IDEAS home Printed from https://ideas.repec.org/p/ces/ifowps/_40.html
   My bibliography  Save this paper

Forecasting Quarter-on-Quarter Changes of German GDP with Monthly Business Tendency Survey Results

Author

Listed:
  • Klaus Abberger

Abstract

Results from business tendency surveys are often used to construct leading indicators. The indicators are then, for example, employed to forecast GDP growth. In this article more detailed results of business tendency surveys are used to forecast quarter-onquarter GDP growth. The target series is very challenging because this type of growth rate leads to quite volatile time series. The present study focuses on German GDP data and survey results provided by the Ifo Institute. Since numerous time series of possible indicators result from the surveys, methods that can handle this setting are applied. One candidate method is principal component analysis, which is used to reduce dimensionality. On the other hand, subset selection procedures are applied. For the present setting the latter method seems more successful than principal components. But this is not a statement about the two types of procedures in general. Which method should be favoured depends very much on the aims of the specific study.

Suggested Citation

  • Klaus Abberger, 2007. "Forecasting Quarter-on-Quarter Changes of German GDP with Monthly Business Tendency Survey Results," ifo Working Paper Series 40, ifo Institute - Leibniz Institute for Economic Research at the University of Munich.
  • Handle: RePEc:ces:ifowps:_40
    as

    Download full text from publisher

    File URL: https://www.ifo.de/DocDL/IfoWorkingPaper-40.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. repec:crs:wpaper:9313 is not listed on IDEAS
    2. Entorf, Horst, 1993. "Constructing leading indicators from non-balanced sectoral business survey series," International Journal of Forecasting, Elsevier, vol. 9(2), pages 211-225, August.
    3. Jan-Egbert Sturm & Timo Wollmershäuser (ed.), 2005. "Ifo Survey Data in Business Cycle and Monetary Policy Analysis," Contributions to Economics, Springer, number 978-3-7908-1605-1.
    4. Klaus Abberger & Klaus Wohlrabe, 2006. "Einige Prognoseeigenschaften des ifo Geschäftsklimas - Ein Überblick über die neuere wissenschaftliche Literatur," ifo Schnelldienst, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 59(22), pages 19-26, November.
    5. Stefan Mittnik & Peter Zadrozny, 2005. "Forecasting Quarterly German GDP at Monthly Intervals Using Monthly Ifo Business Conditions Data," Contributions to Economics, in: Jan-Egbert Sturm & Timo Wollmershäuser (ed.), Ifo Survey Data in Business Cycle and Monetary Policy Analysis, pages 19-48, Springer.
    6. Baffigi, Alberto & Golinelli, Roberto & Parigi, Giuseppe, 2004. "Bridge models to forecast the euro area GDP," International Journal of Forecasting, Elsevier, vol. 20(3), pages 447-460.
    7. Stock, James H. & Watson, Mark W., 2006. "Forecasting with Many Predictors," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 10, pages 515-554, Elsevier.
    8. Rünstler, Gerhard & Sédillot, Franck, 2003. "Short-term estimates of euro area real GDP by means of monthly data," Working Paper Series 276, European Central Bank.
    9. Stock J.H. & Watson M.W., 2002. "Forecasting Using Principal Components From a Large Number of Predictors," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1167-1179, December.
    10. Bair, Eric & Hastie, Trevor & Paul, Debashis & Tibshirani, Robert, 2006. "Prediction by Supervised Principal Components," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 119-137, March.
    11. Begg,Iain & Henry,Brian, 1998. "Applied Economics and Public Policy," Cambridge Books, Cambridge University Press, number 9780521624145, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Robert Lehmann & Antje Weyh, 2016. "Forecasting Employment in Europe: Are Survey Results Helpful?," Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 12(1), pages 81-117, September.
    2. Antipa, Pamfili & Barhoumi, Karim & Brunhes-Lesage, Véronique & Darné, Olivier, 2012. "Nowcasting German GDP: A comparison of bridge and factor models," Journal of Policy Modeling, Elsevier, vol. 34(6), pages 864-878.
    3. Inske Pirschel & Maik H. Wolters, 2018. "Forecasting with large datasets: compressing information before, during or after the estimation?," Empirical Economics, Springer, vol. 55(2), pages 573-596, September.
    4. António Brandão Moniz, 2008. "Assessing scenarios on the future of work," Enterprise and Work Innovation Studies, Universidade Nova de Lisboa, IET/CICS.NOVA-Interdisciplinary Centre on Social Sciences, Faculty of Science and Technology, vol. 4(4), pages 91-106, November.
    5. Fernando Faure & Carlos A. Medel, 2020. "Does the Exposure to the Business Cycle Improve Consumer Perceptions for Forecasting? Microdata Evidence from Chile," Working Papers Central Bank of Chile 888, Central Bank of Chile.
    6. Boriss Siliverstovs, 2013. "Do business tendency surveys help in forecasting employment?: A real-time evidence for Switzerland," OECD Journal: Journal of Business Cycle Measurement and Analysis, OECD Publishing, Centre for International Research on Economic Tendency Surveys, vol. 2013(2), pages 129-151.
    7. Mansoor Maitah & Daniel Toth & Elena Kuzmenko & Karel r dl & Helena Rezbov & Petra nov, 2016. "Forecast of Employment in Switzerland: The Macroeconomic View," International Journal of Economics and Financial Issues, Econjournals, vol. 6(1), pages 132-138.
    8. Klaus Wohlrabe & Timo Wollmershäuser, 2017. "Über die richtige Interpretation des ifo Geschäftsklimas als konjunktureller Frühindikator," ifo Schnelldienst, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 70(15), pages 42-46, August.
    9. Konstantin A. Kholodilin & Christian Kolmer & Tobias Thomas & Dirk Ulbricht, 2015. "Asymmetric Perceptions of the Economy: Media, Firms, Consumers, and Experts," Discussion Papers of DIW Berlin 1490, DIW Berlin, German Institute for Economic Research.
    10. Sascha O. Becker & Klaus Wohlrabe, 2008. "European Data Watch: Micro Data at the Ifo Institute for Economic Research – The “Ifo Business Survey”, Usage and Access," Schmollers Jahrbuch : Journal of Applied Social Science Studies / Zeitschrift für Wirtschafts- und Sozialwissenschaften, Duncker & Humblot, Berlin, vol. 128(2), pages 307-319.
    11. Klaus Abberger & Sascha Becker & Barbara Hofmann & Klaus Wohlrabe, 2007. "Mikrodaten im ifo Institut für Wirtschaftsforschung – Bestand, Verwendung und Zugang," AStA Wirtschafts- und Sozialstatistisches Archiv, Springer;Deutsche Statistische Gesellschaft - German Statistical Society, vol. 1(1), pages 27-42, June.
    12. Boriss Siliverstovs, 2010. "Assessing Predictive Content of the KOF Barometer in Real Time," KOF Working papers 10-249, KOF Swiss Economic Institute, ETH Zurich.
    13. Inna S. Lola & Anton Manukov, 2020. "Forecasting Employment In Small Businesses In Russia: The Relevance Of Business Tendency Surveys," HSE Working papers WP BRP 113/STI/2020, National Research University Higher School of Economics.
    14. Vermeulen, Philip, 2014. "An evaluation of business survey indices for short-term forecasting: Balance method versus Carlson–Parkin method," International Journal of Forecasting, Elsevier, vol. 30(4), pages 882-897.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Antipa, Pamfili & Barhoumi, Karim & Brunhes-Lesage, Véronique & Darné, Olivier, 2012. "Nowcasting German GDP: A comparison of bridge and factor models," Journal of Policy Modeling, Elsevier, vol. 34(6), pages 864-878.
    2. Wolfgang Nierhaus & Timo Wollmershäuser, 2016. "ifo Konjunkturumfragen und Konjunkturanalyse: Band II," ifo Forschungsberichte, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 72.
    3. Guido Bulligan & Roberto Golinelli & Giuseppe Parigi, 2010. "Forecasting monthly industrial production in real-time: from single equations to factor-based models," Empirical Economics, Springer, vol. 39(2), pages 303-336, October.
    4. Claudia Foroni & Massimiliano Marcellino, 2013. "A survey of econometric methods for mixed-frequency data," Economics Working Papers ECO2013/02, European University Institute.
    5. Van Nieuwenhuyze, Christophe & Benk, Szilard & Rünstler, Gerhard & Cristadoro, Riccardo & Den Reijer, Ard & Jakaitiene, Audrone & Jelonek, Piotr & Rua, António & Ruth, Karsten & Barhoumi, Karim, 2008. "Short-term forecasting of GDP using large monthly datasets: a pseudo real-time forecast evaluation exercise," Occasional Paper Series 84, European Central Bank.
    6. Banbura, Marta & Rünstler, Gerhard, 2011. "A look into the factor model black box: Publication lags and the role of hard and soft data in forecasting GDP," International Journal of Forecasting, Elsevier, vol. 27(2), pages 333-346, April.
    7. Andrejs Bessonovs, 2015. "Suite of Latvia's GDP forecasting models," Working Papers 2015/01, Latvijas Banka.
    8. Bai, Jushan & Ng, Serena, 2008. "Forecasting economic time series using targeted predictors," Journal of Econometrics, Elsevier, vol. 146(2), pages 304-317, October.
    9. Christiana Anaxagorou & Nicoletta Pashourtidou, 2022. "Forecasting economic activity using preselected predictors: the case of Cyprus," Cyprus Economic Policy Review, University of Cyprus, Economics Research Centre, vol. 16(1), pages 11-36, June.
    10. Alessandro Girardi & Roberto Golinelli & Carmine Pappalardo, 2017. "The role of indicator selection in nowcasting euro-area GDP in pseudo-real time," Empirical Economics, Springer, vol. 53(1), pages 79-99, August.
    11. Giannone, Domenico & Reichlin, Lucrezia & Small, David, 2008. "Nowcasting: The real-time informational content of macroeconomic data," Journal of Monetary Economics, Elsevier, vol. 55(4), pages 665-676, May.
    12. Michael Graff & Dominik Studer, 2018. "Konstruktion von Sammelindikatoren für den Konjunkturverlauf bei prekärer Datenlage am Beispiel Montenegros," KOF Analysen, KOF Swiss Economic Institute, ETH Zurich, vol. 12(3), pages 81-91, October.
    13. Vermeulen, Philip, 2014. "An evaluation of business survey indices for short-term forecasting: Balance method versus Carlson–Parkin method," International Journal of Forecasting, Elsevier, vol. 30(4), pages 882-897.
    14. Klaus Wohlrabe, 2009. "Makroökonomische Prognosen mit gemischten Frequenzen," ifo Schnelldienst, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 62(21), pages 22-33, November.
    15. Eric Hillebrand & Tae-Hwy Lee, 2012. "Stein-Rule Estimation and Generalized Shrinkage Methods for Forecasting Using Many Predictors," Advances in Econometrics, in: 30th Anniversary Edition, pages 171-196, Emerald Group Publishing Limited.
    16. Golinelli, Roberto & Parigi, Giuseppe, 2014. "Tracking world trade and GDP in real time," International Journal of Forecasting, Elsevier, vol. 30(4), pages 847-862.
    17. Ba Chu & Shafiullah Qureshi, 2023. "Comparing Out-of-Sample Performance of Machine Learning Methods to Forecast U.S. GDP Growth," Computational Economics, Springer;Society for Computational Economics, vol. 62(4), pages 1567-1609, December.
    18. Golinelli, Roberto & Parigi, Giuseppe, 2008. "Real-time squared: A real-time data set for real-time GDP forecasting," International Journal of Forecasting, Elsevier, vol. 24(3), pages 368-385.
    19. Schumacher, Christian & Breitung, Jörg, 2008. "Real-time forecasting of German GDP based on a large factor model with monthly and quarterly data," International Journal of Forecasting, Elsevier, vol. 24(3), pages 386-398.
    20. Klaus Abberger & Gebhard Flaig & Wolfgang Nierhaus, 2007. "ifo Konjunkturumfragen und Konjunkturanalyse : ausgewählte methodische Aufsätze aus dem ifo Schnelldienst," ifo Forschungsberichte, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 33.

    More about this item

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C42 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Survey Methods
    • E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ces:ifowps:_40. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Klaus Wohlrabe (email available below). General contact details of provider: https://edirc.repec.org/data/ifooode.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.