IDEAS home Printed from https://ideas.repec.org/p/hig/wpaper/94-ec-2015.html
   My bibliography  Save this paper

Leading Indicators of the Business Cycle: Dynamic Logit Models for OECD Countries and Russia

Author

Listed:
  • Anna Pestova

    (National Research University Higher School of Economics)

Abstract

In this paper, I develop the leading indicators of the business cycle turning points exploiting the quarterly panel dataset comprising OECD countries and Russia over the 1980-2013 period. Contrasting to the previous studies, I combine data on OECD countries and Russia into a single dataset and develop universal models suitable for the entire sample with a quality of predictions comparable to the analogues of single-country models. On the basis of conventional dynamic discrete dependent variable framework I estimate the business cycle leading indicator models at different forecasting horizons (from one to four quarters). The results demonstrate that there is a trade-off between forecasting accuracy and the earliness of the recession signal. Best predictions are achieved for the model with one quarter lag (approximately 94% of the observations were correctly classified with a noise-to-signal ratio of 7%). However, even the model with the four quarter lags correctly predicts more than 80% of recessions with the noise-to-signal ratio of 25% can be useful for the policy analysis. I also reveal significant gains of accounting for the credit market variables when forecasting recessions at the long horizons (four quarter lag) as their use leads to a significant reduction of the noise-to-signal ratio of the model. I propose using the “optimal” cut-off threshold of the binary models based on the minimization of regulator loss function arising from different types of wrong classification. I show that this optimal threshold improves model forecasts as compared to other exogenous thresholds.

Suggested Citation

  • Anna Pestova, 2015. "Leading Indicators of the Business Cycle: Dynamic Logit Models for OECD Countries and Russia," HSE Working papers WP BRP 94/EC/2015, National Research University Higher School of Economics.
  • Handle: RePEc:hig:wpaper:94/ec/2015
    as

    Download full text from publisher

    File URL: http://www.hse.ru/data/2015/05/13/1098775413/94EC2015.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Castro, Vítor, 2010. "The duration of economic expansions and recessions: More than duration dependence," Journal of Macroeconomics, Elsevier, vol. 32(1), pages 347-365, March.
    2. Fabio Moneta, 2005. "Does the Yield Spread Predict Recessions in the Euro Area?," International Finance, Wiley Blackwell, vol. 8(2), pages 263-301, August.
    3. Zarnowitz, Victor, 1985. "Recent Work on Business Cycles in Historical Perspective: A Review of Theories and Evidence," Journal of Economic Literature, American Economic Association, vol. 23(2), pages 523-580, June.
    4. Ataman Ozyildirim & Brian Schaitkin & Victor Zarnowitz, 2010. "Business cycles in the euro area defined with coincident economic indicators and predicted with leading economic indicators," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 29(1-2), pages 6-28.
    5. Christiansen, Charlotte & Eriksen, Jonas Nygaard & Møller, Stig Vinther, 2014. "Forecasting US recessions: The role of sentiment," Journal of Banking & Finance, Elsevier, vol. 49(C), pages 459-468.
    6. N. G. Mankiw, 2009. "The Macroeconomist as Scientist and Engineer," Voprosy Ekonomiki, NP Voprosy Ekonomiki, issue 5.
    7. Arturo Estrella & Frederic S. Mishkin, 1998. "Predicting U.S. Recessions: Financial Variables As Leading Indicators," The Review of Economics and Statistics, MIT Press, vol. 80(1), pages 45-61, February.
    8. A. Pestova., 2013. "Predicting Turning Points of the Business Cycle: Do Financial Sector Variables Help?," VOPROSY ECONOMIKI, N.P. Redaktsiya zhurnala "Voprosy Economiki", vol. 7.
    9. Cosslett, Stephen R, 1981. "Maximum Likelihood Estimator for Choice-Based Samples," Econometrica, Econometric Society, vol. 49(5), pages 1289-1316, September.
    10. Candelon, Bertrand & Dumitrescu, Elena-Ivona & Hurlin, Christophe, 2014. "Currency crisis early warning systems: Why they should be dynamic," International Journal of Forecasting, Elsevier, vol. 30(4), pages 1016-1029.
    11. Claessens, Stijn & Kose, M. Ayhan & Terrones, Marco E., 2012. "How do business and financial cycles interact?," Journal of International Economics, Elsevier, vol. 87(1), pages 178-190.
    12. Pami Dua & Anirvan Banerji, 2011. "Predicting Recessions and Slowdowns: A Robust Approach," Working Papers id:4391, eSocialSciences.
    13. Forni, Mario, et al, 2001. "Coincident and Leading Indicators for the Euro Area," Economic Journal, Royal Economic Society, vol. 111(471), pages 62-85, May.
    14. Oleg Demidov, 2008. "Different indexes for forecasting economic activity in Russia (in Russian)," Quantile, Quantile, issue 5, pages 83-102, September.
    15. Stock, James H. & Watson, Mark W., 2006. "Forecasting with Many Predictors," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 10, pages 515-554, Elsevier.
    16. Tony Addison & Mansoob Murshed, 2005. "Transnational terrorism as a spillover of domestic disputes in other countries," Defence and Peace Economics, Taylor & Francis Journals, vol. 16(2), pages 69-82.
    17. Arthur F. Burns & Wesley C. Mitchell, 1946. "Measuring Business Cycles," NBER Books, National Bureau of Economic Research, Inc, number burn46-1, June.
    18. Sergio Rebelo, 2005. "Real Business Cycle Models: Past, Present and Future," RCER Working Papers 522, University of Rochester - Center for Economic Research (RCER).
    19. Gábor P. Kiss & Gábor Vadas, 2004. "Mind the Gap – Watch the Ways of Cyclical Adjustment of the Budget Balance," MNB Working Papers 2004/7, Magyar Nemzeti Bank (Central Bank of Hungary).
    20. de la Croix, David & Licandro, Omar, 1993. "Irreversibility, Uncertainty and Underemployment Equilibria," LIDAM Discussion Papers IRES 1994028, Université catholique de Louvain, Institut de Recherches Economiques et Sociales (IRES), revised 00 Oct 1994.
    21. Ng, Eric C.Y., 2012. "Forecasting US recessions with various risk factors and dynamic probit models," Journal of Macroeconomics, Elsevier, vol. 34(1), pages 112-125.
    22. Herrin, Alejandro N. & Racelis, Rachel H., 2003. "Philippine Population Management Program (PPMP) Expenditures, 1998 and 2000," Discussion Papers DP 2003-22, Philippine Institute for Development Studies.
    23. Stock, James H. & Watson, Mark W., 1999. "Business cycle fluctuations in us macroeconomic time series," Handbook of Macroeconomics, in: J. B. Taylor & M. Woodford (ed.), Handbook of Macroeconomics, edition 1, volume 1, chapter 1, pages 3-64, Elsevier.
    24. Heikki Kauppi & Pentti Saikkonen, 2008. "Predicting U.S. Recessions with Dynamic Binary Response Models," The Review of Economics and Statistics, MIT Press, vol. 90(4), pages 777-791, November.
    25. Henri Nyberg, 2010. "Dynamic probit models and financial variables in recession forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 29(1-2), pages 215-230.
    26. Travis J. Berge & Òscar Jordà, 2011. "Evaluating the Classification of Economic Activity into Recessions and Expansions," American Economic Journal: Macroeconomics, American Economic Association, vol. 3(2), pages 246-277, April.
    27. Victor Zarnowitz, 1984. "Recent Work on Business Cycles in Historical Perspective: Review of Theories and Evidence," NBER Working Papers 1503, National Bureau of Economic Research, Inc.
    28. Bussiere, Matthieu & Fratzscher, Marcel, 2006. "Towards a new early warning system of financial crises," Journal of International Money and Finance, Elsevier, vol. 25(6), pages 953-973, October.
    29. Chang-Jin Kim & Charles R. Nelson, 1999. "Has The U.S. Economy Become More Stable? A Bayesian Approach Based On A Markov-Switching Model Of The Business Cycle," The Review of Economics and Statistics, MIT Press, vol. 81(4), pages 608-616, November.
    30. Matheson, Victor A. & Grote, Kent R., 2004. "Lotto fever: do lottery players act rationally around large jackpots?," Economics Letters, Elsevier, vol. 83(2), pages 233-237, May.
    31. James H. Stock & Mark W. Watson, 1992. "A procedure for predicting recessions with leading indicators: econometric issues and recent performance," Working Paper Series, Macroeconomic Issues 92-7, Federal Reserve Bank of Chicago.
    32. James H. Stock & Mark W. Watson, 1989. "New Indexes of Coincident and Leading Economic Indicators," NBER Chapters, in: NBER Macroeconomics Annual 1989, Volume 4, pages 351-409, National Bureau of Economic Research, Inc.
    33. S. Smirnov, 2001. "The System of Leading Indicators for Russia," Voprosy Ekonomiki, NP Voprosy Ekonomiki, vol. 3.
    34. James H. Stock & Mark W. Watson, 1993. "A Procedure for Predicting Recessions with Leading Indicators: Econometric Issues and Recent Experience," NBER Chapters, in: Business Cycles, Indicators, and Forecasting, pages 95-156, National Bureau of Economic Research, Inc.
    35. Stock J.H. & Watson M.W., 2002. "Forecasting Using Principal Components From a Large Number of Predictors," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1167-1179, December.
    36. Cardarelli, Roberto & Elekdag, Selim & Lall, Subir, 2011. "Financial stress and economic contractions," Journal of Financial Stability, Elsevier, vol. 7(2), pages 78-97, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Proaño, Christian R. & Theobald, Thomas, 2014. "Predicting recessions with a composite real-time dynamic probit model," International Journal of Forecasting, Elsevier, vol. 30(4), pages 898-917.
    2. Hasse, Jean-Baptiste & Lajaunie, Quentin, 2022. "Does the yield curve signal recessions? New evidence from an international panel data analysis," The Quarterly Review of Economics and Finance, Elsevier, vol. 84(C), pages 9-22.
    3. Nissilä, Wilma, 2020. "Probit based time series models in recession forecasting – A survey with an empirical illustration for Finland," BoF Economics Review 7/2020, Bank of Finland.
    4. Christiansen, Charlotte & Eriksen, Jonas Nygaard & Møller, Stig Vinther, 2014. "Forecasting US recessions: The role of sentiment," Journal of Banking & Finance, Elsevier, vol. 49(C), pages 459-468.
    5. Christiansen, Charlotte & Eriksen, Jonas N. & Møller, Stig V., 2019. "Negative house price co-movements and US recessions," Regional Science and Urban Economics, Elsevier, vol. 77(C), pages 382-394.
    6. Harri Ponka, 2017. "The Role of Credit in Predicting US Recessions," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 36(5), pages 469-482, August.
    7. Chauvet, Marcelle & Potter, Simon, 2013. "Forecasting Output," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 141-194, Elsevier.
    8. Stijn Claessens & M Ayhan Kose, 2018. "Frontiers of macrofinancial linkages," BIS Papers, Bank for International Settlements, number 95, October –.
    9. Marius M. Mihai, 2020. "Do credit booms predict US recessions?," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(6), pages 887-910, September.
    10. Jean-Baptiste Hasse & Quentin Lajaunie, 2020. "Does the Yield Curve Signal Recessions? New Evidence from an International Panel Data Analysis," AMSE Working Papers 2013, Aix-Marseille School of Economics, France.
    11. Vrontos, Spyridon D. & Galakis, John & Vrontos, Ioannis D., 2021. "Modeling and predicting U.S. recessions using machine learning techniques," International Journal of Forecasting, Elsevier, vol. 37(2), pages 647-671.
    12. Borio, Claudio & Drehmann, Mathias & Xia, Fan Dora, 2020. "Forecasting recessions: the importance of the financial cycle," Journal of Macroeconomics, Elsevier, vol. 66(C).
    13. Neville Francis & Michael T. Owyang & Daniel Soques, 2022. "Business Cycles across Space and Time," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 54(4), pages 921-952, June.
    14. Enrique A. López-Enciso, 2017. "Dos tradiciones en la medición del ciclo: historia general y desarrollos en Colombia," Borradores de Economia 986, Banco de la Republica de Colombia.
    15. Antunes, António & Bonfim, Diana & Monteiro, Nuno & Rodrigues, Paulo M.M., 2018. "Forecasting banking crises with dynamic panel probit models," International Journal of Forecasting, Elsevier, vol. 34(2), pages 249-275.
    16. Castro, Vítor, 2010. "The duration of economic expansions and recessions: More than duration dependence," Journal of Macroeconomics, Elsevier, vol. 32(1), pages 347-365, March.
    17. Harri Pönkä & Markku Stenborg, 2020. "Forecasting the state of the Finnish business cycle," Finnish Economic Papers, Finnish Economic Association, vol. 29(1), pages 81-99, Spring.
    18. Döpke, Jörg & Fritsche, Ulrich & Pierdzioch, Christian, 2017. "Predicting recessions with boosted regression trees," International Journal of Forecasting, Elsevier, vol. 33(4), pages 745-759.
    19. Catherine Doz & Peter Fuleky, 2019. "Dynamic Factor Models," Working Papers halshs-02262202, HAL.
    20. Fernandez-Perez, Adrian & Fernández-Rodríguez, Fernando & Sosvilla-Rivero, Simón, 2014. "The term structure of interest rates as predictor of stock returns: Evidence for the IBEX 35 during a bear market," International Review of Economics & Finance, Elsevier, vol. 31(C), pages 21-33.

    More about this item

    Keywords

    business cycles; leading indicators; turning points; dynamic logit models; recession forecast.;
    All these keywords.

    JEL classification:

    • E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hig:wpaper:94/ec/2015. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Shamil Abdulaev or Shamil Abdulaev (email available below). General contact details of provider: https://edirc.repec.org/data/hsecoru.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.