," Discussion Paper Series 1: Economic Studies 2005,24, Deutsche Bundesbank.
More about this item
Keywords
economic forecasting; factor model; principal components; principal covariates; regression model;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ems:eureir:6918. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: RePub (email available below). General contact details of provider: https://edirc.repec.org/data/feeurnl.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.