Asymptotic analysis of the squared estimation error in misspecified factor models
Author
Abstract
Suggested Citation
DOI: 10.1016/j.jeconom.2015.02.016
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Kapetanios, George & Marcellino, Massimiliano, 2010.
"Factor-GMM estimation with large sets of possibly weak instruments,"
Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2655-2675, November.
- George Kapetanios & Massimiliano Marcellino, 2006. "Factor-GMM Estimation with Large Sets of Possibly Weak Instruments," Working Papers 577, Queen Mary University of London, School of Economics and Finance.
- Marcellino, Massimiliano & Kapetanios, George, 2010. "Factor-GMM Estimation with Large Sets of Possibly Weak Instruments," CEPR Discussion Papers 7726, C.E.P.R. Discussion Papers.
- Andrew T. Foerster & Pierre-Daniel G. Sarte & Mark W. Watson, 2011.
"Sectoral versus Aggregate Shocks: A Structural Factor Analysis of Industrial Production,"
Journal of Political Economy, University of Chicago Press, vol. 119(1), pages 1-38.
- Andrew T. Foerster & Pierre-Daniel G. Sarte & Mark W. Watson, 2008. "Sectoral vs. Aggregate Shocks: A Structural Factor Analysis of Industrial Production," NBER Working Papers 14389, National Bureau of Economic Research, Inc.
- Andrew T. Foerster & Pierre-Daniel G. Sarte & Mark W. Watson, 2008. "Sectoral vs. aggregate shocks : a structural factor analysis of industrial production," Working Paper 08-07, Federal Reserve Bank of Richmond.
- Pierre-Daniel Sarte & Mark Watson & Andrew Foerster, 2008. "Aggregate Shocks and the Variability of Industrial Production," 2008 Meeting Papers 224, Society for Economic Dynamics.
- Jushan Bai & Serena Ng, 2002.
"Determining the Number of Factors in Approximate Factor Models,"
Econometrica, Econometric Society, vol. 70(1), pages 191-221, January.
- Jushan Bai & Serena Ng, 2000. "Determining the Number of Factors in Approximate Factor Models," Econometric Society World Congress 2000 Contributed Papers 1504, Econometric Society.
- Jushan Bai & Serena Ng, 2000. "Determining the Number of Factors in Approximate Factor Models," Boston College Working Papers in Economics 440, Boston College Department of Economics.
- Connor, Gregory & Korajczyk, Robert A, 1993. "A Test for the Number of Factors in an Approximate Factor Model," Journal of Finance, American Finance Association, vol. 48(4), pages 1263-1291, September.
- Boivin, Jean & Ng, Serena, 2006.
"Are more data always better for factor analysis?,"
Journal of Econometrics, Elsevier, vol. 132(1), pages 169-194, May.
- Jean Boivin & Serena Ng, 2003. "Are More Data Always Better for Factor Analysis?," NBER Working Papers 9829, National Bureau of Economic Research, Inc.
- Moon, Hyungsik Roger & Weidner, Martin, 2017.
"Dynamic Linear Panel Regression Models With Interactive Fixed Effects,"
Econometric Theory, Cambridge University Press, vol. 33(1), pages 158-195, February.
- Hyungsik Roger Moon & Martin Weidner, 2013. "Dynamic linear panel regression models with interactive fixed effects," CeMMAP working papers CWP63/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Hyungsik Roger Moon & Martin Weidner, 2014. "Dynamic linear panel regression models with interactive fixed effects," CeMMAP working papers CWP47/14, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Huang, Roger D. & Jo, Hoje, 1995. "Data frequency and the number of factors in stock returns," Journal of Banking & Finance, Elsevier, vol. 19(6), pages 987-1003, September.
- Alexander Chudik & M. Hashem Pesaran & Elisa Tosetti, 2011.
"Weak and strong cross‐section dependence and estimation of large panels,"
Econometrics Journal, Royal Economic Society, vol. 14(1), pages 45-90, February.
- Alexander Chudik & M. Hashem Pesaran & Elisa Tosetti, 2011. "Weak and strong cross‐section dependence and estimation of large panels," Econometrics Journal, Royal Economic Society, vol. 14, pages 45-90, February.
- Chudik, Alexander & Pesaran, Hashem & Tosetti, Elisa, 2009. "Weak and strong cross section dependence and estimation of large panels," Working Paper Series 1100, European Central Bank.
- Chudik, A. & Pesaran, M.H. & Tosetti, E., 2009. "Weak and Strong Cross Section Dependence and Estimation of Large Panels," Cambridge Working Papers in Economics 0924, Faculty of Economics, University of Cambridge.
- Alexander Chudik & M. Hashem Pesaran & Elisa Tosetti, 2009. "Weak and Strong Cross Section Dependence and Estimation of Large Panels," CESifo Working Paper Series 2689, CESifo.
- Seung C. Ahn & Alex R. Horenstein, 2013. "Eigenvalue Ratio Test for the Number of Factors," Econometrica, Econometric Society, vol. 81(3), pages 1203-1227, May.
- Phillips, Peter C. B., 1979. "The sampling distribution of forecasts from a first-order autoregression," Journal of Econometrics, Elsevier, vol. 9(3), pages 241-261, February.
- De Mol, Christine & Giannone, Domenico & Reichlin, Lucrezia, 2006.
"Forecasting using a large number of predictors: is Bayesian regression a valid alternative to principal components?,"
Discussion Paper Series 1: Economic Studies
2006,32, Deutsche Bundesbank.
- Giannone, Domenico & Reichlin, Lucrezia & De Mol, Christine, 2006. "Forecasting using a large number of predictors: Is Bayesian regression a valid alternative to principal components?," Working Paper Series 700, European Central Bank.
- Reichlin, Lucrezia & Giannone, Domenico & De Mol, Christine, 2006. "Forecasting Using a Large Number of Predictors: Is Bayesian Regression a Valid Alternative to Principal Components?," CEPR Discussion Papers 5829, C.E.P.R. Discussion Papers.
- A. Belloni & D. Chen & V. Chernozhukov & C. Hansen, 2012.
"Sparse Models and Methods for Optimal Instruments With an Application to Eminent Domain,"
Econometrica, Econometric Society, vol. 80(6), pages 2369-2429, November.
- Alexandre Belloni & D. Chen & Victor Chernozhukov & Christian Hansen, 2010. "Sparse models and methods for optimal instruments with an application to eminent domain," CeMMAP working papers CWP31/10, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Alexandre Belloni & Daniel Chen & Victor Chernozhukov & Christian Hansen, 2010. "Sparse Models and Methods for Optimal Instruments with an Application to Eminent Domain," Papers 1010.4345, arXiv.org, revised Apr 2015.
- Stock, James H. & Watson, Mark W., 2006. "Forecasting with Many Predictors," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 10, pages 515-554, Elsevier.
- Stock, James H. & Watson, Mark, 2011. "Dynamic Factor Models," Scholarly Articles 28469541, Harvard University Department of Economics.
- Hansen, Bruce E, 1996.
"Inference When a Nuisance Parameter Is Not Identified under the Null Hypothesis,"
Econometrica, Econometric Society, vol. 64(2), pages 413-430, March.
- Hansen, B.E., 1991. "Inference when a Nuisance Parameter is Not Identified Under the Null Hypothesis," RCER Working Papers 296, University of Rochester - Center for Economic Research (RCER).
- Mario Forni & Marc Hallin & Marco Lippi & Lucrezia Reichlin, 2000.
"The Generalized Dynamic-Factor Model: Identification And Estimation,"
The Review of Economics and Statistics, MIT Press, vol. 82(4), pages 540-554, November.
- Forni, Mario & Hallin, Marc & Lippi, Marco & Reichlin, Lucrezia, 1999. "The Generalized Dynamic Factor Model: Identification and Estimation," CEPR Discussion Papers 2338, C.E.P.R. Discussion Papers.
- Mario Forni & Marc Hallin & Lucrezia Reichlin & Marco Lippi, 2000. "The generalised dynamic factor model: identification and estimation," ULB Institutional Repository 2013/10143, ULB -- Universite Libre de Bruxelles.
- Lancaster, Tony, 2000. "The incidental parameter problem since 1948," Journal of Econometrics, Elsevier, vol. 95(2), pages 391-413, April.
- De Mol, Christine & Giannone, Domenico & Reichlin, Lucrezia, 2008.
"Forecasting using a large number of predictors: Is Bayesian shrinkage a valid alternative to principal components?,"
Journal of Econometrics, Elsevier, vol. 146(2), pages 318-328, October.
- De Mol, Christine & Giannone, Domenico & Reichlin, Lucrezia, 2006. "Forecasting using a large number of predictors: is Bayesian regression a valid alternative to principal components?," Discussion Paper Series 1: Economic Studies 2006,32, Deutsche Bundesbank.
- Reichlin, Lucrezia & Giannone, Domenico & De Mol, Christine, 2006. "Forecasting Using a Large Number of Predictors: Is Bayesian Regression a Valid Alternative to Principal Components?," CEPR Discussion Papers 5829, C.E.P.R. Discussion Papers.
- Alexei Onatski, 2010. "Determining the Number of Factors from Empirical Distribution of Eigenvalues," The Review of Economics and Statistics, MIT Press, vol. 92(4), pages 1004-1016, November.
- Forni, Mario & Reichlin, Lucrezia, 2001.
"Federal policies and local economies: Europe and the US,"
European Economic Review, Elsevier, vol. 45(1), pages 109-134, January.
- Mario Forni & Lucrezia Reichlin, 2001. "Federal policies and local economies: Europe and the U.S," ULB Institutional Repository 2013/10141, ULB -- Universite Libre de Bruxelles.
- Mehmet Caner & Xu Han, 2014. "Selecting the Correct Number of Factors in Approximate Factor Models: The Large Panel Case With Group Bridge Estimators," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 32(3), pages 359-374, July.
- Onatski, Alexei, 2012. "Asymptotics of the principal components estimator of large factor models with weakly influential factors," Journal of Econometrics, Elsevier, vol. 168(2), pages 244-258.
- Bai, Jushan & Ng, Serena, 2008. "Large Dimensional Factor Analysis," Foundations and Trends(R) in Econometrics, now publishers, vol. 3(2), pages 89-163, June.
- Alessi, Lucia & Barigozzi, Matteo & Capasso, Marco, 2010. "Improved penalization for determining the number of factors in approximate factor models," Statistics & Probability Letters, Elsevier, vol. 80(23-24), pages 1806-1813, December.
- Bruce E. Hansen, 2007. "Least Squares Model Averaging," Econometrica, Econometric Society, vol. 75(4), pages 1175-1189, July.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Francisco Corona & Pilar Poncela & Esther Ruiz, 2017.
"Determining the number of factors after stationary univariate transformations,"
Empirical Economics, Springer, vol. 53(1), pages 351-372, August.
- Corona, Francisco & Poncela, Maria Pilar, 2016. "Determining the number of factors after stationary univariate transformations," DES - Working Papers. Statistics and Econometrics. WS ws1602, Universidad Carlos III de Madrid. Departamento de EstadÃstica.
- Alain-Philippe Fortin & Patrick Gagliardini & O. Scaillet, 2022.
"Eigenvalue tests for the number of latent factors in short panels,"
Swiss Finance Institute Research Paper Series
22-81, Swiss Finance Institute.
- Alain-Philippe Fortin & Patrick Gagliardini & Olivier Scaillet, 2022. "Eigenvalue tests for the number of latent factors in short panels," Papers 2210.16042, arXiv.org.
- Jie Wei & Yonghui Zhang, 2023. "Does Principal Component Analysis Preserve the Sparsity in Sparse Weak Factor Models?," Papers 2305.05934, arXiv.org, revised Nov 2024.
- Guo, Xiao & Chen, Yu & Tang, Cheng Yong, 2023. "Information criteria for latent factor models: A study on factor pervasiveness and adaptivity," Journal of Econometrics, Elsevier, vol. 233(1), pages 237-250.
- Norman R. Swanson & Weiqi Xiong, 2018.
"Big data analytics in economics: What have we learned so far, and where should we go from here?,"
Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 51(3), pages 695-746, August.
- Norman R. Swanson & Weiqi Xiong, 2018. "Big data analytics in economics: What have we learned so far, and where should we go from here?," Canadian Journal of Economics, Canadian Economics Association, vol. 51(3), pages 695-746, August.
- Marine Carrasco & Barbara Rossi, 2016.
"In-Sample Inference and Forecasting in Misspecified Factor Models,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(3), pages 313-338, July.
- Marine Carrasco & Barbara Rossi, 2016. "In-sample inference and forecasting in misspecified factor models," Economics Working Papers 1530, Department of Economics and Business, Universitat Pompeu Fabra.
- Rossi, Barbara & Carrasco, Marine, 2016. "In-sample Inference and Forecasting in Misspecified Factor Models," CEPR Discussion Papers 11388, C.E.P.R. Discussion Papers.
- Gregory Connor & Robert A Korajczyk, 2024.
"Semi-Strong Factors in Asset Returns,"
Journal of Financial Econometrics, Oxford University Press, vol. 22(1), pages 70-93.
- Gregory Connor & Robert A. Korajczyk, 2019. "Semi-strong factors in asset returns," Economics Department Working Paper Series n294-19.pdf, Department of Economics, National University of Ireland - Maynooth.
- Gagliardini, Patrick & Ossola, Elisa & Scaillet, Olivier, 2019.
"A diagnostic criterion for approximate factor structure,"
Journal of Econometrics, Elsevier, vol. 212(2), pages 503-521.
- Patrick Gagliardini & Elisa Ossola & O. Scaillet, 2016. "A Diagnostic Criterion for Approximate Factor Structure," Swiss Finance Institute Research Paper Series 16-51, Swiss Finance Institute, revised Dec 2016.
- Patrick Gagliardini & Elisa Ossola & Olivier Scaillet, 2016. "A diagnostic criterion for approximate factor structure," Papers 1612.04990, arXiv.org, revised Aug 2017.
- Barigozzi, Matteo & Cho, Haeran & Fryzlewicz, Piotr, 2018.
"Simultaneous multiple change-point and factor analysis for high-dimensional time series,"
Journal of Econometrics, Elsevier, vol. 206(1), pages 187-225.
- Barigozzi, Matteo & Cho, Haeran & Fryzlewicz, Piotr, 2018. "Simultaneous multiple change-point and factor analysis for high-dimensional time series," LSE Research Online Documents on Economics 88110, London School of Economics and Political Science, LSE Library.
- Andrés Sagner, 2020. "Measuring Systemic Risk: A Quantile Factor Analysis," Working Papers Central Bank of Chile 874, Central Bank of Chile.
- Allen, David, 2022. "Asset Pricing Tests, Endogeneity issues and Fama-French factors," MPRA Paper 113610, University Library of Munich, Germany.
- Sampi Bravo,James Robert Ezequiel & Jooste,Charl, 2020. "Nowcasting Economic Activity in Times of COVID-19 : An Approximation from the Google Community Mobility Report," Policy Research Working Paper Series 9247, The World Bank.
- Freyaldenhoven, Simon, 2022.
"Factor models with local factors — Determining the number of relevant factors,"
Journal of Econometrics, Elsevier, vol. 229(1), pages 80-102.
- Simon Freyaldenhoven, 2021. "Factor Models with Local Factors—Determining the Number of Relevant Factors," Working Papers 21-15, Federal Reserve Bank of Philadelphia.
- Alexei Onatski & Chen Wang, 2021.
"Spurious Factor Analysis,"
Econometrica, Econometric Society, vol. 89(2), pages 591-614, March.
- Onatski, A. & Wang, C., 2020. "Spurious Factor Analysis," Cambridge Working Papers in Economics 2003, Faculty of Economics, University of Cambridge.
- Norman R. Swanson, 2016. "Comment," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(3), pages 348-353, July.
- James Sampi, 2016. "High Dimensional Factor Models: An Empirical Bayes Approach," Working Papers 75, Peruvian Economic Association.
- Marco Avarucci & Paolo Zaffaroni, 2019. "Robust Nearly-Efficient Estimation of Large Panels with Factor Structures," Papers 1902.11181, arXiv.org.
- Matteo Barigozzi & Marc Hallin & Stefano Soccorsi, 2017. "Identification of Global and National Shocks in International Financial Markets via General Dynamic Factor Models," Working Papers ECARES ECARES 2017-10, ULB -- Universite Libre de Bruxelles.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Freyaldenhoven, Simon, 2022.
"Factor models with local factors — Determining the number of relevant factors,"
Journal of Econometrics, Elsevier, vol. 229(1), pages 80-102.
- Simon Freyaldenhoven, 2021. "Factor Models with Local Factors—Determining the Number of Relevant Factors," Working Papers 21-15, Federal Reserve Bank of Philadelphia.
- Simon Freyaldenhoven, 2017.
"A Generalized Factor Model with Local Factors,"
2017 Papers
pfr361, Job Market Papers.
- Simon Freyaldenhoven, 2019. "A Generalized Factor Model with Local Factors," Working Papers 19-23, Federal Reserve Bank of Philadelphia.
- Barigozzi, Matteo & Trapani, Lorenzo, 2020.
"Sequential testing for structural stability in approximate factor models,"
Stochastic Processes and their Applications, Elsevier, vol. 130(8), pages 5149-5187.
- Matteo Barigozzi & Lorenzo Trapani, 2017. "Sequential testing for structural stability in approximate factor models," Papers 1708.02786, arXiv.org, revised Mar 2020.
- Matteo Barigozzi & Lorenzo Trapani, 2018. "Sequential testing for structural stability in approximate factor models," Discussion Papers 18/04, University of Nottingham, Granger Centre for Time Series Econometrics.
- Stock, J.H. & Watson, M.W., 2016. "Dynamic Factor Models, Factor-Augmented Vector Autoregressions, and Structural Vector Autoregressions in Macroeconomics," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 415-525, Elsevier.
- Karim Barhoumi & Olivier Darné & Laurent Ferrara, 2014.
"Dynamic factor models: A review of the literature,"
OECD Journal: Journal of Business Cycle Measurement and Analysis, OECD Publishing, Centre for International Research on Economic Tendency Surveys, vol. 2013(2), pages 73-107.
- Karim Barhoumi & Olivier Darné & Laurent Ferrara, 2013. "Dynamic factor models: A review of the literature," Post-Print hal-01385974, HAL.
- Barhoumi, K. & Darné, O. & Ferrara, L., 2013. "Dynamic Factor Models: A review of the Literature ," Working papers 430, Banque de France.
- repec:cte:wsrepe:23974 is not listed on IDEAS
- Pilar Poncela & Esther Ruiz, 2016.
"Small- Versus Big-Data Factor Extraction in Dynamic Factor Models: An Empirical Assessment,"
Advances in Econometrics, in: Dynamic Factor Models, volume 35, pages 401-434,
Emerald Group Publishing Limited.
- Poncela, Pilar, 2015. "Small versus big-data factor extraction in Dynamic Factor Models: An empirical assessment," DES - Working Papers. Statistics and Econometrics. WS ws1502, Universidad Carlos III de Madrid. Departamento de EstadÃstica.
- Smeekes, Stephan & Wijler, Etienne, 2018.
"Macroeconomic forecasting using penalized regression methods,"
International Journal of Forecasting, Elsevier, vol. 34(3), pages 408-430.
- Smeekes, Stephan & Wijler, Etiënne, 2016. "Macroeconomic Forecasting Using Penalized Regression Methods," Research Memorandum 039, Maastricht University, Graduate School of Business and Economics (GSBE).
- Lütkepohl, Helmut, 2014.
"Structural vector autoregressive analysis in a data rich environment: A survey,"
SFB 649 Discussion Papers
2014-004, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
- Helmut Lütkepohl, 2014. "Structural Vector Autoregressive Analysis in a Data Rich Environment: A Survey," Discussion Papers of DIW Berlin 1351, DIW Berlin, German Institute for Economic Research.
- Alexander Chudik & M. Hashem Pesaran, 2013.
"Large panel data models with cross-sectional dependence: a survey,"
Globalization Institute Working Papers
153, Federal Reserve Bank of Dallas.
- Alexander Chudik & M. Hashem Pesaran, 2013. "Large Panel Data Models with Cross-Sectional Dependence: A Survey," CESifo Working Paper Series 4371, CESifo.
- repec:hum:wpaper:sfb649dp2014-004 is not listed on IDEAS
- Alain-Philippe Fortin & Patrick Gagliardini & O. Scaillet, 2022.
"Eigenvalue tests for the number of latent factors in short panels,"
Swiss Finance Institute Research Paper Series
22-81, Swiss Finance Institute.
- Alain-Philippe Fortin & Patrick Gagliardini & Olivier Scaillet, 2022. "Eigenvalue tests for the number of latent factors in short panels," Papers 2210.16042, arXiv.org.
- Catherine Doz & Peter Fuleky, 2019.
"Dynamic Factor Models,"
Working Papers
2019-4, University of Hawaii Economic Research Organization, University of Hawaii at Manoa.
- Catherine Doz & Peter Fuleky, 2020. "Dynamic Factor Models," PSE-Ecole d'économie de Paris (Postprint) halshs-02491811, HAL.
- Catherine Doz & Peter Fuleky, 2019. "Dynamic Factor Models," PSE Working Papers halshs-02262202, HAL.
- Catherine Doz & Peter Fuleky, 2020. "Dynamic Factor Models," Post-Print halshs-02491811, HAL.
- Catherine Doz & Peter Fuleky, 2019. "Dynamic Factor Models," Working Papers halshs-02262202, HAL.
- Yoshimasa Uematsu & Takashi Yamagata, 2019.
"Estimation of Weak Factor Models,"
DSSR Discussion Papers
96, Graduate School of Economics and Management, Tohoku University.
- Yoshimasa Uematsu & Takashi Yamagata, 2019. "Estimation of Weak Factor Models," ISER Discussion Paper 1053, Institute of Social and Economic Research, Osaka University.
- Luciani, Matteo, 2014.
"Forecasting with approximate dynamic factor models: The role of non-pervasive shocks,"
International Journal of Forecasting, Elsevier, vol. 30(1), pages 20-29.
- Matteo Luciani, 2011. "Forecasting with Approximate Dynamic Factor Models: the Role of Non-Pervasive Shocks," Working Papers ECARES ECARES 2011‐022, ULB -- Universite Libre de Bruxelles.
- Francisco Corona & Pilar Poncela & Esther Ruiz, 2017.
"Determining the number of factors after stationary univariate transformations,"
Empirical Economics, Springer, vol. 53(1), pages 351-372, August.
- Corona, Francisco & Poncela, Maria Pilar, 2016. "Determining the number of factors after stationary univariate transformations," DES - Working Papers. Statistics and Econometrics. WS ws1602, Universidad Carlos III de Madrid. Departamento de EstadÃstica.
- Alessandro Barbarino & Efstathia Bura, 2017. "A Unified Framework for Dimension Reduction in Forecasting," Finance and Economics Discussion Series 2017-004, Board of Governors of the Federal Reserve System (U.S.).
- Gagliardini, Patrick & Ossola, Elisa & Scaillet, Olivier, 2019.
"A diagnostic criterion for approximate factor structure,"
Journal of Econometrics, Elsevier, vol. 212(2), pages 503-521.
- Patrick Gagliardini & Elisa Ossola & Olivier Scaillet, 2016. "A diagnostic criterion for approximate factor structure," Papers 1612.04990, arXiv.org, revised Aug 2017.
- Patrick Gagliardini & Elisa Ossola & O. Scaillet, 2016. "A Diagnostic Criterion for Approximate Factor Structure," Swiss Finance Institute Research Paper Series 16-51, Swiss Finance Institute, revised Dec 2016.
- Ergemen, Yunus Emre & Rodríguez-Caballero, C. Vladimir, 2023.
"Estimation of a dynamic multi-level factor model with possible long-range dependence,"
International Journal of Forecasting, Elsevier, vol. 39(1), pages 405-430.
- Rodríguez Caballero, Carlos Vladimir, 2017. "Estimation of a Dynamic Multilevel Factor Model with possible long-range dependence," DES - Working Papers. Statistics and Econometrics. WS 24614, Universidad Carlos III de Madrid. Departamento de EstadÃstica.
- Bai, Jushan & Ng, Serena, 2023.
"Approximate factor models with weaker loadings,"
Journal of Econometrics, Elsevier, vol. 235(2), pages 1893-1916.
- Jushan Bai & Serena Ng, 2021. "Approximate Factor Models with Weaker Loadings," Papers 2109.03773, arXiv.org, revised Mar 2023.
- Francisco Corona & Graciela González-Farías & Pedro Orraca, 2017. "A dynamic factor model for the Mexican economy: are common trends useful when predicting economic activity?," Latin American Economic Review, Springer;Centro de Investigaciòn y Docencia Económica (CIDE), vol. 26(1), pages 1-35, December.
- Cheng, Xu & Hansen, Bruce E., 2015.
"Forecasting with factor-augmented regression: A frequentist model averaging approach,"
Journal of Econometrics, Elsevier, vol. 186(2), pages 280-293.
- Xu Cheng & Bruce E. Hansen, 2012. "Forecasting with Factor-Augmented Regression: A Frequentist Model Averaging Approach," PIER Working Paper Archive 12-046, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
More about this item
Keywords
Misspecification; Factor model; Number of factors; Loss efficiency;All these keywords.
JEL classification:
- C38 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Classification Methdos; Cluster Analysis; Principal Components; Factor Analysis
- C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:186:y:2015:i:2:p:388-406. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jeconom .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.