IDEAS home Printed from https://ideas.repec.org/f/c/pvi290.html
   My authors  Follow this author

Francesco Violante

Citations

Many of the citations below have been collected in an experimental project, CitEc, where a more detailed citation analysis can be found. These are citations from works listed in RePEc that could be analyzed mechanically. So far, only a minority of all works could be analyzed. See under "Corrections" how you can help improve the citation analysis.

Working papers

  1. A. Fronzetti Colladon & S. Grassi & F. Ravazzolo & F. Violante, 2020. "Forecasting financial markets with semantic network analysis in the COVID-19 crisis," Papers 2009.04975, arXiv.org, revised Jul 2023.

    Cited by:

    1. Pan, Zhiyuan & Zhong, Hao & Wang, Yudong & Huang, Juan, 2024. "Forecasting oil futures returns with news," Energy Economics, Elsevier, vol. 134(C).
    2. A. Fronzetti Colladon & F. Grippa & B. Guardabascio & G. Costante & F. Ravazzolo, 2021. "Forecasting consumer confidence through semantic network analysis of online news," Papers 2105.04900, arXiv.org, revised Jul 2023.
    3. Daniel Felix Ahelegbey & Paola Cerchiello & Roberta Scaramozzino, 2021. "Network Based Evidence of the Financial Impact of Covid-19 Pandemic," DEM Working Papers Series 198, University of Pavia, Department of Economics and Management.
    4. Miguel LAMPREIA & Fernando TEIXEIRA & Susana, 2024. "The Predictive Power Of Technical Analysis: Evidence From The Gbp/Usd Exchange Rate," Sustainable Regional Development Scientific Journal, Sustainable Regional Development Scientific Journal, vol. 0(5), pages 91-98, March.

  2. Andrea Barletta & Paolo Santucci de Magistris & Francesco Violante, 2017. "A Non-Structural Investigation of VIX Risk Neutral Density," CREATES Research Papers 2017-15, Department of Economics and Business Economics, Aarhus University.

    Cited by:

    1. J. Arismendi-Zambrano & R. Azevedo, 2020. "Implicit Entropic Market Risk-Premium from Interest Rate Derivatives," Economics Department Working Paper Series n303-20.pdf, Department of Economics, National University of Ireland - Maynooth.
    2. Abderrahmen Aloulou & Younes Boujelbene, 2019. "Dynamic analysis of implied risk neutral density," International Journal of Monetary Economics and Finance, Inderscience Enterprises Ltd, vol. 12(1), pages 39-58.
    3. Andrea Barletta & Paolo Santucci de Magistris, 2018. "Analyzing the Risks Embedded in Option Prices with rndfittool," Risks, MDPI, vol. 6(2), pages 1-15, March.

  3. Jeroen V.K. Rombouts & Lars Stentoft & Francesco Violante, 2017. "Variance swap payoffs, risk premia and extreme market conditions," CREATES Research Papers 2017-21, Department of Economics and Business Economics, Aarhus University.

    Cited by:

    1. Wilms, Ines & Rombouts, Jeroen & Croux, Christophe, 2021. "Multivariate volatility forecasts for stock market indices," International Journal of Forecasting, Elsevier, vol. 37(2), pages 484-499.
    2. Jonathan Dark & Xin Gao & Thijs van der Heijden & Federico Nardari, 2022. "Forecasting variance swap payoffs," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(12), pages 2135-2164, December.

  4. Christian M. Hafner & Sebastien Laurent & Francesco Violante, 2015. "Weak diffusion limits of dynamic conditional correlation models," CREATES Research Papers 2015-03, Department of Economics and Business Economics, Aarhus University.

    Cited by:

    1. Christian M. Hafner & Sébastien Laurent & Francesco Violante, 2017. "Weak Diffusion Limits of Dynamic Conditional Correlation Models," Post-Print hal-01590010, HAL.
    2. Buccheri, Giuseppe & Corsi, Fulvio & Flandoli, Franco & Livieri, Giulia, 2021. "The continuous-time limit of score-driven volatility models," Journal of Econometrics, Elsevier, vol. 221(2), pages 655-675.
    3. Ding, Yashuang (Dexter), 2023. "A simple joint model for returns, volatility and volatility of volatility," Journal of Econometrics, Elsevier, vol. 232(2), pages 521-543.
    4. Ding, Y., 2020. "Diffusion Limits of Real-Time GARCH," Cambridge Working Papers in Economics 20112, Faculty of Economics, University of Cambridge.
    5. Tao Chen & Yixuan Li & Renfang Tian, 2023. "A Functional Data Approach for Continuous-Time Analysis Subject to Modeling Discrepancy under Infill Asymptotics," Mathematics, MDPI, vol. 11(20), pages 1-27, October.
    6. Yinhao Wu & Ping He, 2024. "The continuous-time limit of quasi score-driven volatility models," Papers 2409.14734, arXiv.org.

  5. Maria Eugenia Sanin & Maria Mansanet-Bataller & Francesco Violante, 2015. "Understanding volatility dynamics in the EU-ETS market," CREATES Research Papers 2015-04, Department of Economics and Business Economics, Aarhus University.

    Cited by:

    1. Zhitao Xu & Adel Elomri & Shaligram Pokharel & Fatih Mutlu, 2019. "The Design of Green Supply Chains under Carbon Policies: A Literature Review of Quantitative Models," Sustainability, MDPI, vol. 11(11), pages 1-20, May.
    2. Federico Galán-Valdivieso & Elena Villar-Rubio & María-Dolores Huete-Morales, 2018. "The erratic behaviour of the EU ETS on the path towards consolidation and price stability," International Environmental Agreements: Politics, Law and Economics, Springer, vol. 18(5), pages 689-706, October.
    3. Zhao, Xin-gang & Jiang, Gui-wu & Nie, Dan & Chen, Hao, 2016. "How to improve the market efficiency of carbon trading: A perspective of China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1229-1245.
    4. Yinpeng Zhang & Zhixin Liu & Yingying Xu, 2018. "Carbon price volatility: The case of China," PLOS ONE, Public Library of Science, vol. 13(10), pages 1-15, October.
    5. Qinliang Tan & Yihong Ding & Yimei Zhang, 2017. "Optimization Model of an Efficient Collaborative Power Dispatching System for Carbon Emissions Trading in China," Energies, MDPI, vol. 10(9), pages 1-19, September.
    6. Xie, Qiwei & Hao, Jingjing & Li, Jingyu & Zheng, Xiaolong, 2022. "Carbon price prediction considering climate change: A text-based framework," Economic Analysis and Policy, Elsevier, vol. 74(C), pages 382-401.
    7. Chen, Jiayuan & Muckley, Cal B. & Bredin, Don, 2017. "Is information assimilated at announcements in the European carbon market?," Energy Economics, Elsevier, vol. 63(C), pages 234-247.
    8. Aneta Wlodarczyk, 2017. "Regime-dependent Assessment of Risk Concerning the International Aviation Inclusion Into the EU ETS," Dynamic Econometric Models, Uniwersytet Mikolaja Kopernika, vol. 17, pages 129-145.
    9. Marc Lamphiere & Jonathan Blackledge & Derek Kearney, 2021. "Carbon Futures Trading and Short-Term Price Prediction: An Analysis Using the Fractal Market Hypothesis and Evolutionary Computing," Mathematics, MDPI, vol. 9(9), pages 1-32, April.
    10. Anna Creti & Marc Joëts, 2017. "Multiple bubbles in the European Union Emission Trading Scheme," Post-Print hal-01549809, HAL.
    11. Gazi Salah Uddin & Jose Areola Hernandez & Syed Jawad Hussain Shahzad & Axel Hedström, 2018. "Multivariate dependence and spillover effects across energy commodities and diversification potentials of carbon assets," Post-Print hal-01996386, HAL.
    12. Po Yun & Chen Zhang & Yaqi Wu & Xianzi Yang & Zulfiqar Ali Wagan, 2020. "A Novel Extended Higher-Order Moment Multi-Factor Framework for Forecasting the Carbon Price: Testing on the Multilayer Long Short-Term Memory Network," Sustainability, MDPI, vol. 12(5), pages 1-16, March.
    13. Gronwald, Marc, 2019. "Is Bitcoin a Commodity? On price jumps, demand shocks, and certainty of supply," Journal of International Money and Finance, Elsevier, vol. 97(C), pages 86-92.
    14. Yuqin Zhou & Shan Wu & Zhenhua Liu & Lavinia Rognone, 2023. "The asymmetric effects of climate risk on higher-moment connectedness among carbon, energy and metals markets," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    15. Qunli Wu & Hongjie Zhang, 2019. "Research on Optimization Allocation Scheme of Initial Carbon Emission Quota from the Perspective of Welfare Effect," Energies, MDPI, vol. 12(11), pages 1-27, June.
    16. Tan, Qinliang & Ding, Yihong & Ye, Qi & Mei, Shufan & Zhang, Yimei & Wei, Yongmei, 2019. "Optimization and evaluation of a dispatch model for an integrated wind-photovoltaic-thermal power system based on dynamic carbon emissions trading," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    17. Xianzi Yang & Chen Zhang & Yu Yang & Yaqi Wu & Po Yun & Zulfiqar Ali Wagan, 2020. "China’s Carbon Pricing Based on Heterogeneous Tail Distribution," Sustainability, MDPI, vol. 12(7), pages 1-16, April.
    18. Fan, John Hua & Todorova, Neda, 2017. "Dynamics of China’s carbon prices in the pilot trading phase," Applied Energy, Elsevier, vol. 208(C), pages 1452-1467.
    19. Li, Wei & Jia, Zhijie, 2016. "The impact of emission trading scheme and the ratio of free quota: A dynamic recursive CGE model in China," Applied Energy, Elsevier, vol. 174(C), pages 1-14.
    20. Jujie Wang & Shiyao Qiu, 2021. "Improved Multi-Scale Deep Integration Paradigm for Point and Interval Carbon Trading Price Forecasting," Mathematics, MDPI, vol. 9(20), pages 1-20, October.
    21. Zhu, Bangzhu & Wan, Chunzhuo & Wang, Ping, 2022. "Interval forecasting of carbon price: A novel multiscale ensemble forecasting approach," Energy Economics, Elsevier, vol. 115(C).
    22. Rui Zhu & Liyu Long & Yinghua Gong, 2022. "Emission Trading System, Carbon Market Efficiency, and Corporate Innovations," IJERPH, MDPI, vol. 19(15), pages 1-22, August.
    23. Yan, Kai & Zhang, Wei & Shen, Dehua, 2020. "Stylized facts of the carbon emission market in China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 555(C).
    24. Cristina Sattarhoff & Marc Gronwald, 2018. "How to Measure Financial Market Efficiency? A Multifractality-Based Quantitative Approach with an Application to the European Carbon Market," CESifo Working Paper Series 7102, CESifo.
    25. Bangzhu Zhu & Shunxin Ye & Ping Wang & Julien Chevallier & Yi‐Ming Wei, 2022. "Forecasting carbon price using a multi‐objective least squares support vector machine with mixture kernels," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(1), pages 100-117, January.
    26. Jin, Jiayu & Han, Liyan & Wu, Lei & Zeng, Hongchao, 2020. "The hedging effect of green bonds on carbon market risk," International Review of Financial Analysis, Elsevier, vol. 71(C).
    27. Huang, Zhehao & Dong, Hao & Jia, Shuaishuai, 2022. "Equilibrium pricing for carbon emission in response to the target of carbon emission peaking," Energy Economics, Elsevier, vol. 112(C).
    28. Ren, Xiaohang & Duan, Kun & Tao, Lizhu & Shi, Yukun & Yan, Cheng, 2022. "Carbon prices forecasting in quantiles," Energy Economics, Elsevier, vol. 108(C).
    29. Jianfeng Guo & Bin Su & Guang Yang & Lianyong Feng & Yinpeng Liu & Fu Gu, 2018. "How Do Verified Emissions Announcements Affect the Comoves between Trading Behaviors and Carbon Prices? Evidence from EU ETS," Sustainability, MDPI, vol. 10(9), pages 1-17, September.
    30. Alexander Zeitlberger & Alexander Brauneis, 2016. "Modeling carbon spot and futures price returns with GARCH and Markov switching GARCH models," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 24(1), pages 149-176, March.
    31. Reckling, Dennis, 2016. "Variance risk premia in CO2 markets: A political perspective," Energy Policy, Elsevier, vol. 94(C), pages 345-354.
    32. Friedrich, Marina & Mauer, Eva-Maria & Pahle, Michael & Tietjen, Oliver, 2020. "From fundamentals to financial assets: the evolution of understanding price formation in the EU ETS," EconStor Preprints 225210, ZBW - Leibniz Information Centre for Economics.
    33. Peng Chen & Andrew Vivian & Cheng Ye, 2022. "Forecasting carbon futures price: a hybrid method incorporating fuzzy entropy and extreme learning machine," Annals of Operations Research, Springer, vol. 313(1), pages 559-601, June.
    34. Zhu, Mengrui & Xu, Hua & Wang, Minggang & Tian, Lixin, 2024. "Carbon price interval prediction method based on probability density recurrence network and interval multi-layer perceptron," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 636(C).
    35. Wu, Rongxin & Tan, Zhizhou & Lin, Boqiang, 2023. "Does carbon emission trading scheme really improve the CO2 emission efficiency? Evidence from China's iron and steel industry," Energy, Elsevier, vol. 277(C).
    36. Sun, Qingqing & Chen, Hong & Long, Ruyin & Chen, Jiawei, 2024. "Integrated prediction of carbon price in China based on heterogeneous structural information and wall-value constraints," Energy, Elsevier, vol. 306(C).
    37. Wei, Yigang & Gong, Ping & Zhang, Jianhong & Wang, Li, 2021. "Exploring public opinions on climate change policy in "Big Data Era"—A case study of the European Union Emission Trading System (EU-ETS) based on Twitter," Energy Policy, Elsevier, vol. 158(C).
    38. Tan, Xueping & Sirichand, Kavita & Vivian, Andrew & Wang, Xinyu, 2022. "Forecasting European carbon returns using dimension reduction techniques: Commodity versus financial fundamentals," International Journal of Forecasting, Elsevier, vol. 38(3), pages 944-969.
    39. Jianguo Zhou & Xuejing Huo & Xiaolei Xu & Yushuo Li, 2019. "Forecasting the Carbon Price Using Extreme-Point Symmetric Mode Decomposition and Extreme Learning Machine Optimized by the Grey Wolf Optimizer Algorithm," Energies, MDPI, vol. 12(5), pages 1-22, March.
    40. Tan, Xue-Ping & Wang, Xin-Yu, 2017. "Dependence changes between the carbon price and its fundamentals: A quantile regression approach," Applied Energy, Elsevier, vol. 190(C), pages 306-325.
    41. Simon Cadez & Albert Czerny & Peter Letmathe, 2019. "Stakeholder pressures and corporate climate change mitigation strategies," Business Strategy and the Environment, Wiley Blackwell, vol. 28(1), pages 1-14, January.
    42. Balietti, Anca Claudia, 2016. "Trader types and volatility of emission allowance prices. Evidence from EU ETS Phase I," Energy Policy, Elsevier, vol. 98(C), pages 607-620.

  6. ROMBOUTS, Jeroen V. K. & STENTOFT, Lars & VIOLANTE, Francesco, 2012. "The value of multivariate model sophistication: an application to pricing Dow Jones Industrial Average options," LIDAM Discussion Papers CORE 2012003, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).

    Cited by:

    1. ROMBOUTS, Jeroen V. K. & STENTOFT, Lars, 2010. "Option pricing with asymmetric heteroskedastic normal mixture models," LIDAM Discussion Papers CORE 2010049, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    2. Carlo Drago & Andrea Scozzari, 2022. "Evaluating conditional covariance estimates via a new targeting approach and a networks-based analysis," Papers 2202.02197, arXiv.org.
    3. Carlo Drago & Andrea Scozzari, 2023. "A Network-Based Analysis for Evaluating Conditional Covariance Estimates," Mathematics, MDPI, vol. 11(2), pages 1-19, January.
    4. de Almeida, Daniel & Hotta, Luiz K. & Ruiz, Esther, 2018. "MGARCH models: Trade-off between feasibility and flexibility," International Journal of Forecasting, Elsevier, vol. 34(1), pages 45-63.
    5. Geert Dhaene & Piet Sercu & Jianbin Wu, 2022. "Volatility spillovers: A sparse multivariate GARCH approach with an application to commodity markets," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(5), pages 868-887, May.
    6. Bollerslev, Tim & Patton, Andrew J. & Quaedvlieg, Rogier, 2020. "Multivariate leverage effects and realized semicovariance GARCH models," Journal of Econometrics, Elsevier, vol. 217(2), pages 411-430.

  7. BAUWENS, Luc & STORTI, Giuseppe & VIOLANTE, Francesco, 2012. "Dynamic conditional correlation models for realized covariance matrices," LIDAM Discussion Papers CORE 2012060, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).

    Cited by:

    1. Bauwens, Luc & Xu, Yongdeng, 2023. "DCC- and DECO-HEAVY: Multivariate GARCH models based on realized variances and correlations," International Journal of Forecasting, Elsevier, vol. 39(2), pages 938-955.
    2. Bauwens, Luc & Braione, Manuela & Storti, Giuseppe, 2017. "A dynamic component model for forecasting high-dimensional realized covariance matrices," Econometrics and Statistics, Elsevier, vol. 1(C), pages 40-61.
    3. Bastian Gribisch, 2018. "A latent dynamic factor approach to forecasting multivariate stock market volatility," Empirical Economics, Springer, vol. 55(2), pages 621-651, September.
    4. Tobias Hartl & Roland Weigand, 2018. "Multivariate Fractional Components Analysis," Papers 1812.09149, arXiv.org, revised Jan 2019.
    5. Kris Boudt & Sébastien Laurent & Asger Lunde & Rogier Quaedvlieg & Orimar Sauri, 2017. "Positive semidefinite integrated covariance estimation, factorizations and asynchronicity," Post-Print hal-01505775, HAL.
    6. Ilya Archakov & Peter Reinhard Hansen, 2020. "A New Parametrization of Correlation Matrices," Papers 2012.02395, arXiv.org.
    7. Vassallo, Danilo & Buccheri, Giuseppe & Corsi, Fulvio, 2021. "A DCC-type approach for realized covariance modeling with score-driven dynamics," International Journal of Forecasting, Elsevier, vol. 37(2), pages 569-586.
    8. L. Bauwens & E. Otranto, 2020. "Modelling Realized Covariance Matrices: a Class of Hadamard Exponential Models," Working Paper CRENoS 202007, Centre for North South Economic Research, University of Cagliari and Sassari, Sardinia.
    9. Roxana Halbleib & Valeri Voev, 2011. "Forecasting Covariance Matrices: A Mixed Frequency Approach," CREATES Research Papers 2011-03, Department of Economics and Business Economics, Aarhus University.
    10. Amendola, Alessandra & Braione, Manuela & Candila, Vincenzo & Storti, Giuseppe, 2020. "A Model Confidence Set approach to the combination of multivariate volatility forecasts," International Journal of Forecasting, Elsevier, vol. 36(3), pages 873-891.
    11. Luc Bauwens & Manuela Braione & Giuseppe Storti, 2016. "Forecasting comparison of long term component dynamic models for realized covariance matrices," LIDAM Reprints CORE 2923, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    12. Bollerslev, Tim & Patton, Andrew J. & Quaedvlieg, Rogier, 2020. "Multivariate leverage effects and realized semicovariance GARCH models," Journal of Econometrics, Elsevier, vol. 217(2), pages 411-430.
    13. Weigand, Roland, 2014. "Matrix Box-Cox Models for Multivariate Realized Volatility," University of Regensburg Working Papers in Business, Economics and Management Information Systems 478, University of Regensburg, Department of Economics.
    14. Ostap Okhrin & Anastasija Tetereva, 2017. "The Realized Hierarchical Archimedean Copula in Risk Modelling," Econometrics, MDPI, vol. 5(2), pages 1-31, June.
    15. BAUWENS Luc, & XU Yongdeng,, 2019. "DCC-HEAVY: A multivariate GARCH model based on realized variances and correlations," LIDAM Discussion Papers CORE 2019025, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    16. BAUWENS, Luc & STORTI, Giuseppe, 2013. "Computationally efficient inference procedures for vast dimensional realized covariance models," LIDAM Reprints CORE 2469, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    17. Gribisch, Bastian & Hartkopf, Jan Patrick & Liesenfeld, Roman, 2020. "Factor state–space models for high-dimensional realized covariance matrices of asset returns," Journal of Empirical Finance, Elsevier, vol. 55(C), pages 1-20.
    18. Roxana Halbleib & Valeri Voev, 2016. "Forecasting Covariance Matrices: A Mixed Approach," Journal of Financial Econometrics, Oxford University Press, vol. 14(2), pages 383-417.
    19. Harry Vander Elst & David Veredas, 2017. "Smoothing it Out: Empirical and Simulation Results for Disentangled Realized Covariances," Journal of Financial Econometrics, Oxford University Press, vol. 15(1), pages 106-138.

  8. LAURENT, Sébastien & VIOLANTE, Francesco, 2012. "Volatility forecasts evaluation and comparison," LIDAM Reprints CORE 2414, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).

    Cited by:

    1. Knüppel, Malte & Schultefrankenfeld, Guido, 2018. "Assessing the uncertainty in central banks' inflation outlooks," Discussion Papers 56/2018, Deutsche Bundesbank.
    2. Bauwens, L. & Hafner C. & Laurent, S., 2011. "Volatility Models," LIDAM Discussion Papers ISBA 2011044, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
      • BAUWENS, Luc & HAFNER, Christian & LAURENT, Sébastien, 2011. "Volatility models," LIDAM Discussion Papers CORE 2011058, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
      • Bauwens, L. & Hafner, C. & Laurent, S., 2012. "Volatility Models," LIDAM Reprints ISBA 2012028, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    3. Yam Wing Siu, 2018. "Volatility Forecast by Volatility Index and Its Use as a Risk Management Tool Under a Value-at-Risk Approach," Review of Pacific Basin Financial Markets and Policies (RPBFMP), World Scientific Publishing Co. Pte. Ltd., vol. 21(02), pages 1-48, June.
    4. Cifter, Atilla, 2012. "Volatility Forecasting with Asymmetric Normal Mixture Garch Model: Evidence from South Africa," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(2), pages 127-142, June.
    5. Fiszeder, Piotr & Fałdziński, Marcin, 2019. "Improving forecasts with the co-range dynamic conditional correlation model," Journal of Economic Dynamics and Control, Elsevier, vol. 108(C).
    6. Sucarrat, Genaro, 2020. "Identification of Volatility Proxies as Expectations of Squared Financial Return," MPRA Paper 101953, University Library of Munich, Germany.
    7. Siliverstovs, Boriss & Wochner, Daniel S., 2018. "Google Trends and reality: Do the proportions match?," Journal of Economic Behavior & Organization, Elsevier, vol. 145(C), pages 1-23.
    8. Andrea BUCCI, 2017. "Forecasting Realized Volatility A Review," Journal of Advanced Studies in Finance, ASERS Publishing, vol. 8(2), pages 94-138.
    9. Sucarrat, Genaro, 2021. "Identification of volatility proxies as expectations of squared financial returns," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1677-1690.

  9. Sébastien Laurent & Jeroen V.K. Rombouts & Francesco Violante, 2010. "On the Forecasting Accuracy of Multivariate GARCH Models," Cahiers de recherche 1021, CIRPEE.

    Cited by:

    1. Han, Chulwoo & Park, Frank C., 2022. "A geometric framework for covariance dynamics," Journal of Banking & Finance, Elsevier, vol. 134(C).
    2. Rasmus Søndergaard Pedersen & Anders Rahbek, 2012. "Multivariate Variance Targeting in the BEKK-GARCH Model," Discussion Papers 12-23, University of Copenhagen. Department of Economics.
    3. Chao Liang & Yin Liao & Feng Ma & Bo Zhu, 2022. "United States Oil Fund volatility prediction: the roles of leverage effect and jumps," Empirical Economics, Springer, vol. 62(5), pages 2239-2262, May.
    4. Bauwens, Luc & Braione, Manuela & Storti, Giuseppe, 2017. "A dynamic component model for forecasting high-dimensional realized covariance matrices," Econometrics and Statistics, Elsevier, vol. 1(C), pages 40-61.
    5. Rasmus Søndergaard Pedersen, 2014. "Targeting estimation of CCC-Garch models with infinite fourth moments," Discussion Papers 14-04, University of Copenhagen. Department of Economics.
    6. Tobias Fissler & Yannick Hoga, 2024. "How to Compare Copula Forecasts?," Papers 2410.04165, arXiv.org.
    7. Alexander, Carol & Han, Yang & Meng, Xiaochun, 2023. "Static and dynamic models for multivariate distribution forecasts: Proper scoring rule tests of factor-quantile versus multivariate GARCH models," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1078-1096.
    8. João F. Caldeira & Guilherme V. Moura & Francisco J. Nogales & André A. P. Santos, 2017. "Combining Multivariate Volatility Forecasts: An Economic-Based Approach," Journal of Financial Econometrics, Oxford University Press, vol. 15(2), pages 247-285.
    9. Duan, Yinying & Chen, Wang & Zeng, Qing & Liu, Zhicao, 2018. "Leverage effect, economic policy uncertainty and realized volatility with regime switching," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 493(C), pages 148-154.
    10. Bouteska, Ahmed & Sharif, Taimur & Abedin, Mohammad Zoynul, 2023. "COVID-19 and stock returns: Evidence from the Markov switching dependence approach," Research in International Business and Finance, Elsevier, vol. 64(C).
    11. Carlos Trucíos & João H. G. Mazzeu & Marc Hallin & Luiz K. Hotta & Pedro L. Valls Pereira & Mauricio Zevallos, 2022. "Forecasting Conditional Covariance Matrices in High-Dimensional Time Series: A General Dynamic Factor Approach," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 41(1), pages 40-52, December.
    12. ROMBOUTS, Jeroen V. K. & STENTOFT, Lars & VIOLANTE, Francesco, 2012. "The value of multivariate model sophistication: an application to pricing Dow Jones Industrial Average options," LIDAM Discussion Papers CORE 2012003, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    13. Ralf Becker & Adam Clements & Robert O'Neill, 2010. "A Kernel Technique for Forecasting the Variance-Covariance Matrix," Centre for Growth and Business Cycle Research Discussion Paper Series 151, Economics, The University of Manchester.
    14. Helmut Lütkepohl & Thore Schlaak, 2017. "Choosing between Different Time-Varying Volatility Models for Structural Vector Autoregressive Analysis," Discussion Papers of DIW Berlin 1672, DIW Berlin, German Institute for Economic Research.
    15. Christian Francq & Lajos Horváth & Jean-Michel Zakoïan, 2016. "Variance Targeting Estimation of Multivariate GARCH Models," Journal of Financial Econometrics, Oxford University Press, vol. 14(2), pages 353-382.
    16. Deniz Erdemlioglu & Sébastien Laurent & Christopher J. Neely, 2013. "Econometric modeling of exchange rate volatility and jumps," Chapters, in: Adrian R. Bell & Chris Brooks & Marcel Prokopczuk (ed.), Handbook of Research Methods and Applications in Empirical Finance, chapter 16, pages 373-427, Edward Elgar Publishing.
    17. Ahmed, Shamim & Bu, Ziwen & Symeonidis, Lazaros & Tsvetanov, Daniel, 2023. "Which factor model? A systematic return covariation perspective," Journal of International Money and Finance, Elsevier, vol. 136(C).
    18. Becker, R. & Clements, A.E. & Doolan, M.B. & Hurn, A.S., 2015. "Selecting volatility forecasting models for portfolio allocation purposes," International Journal of Forecasting, Elsevier, vol. 31(3), pages 849-861.
    19. Wang, Yudong & Wu, Chongfeng & Yang, Li, 2016. "Forecasting crude oil market volatility: A Markov switching multifractal volatility approach," International Journal of Forecasting, Elsevier, vol. 32(1), pages 1-9.
    20. Jentsch, Carsten & Subba Rao, Suhasini, 2015. "A test for second order stationarity of a multivariate time series," Journal of Econometrics, Elsevier, vol. 185(1), pages 124-161.
    21. Tobias Hartl & Roland Weigand, 2018. "Multivariate Fractional Components Analysis," Papers 1812.09149, arXiv.org, revised Jan 2019.
    22. G. C. Livingston & Darfiana Nur, 2023. "Bayesian inference of multivariate-GARCH-BEKK models," Statistical Papers, Springer, vol. 64(5), pages 1749-1774, October.
    23. Stanislav Anatolyev & Nikita Kobotaev, 2018. "Modeling and forecasting realized covariance matrices with accounting for leverage," Econometric Reviews, Taylor & Francis Journals, vol. 37(2), pages 114-139, February.
    24. Triki, Mohamed Bilel & Ben Maatoug, Abderrazek, 2021. "The GOLD market as a safe haven against the stock market uncertainty: Evidence from geopolitical risk," Resources Policy, Elsevier, vol. 70(C).
    25. Manabu Asai & Michael McAleer, 2014. "Forecasting Co-Volatilities via Factor Models with Asymmetry and Long Memory in Realized Covariance," Tinbergen Institute Discussion Papers 14-037/III, Tinbergen Institute.
    26. Aslanidis, Nektarios & Casas, Isabel, 2011. "Modelling asset correlations: A nonparametric approach," Working Papers 2011-01, University of Sydney, School of Economics.
    27. Mei, Dexiang & Zeng, Qing & Cao, Xiang & Diao, Xiaohua, 2019. "Uncertainty and oil volatility: New evidence," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 155-163.
    28. Erik Kole & Thijs Markwat & Anne Opschoor & Dick van Dijk, 2017. "Forecasting Value-at-Risk under Temporal and Portfolio Aggregation," Journal of Financial Econometrics, Oxford University Press, vol. 15(4), pages 649-677.
    29. Lv, Wendai, 2018. "Does the OVX matter for volatility forecasting? Evidence from the crude oil market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 492(C), pages 916-922.
    30. Dahiru A. Balaa & Taro Takimotob, 2017. "Stock markets volatility spillovers during financial crises: A DCC-MGARCH with skewed-t density approach," Borsa Istanbul Review, Research and Business Development Department, Borsa Istanbul, vol. 17(1), pages 25-48, March.
    31. Noori, Mohammad & Hitaj, Asmerilda, 2023. "Dissecting hedge funds' strategies," International Review of Financial Analysis, Elsevier, vol. 85(C).
    32. Fu, Yang & Zheng, Zeyu, 2020. "Volatility modeling and the asymmetric effect for China’s carbon trading pilot market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 542(C).
    33. Dark, Jonathan, 2015. "Futures hedging with Markov switching vector error correction FIEGARCH and FIAPARCH," Journal of Banking & Finance, Elsevier, vol. 61(S2), pages 269-285.
    34. Ralf Becker & Adam Clements & Robert O'Neill, 2018. "A Multivariate Kernel Approach to Forecasting the Variance Covariance of Stock Market Returns," Econometrics, MDPI, vol. 6(1), pages 1-27, February.
    35. Köchling, Gerrit & Schmidtke, Philipp & Posch, Peter N., 2020. "Volatility forecasting accuracy for Bitcoin," Economics Letters, Elsevier, vol. 191(C).
    36. Mei, Dexiang & Ma, Feng & Liao, Yin & Wang, Lu, 2020. "Geopolitical risk uncertainty and oil future volatility: Evidence from MIDAS models," Energy Economics, Elsevier, vol. 86(C).
    37. Caporin, M. & McAleer, M.J., 2012. "Robust Ranking of Multivariate GARCH Models by Problem Dimension," Econometric Institute Research Papers EI2012-13, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    38. R. Khalfaoui & M. Boutahar, 2012. "Portfolio Risk Evaluation: An Approach Based on Dynamic Conditional Correlations Models and Wavelet Multi-Resolution Analysis," Working Papers halshs-00793068, HAL.
    39. Liu, Yue & Sun, Huaping & Zhang, Jijian & Taghizadeh-Hesary, Farhad, 2020. "Detection of volatility regime-switching for crude oil price modeling and forecasting," Resources Policy, Elsevier, vol. 69(C).
    40. Serge Darolles & Christian Francq & Sébastien Laurent, 2018. "Asymptotics of Cholesky GARCH models and time-varying conditional betas," Post-Print hal-04590232, HAL.
    41. Carroll, Rachael & Conlon, Thomas & Cotter, John & Salvador, Enrique, 2017. "Asset allocation with correlation: A composite trade-off," European Journal of Operational Research, Elsevier, vol. 262(3), pages 1164-1180.
    42. Tan, Jinghua & Li, Zhixi & Zhang, Chuanhui & Shi, Long & Jiang, Yuansheng, 2024. "A multiscale time-series decomposition learning for crude oil price forecasting," Energy Economics, Elsevier, vol. 136(C).
    43. Yannick Hoga, 2023. "The Estimation Risk in Extreme Systemic Risk Forecasts," Papers 2304.10349, arXiv.org.
    44. Dimitris P. Louzis, 2014. "Macroeconomic and credit forecasts in a small economy during crisis: A large Bayesian VAR approach," Working Papers 184, Bank of Greece.
    45. Hautsch, Nikolaus & Kyj, Lada. M. & Malec, Peter, 2013. "Do high-frequency data improve high-dimensional portfolio allocations?," SFB 649 Discussion Papers 2013-014, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    46. Laurent, Sébastien & Lecourt, Christelle & Palm, Franz C., 2016. "Testing for jumps in conditionally Gaussian ARMA–GARCH models, a robust approach," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 383-400.
    47. Varneskov, Rasmus & Voev, Valeri, 2013. "The role of realized ex-post covariance measures and dynamic model choice on the quality of covariance forecasts," Journal of Empirical Finance, Elsevier, vol. 20(C), pages 83-95.
    48. de Almeida, Daniel & Hotta, Luiz K. & Ruiz, Esther, 2018. "MGARCH models: Trade-off between feasibility and flexibility," International Journal of Forecasting, Elsevier, vol. 34(1), pages 45-63.
    49. Yu‐Sheng Lai, 2019. "Flexible covariance dynamics, high‐frequency data, and optimal futures hedging," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 39(12), pages 1529-1548, December.
    50. Lu, Xinjie & Ma, Feng & Li, Haibo & Wang, Jianqiong, 2023. "INE oil futures volatility prediction: Exchange rates or international oil futures volatility?," Energy Economics, Elsevier, vol. 126(C).
    51. Marc Hallin & Carlos Trucíos, 2020. "Forecasting Value-at-Risk and Expected Shortfall in Large Portfolios: a General Dynamic Factor Approach," Working Papers ECARES 2020-50, ULB -- Universite Libre de Bruxelles.
    52. Manabu Asai & Chia-Lin Chang & Michael McAleer & Laurent Pauwels, 2018. "Asymptotic Theory for Rotated Multivariate GARCH Models," Documentos de Trabajo del ICAE 2018-27, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
    53. Yu, Miao & Song, Jinguo, 2018. "Volatility forecasting: Global economic policy uncertainty and regime switching," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 511(C), pages 316-323.
    54. Feng Ma & M. I. M. Wahab & Julien Chevallier & Ziyang Li, 2023. "A tug of war of forecasting the US stock market volatility: Oil futures overnight versus intraday information," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(1), pages 60-75, January.
    55. Zhu, Jiaji & Han, Wei & Zhang, Junchao, 2023. "Does climate risk matter for gold price volatility?," Finance Research Letters, Elsevier, vol. 58(PC).
    56. Jiqian Wang & Feng Ma & Chao Liang & Zhonglu Chen, 2022. "Volatility forecasting revisited using Markov‐switching with time‐varying probability transition," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(1), pages 1387-1400, January.
    57. Ma, Feng & Li, Yu & Liu, Li & Zhang, Yaojie, 2018. "Are low-frequency data really uninformative? A forecasting combination perspective," The North American Journal of Economics and Finance, Elsevier, vol. 44(C), pages 92-108.
    58. Monica Billio & Massimiliano Caporin & Lorenzo Frattarolo & Loriana Pelizzon, 2016. "Networks in risk spillovers: a multivariate GARCH perspective," Working Papers 2016:03, Department of Economics, University of Venice "Ca' Foscari".
    59. Feng Ma & Chao Liang & Yuanhui Ma & M.I.M. Wahab, 2020. "Cryptocurrency volatility forecasting: A Markov regime‐switching MIDAS approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(8), pages 1277-1290, December.
    60. Ye, Wuyi & Xia, Wenjing & Wu, Bin & Chen, Pengzhan, 2022. "Using implied volatility jumps for realized volatility forecasting: Evidence from the Chinese market," International Review of Financial Analysis, Elsevier, vol. 83(C).
    61. Moura, Guilherme V. & Santos, André A. P., 2019. "Comparing Forecasts of Extremely Large Conditional Covariance Matrices," DES - Working Papers. Statistics and Econometrics. WS 29291, Universidad Carlos III de Madrid. Departamento de Estadística.
    62. Tran, Thuy Nhung, 2022. "The Volatility of the Stock Market and Financial Cycle: GARCH Family Models," Jurnal Ekonomi Malaysia, Faculty of Economics and Business, Universiti Kebangsaan Malaysia, vol. 56(1), pages 151-168.
    63. Adam E Clements & Ayesha Scott & Annastiina Silvennoinen, 2012. "Forecasting multivariate volatility in larger dimensions: some practical issues," NCER Working Paper Series 80, National Centre for Econometric Research.
    64. Fiszeder, Piotr & Fałdziński, Marcin, 2019. "Improving forecasts with the co-range dynamic conditional correlation model," Journal of Economic Dynamics and Control, Elsevier, vol. 108(C).
    65. Massimiliano Caporin & Michael McAleer, 2011. "Ranking Multivariate GARCH Models by Problem Dimension: An Empirical Evaluation," Working Papers in Economics 11/23, University of Canterbury, Department of Economics and Finance.
    66. Conrad, Christian & Loch, Karin & Rittler, Daniel, 2014. "On the macroeconomic determinants of long-term volatilities and correlations in U.S. stock and crude oil markets," Journal of Empirical Finance, Elsevier, vol. 29(C), pages 26-40.
    67. Manabu Asai & Michael McAleer, 2018. "Bayesian Analysis of Realized Matrix-Exponential GARCH Models," Tinbergen Institute Discussion Papers 18-005/III, Tinbergen Institute.
    68. Xie, Nan & Wang, Zongrun & Chen, Sicen & Gong, Xu, 2019. "Forecasting downside risk in China’s stock market based on high-frequency data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 517(C), pages 530-541.
    69. Li, Tao & Ma, Feng & Zhang, Xuehua & Zhang, Yaojie, 2020. "Economic policy uncertainty and the Chinese stock market volatility: Novel evidence," Economic Modelling, Elsevier, vol. 87(C), pages 24-33.
    70. Hecq, A.W. & Palm, F.C. & Laurent, S.F.J.A., 2011. "Common intraday periodicity," Research Memorandum 010, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
    71. Carlos Trucíos & Mauricio Zevallos & Luiz K. Hotta & André A. P. Santos, 2019. "Covariance Prediction in Large Portfolio Allocation," Econometrics, MDPI, vol. 7(2), pages 1-24, May.
    72. Hallin, Marc & Trucíos, Carlos, 2023. "Forecasting value-at-risk and expected shortfall in large portfolios: A general dynamic factor model approach," Econometrics and Statistics, Elsevier, vol. 27(C), pages 1-15.
    73. Xiaoning Kang & Xinwei Deng & Kam‐Wah Tsui & Mohsen Pourahmadi, 2020. "On variable ordination of modified Cholesky decomposition for estimating time‐varying covariance matrices," International Statistical Review, International Statistical Institute, vol. 88(3), pages 616-641, December.
    74. Manabu Asai & Chia-Lin Chang & Michael McAleer & Laurent Pauwels, 2021. "Asymptotic and Finite Sample Properties for Multivariate Rotated GARCH Models," Econometrics, MDPI, vol. 9(2), pages 1-21, May.
    75. Qianjie Geng & Xianfeng Hao & Yudong Wang, 2024. "Forecasting the volatility of crude oil futures: A time‐dependent weighted least squares with regularization constraint," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(2), pages 309-325, March.
    76. Weigand, Roland, 2014. "Matrix Box-Cox Models for Multivariate Realized Volatility," University of Regensburg Working Papers in Business, Economics and Management Information Systems 478, University of Regensburg, Department of Economics.
    77. Adam Clements & Ayesha Scott & Annastiina Silvennoinen, 2013. "On the Benefits of Equicorrelation for Portfolio Allocation," NCER Working Paper Series 99, National Centre for Econometric Research.
    78. Audrino, Francesco, 2014. "Forecasting correlations during the late-2000s financial crisis: The short-run component, the long-run component, and structural breaks," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 43-60.
    79. Wang Pu & Yixiang Chen & Feng Ma, 2016. "Forecasting the realized volatility in the Chinese stock market: further evidence," Applied Economics, Taylor & Francis Journals, vol. 48(33), pages 3116-3130, July.
    80. Yudong Wang & Chongfeng Wu & Li Yang, 2015. "Hedging with Futures: Does Anything Beat the Naïve Hedging Strategy?," Management Science, INFORMS, vol. 61(12), pages 2870-2889, December.
    81. Karl Oton Rudolf & Samer Ajour El Zein & Nicola Jackman Lansdowne, 2021. "Bitcoin as an Investment and Hedge Alternative. A DCC MGARCH Model Analysis," Risks, MDPI, vol. 9(9), pages 1-22, August.
    82. Mohammad Alomari & David. M. Power & Nongnuch Tantisantiwong, 2018. "Determinants of equity return correlations: a case study of the Amman Stock Exchange," Review of Quantitative Finance and Accounting, Springer, vol. 50(1), pages 33-66, January.
    83. Fresoli, Diego Eduardo, 2014. "The uncertainty of conditional returns, volatilities and correlations in DCC models," DES - Working Papers. Statistics and Econometrics. WS ws140202, Universidad Carlos III de Madrid. Departamento de Estadística.
    84. Dhaene, Geert & Wu, Jianbin, 2020. "Incorporating overnight and intraday returns into multivariate GARCH volatility models," Journal of Econometrics, Elsevier, vol. 217(2), pages 471-495.
    85. Ma, Feng & Wahab, M.I.M. & Zhang, Yaojie, 2019. "Forecasting the U.S. stock volatility: An aligned jump index from G7 stock markets," Pacific-Basin Finance Journal, Elsevier, vol. 54(C), pages 132-146.
    86. Zhang, Lixia & Bai, Jiancheng & Zhang, Yueyan & Cui, Can, 2023. "Global economic uncertainty and the Chinese stock market: Assessing the impacts of global indicators," Research in International Business and Finance, Elsevier, vol. 65(C).
    87. Aielli, Gian Piero & Caporin, Massimiliano, 2014. "Variance clustering improved dynamic conditional correlation MGARCH estimators," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 556-576.
    88. Christian Francq & Jean-Michel Zakoïan, 2016. "Estimating multivariate volatility models equation by equation," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(3), pages 613-635, June.
    89. Dimitrios P. Louzis, 2015. "The economic value of flexible dynamic correlation models," Economics Bulletin, AccessEcon, vol. 35(1), pages 774-782.
    90. Dark, Jonathan, 2018. "Multivariate models with long memory dependence in conditional correlation and volatility," Journal of Empirical Finance, Elsevier, vol. 48(C), pages 162-180.
    91. Inoue, Atsushi & Jin, Lu & Rossi, Barbara, 2017. "Rolling window selection for out-of-sample forecasting with time-varying parameters," Journal of Econometrics, Elsevier, vol. 196(1), pages 55-67.
    92. Jacobs, Michael & Karagozoglu, Ahmet K., 2014. "On the characteristics of dynamic correlations between asset pairs," Research in International Business and Finance, Elsevier, vol. 32(C), pages 60-82.
    93. Feng Ma & Yu Wei & Wang Chen & Feng He, 2018. "Forecasting the volatility of crude oil futures using high-frequency data: further evidence," Empirical Economics, Springer, vol. 55(2), pages 653-678, September.
    94. Peng, Huan & Chen, Ruoxun & Mei, Dexiang & Diao, Xiaohua, 2018. "Forecasting the realized volatility of the Chinese stock market: Do the G7 stock markets help?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 501(C), pages 78-85.
    95. Adam E Clements & Mark Doolan & Stan Hurn & Ralf Becker, 2012. "Selecting forecasting models for portfolio allocation," NCER Working Paper Series 85, National Centre for Econometric Research.
    96. Adam Clements & Ayesha Scott & Annastiina Silvennoinen, 2019. "Volatility-dependent correlations: further evidence of when, where and how," Empirical Economics, Springer, vol. 57(2), pages 505-540, August.
    97. Timo Dimitriadis & Yannick Hoga, 2022. "Dynamic CoVaR Modeling," Papers 2206.14275, arXiv.org, revised Feb 2024.
    98. Sylvain Barde, 2015. "A fast algorithm for finding the confidence set of large collections of models," Studies in Economics 1519, School of Economics, University of Kent.
    99. Adam Clements & Ayesha Scott & Annastiina Silvennoinen, 2016. "Volatility Dependent Dynamic Equicorrelation," NCER Working Paper Series 111, National Centre for Econometric Research.
    100. Fei Su, 2018. "Essays on Price Discovery and Volatility Dynamics in the Foreign Exchange Market," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 2-2018, January-A.
    101. Al Mamun, Md & Uddin, Gazi Salah & Suleman, Muhammad Tahir & Kang, Sang Hoon, 2020. "Geopolitical risk, uncertainty and Bitcoin investment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    102. Yuqing Feng & Yaojie Zhang & Yudong Wang, 2024. "Out‐of‐sample volatility prediction: Rolling window, expanding window, or both?," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(3), pages 567-582, April.
    103. Marchese, Malvina & Kyriakou, Ioannis & Tamvakis, Michael & Di Iorio, Francesca, 2020. "Forecasting crude oil and refined products volatilities and correlations: New evidence from fractionally integrated multivariate GARCH models," Energy Economics, Elsevier, vol. 88(C).
    104. Szymon Lis & Marcin Chlebus, 2021. "Comparison of the accuracy in VaR forecasting for commodities using different methods of combining forecasts," Working Papers 2021-11, Faculty of Economic Sciences, University of Warsaw.
    105. Chao Liang & Yu Wei & Likun Lei & Feng Ma, 2022. "Global equity market volatility forecasting: New evidence," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(1), pages 594-609, January.
    106. Radovan Parrák, 2013. "The Economic Valuation of Variance Forecasts: An Artificial Option Market Approach," Working Papers IES 2013/09, Charles University Prague, Faculty of Social Sciences, Institute of Economic Studies, revised Aug 2013.
    107. Wang, Yizhi & Lucey, Brian M. & Vigne, Samuel A. & Yarovaya, Larisa, 2022. "The Effects of Central Bank Digital Currencies News on Financial Markets," Technological Forecasting and Social Change, Elsevier, vol. 180(C).
    108. Stavroula P. Fameliti & Vasiliki D. Skintzi, 2020. "Predictive ability and economic gains from volatility forecast combinations," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(2), pages 200-219, March.
    109. Lakshina, Valeriya, 2014. "Is it possible to break the «curse of dimensionality»? Spatial specifications of multivariate volatility models," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 36(4), pages 61-78.
    110. Ma, Feng & Wahab, M.I.M. & Huang, Dengshi & Xu, Weiju, 2017. "Forecasting the realized volatility of the oil futures market: A regime switching approach," Energy Economics, Elsevier, vol. 67(C), pages 136-145.
    111. Symitsi, Efthymia & Symeonidis, Lazaros & Kourtis, Apostolos & Markellos, Raphael, 2018. "Covariance forecasting in equity markets," Journal of Banking & Finance, Elsevier, vol. 96(C), pages 153-168.
    112. Kim, Myeong Hyeon & Sun, Lingxia, 2017. "Dynamic conditional correlations between Chinese sector returns and the S&P 500 index: An interpretation based on investment shocks," International Review of Economics & Finance, Elsevier, vol. 48(C), pages 309-325.
    113. Roberto Savona & Cesare Orsini, 2019. "Taking the right course navigating the ERC universe," Journal of Asset Management, Palgrave Macmillan, vol. 20(3), pages 157-174, May.
    114. Ma, Feng & Zhang, Yaojie & Huang, Dengshi & Lai, Xiaodong, 2018. "Forecasting oil futures price volatility: New evidence from realized range-based volatility," Energy Economics, Elsevier, vol. 75(C), pages 400-409.
    115. Chen, Yixiang & Ma, Feng & Zhang, Yaojie, 2019. "Good, bad cojumps and volatility forecasting: New evidence from crude oil and the U.S. stock markets," Energy Economics, Elsevier, vol. 81(C), pages 52-62.

  10. LAURENT, Sebastien & ROMBOUTS, Jeroen V.K. & VIOLANTE, FRANCESCO, 2009. "Consistent ranking of multivariate volatility models," LIDAM Discussion Papers CORE 2009002, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).

    Cited by:

    1. Rasmus Tangsgaard Varneskov, 2011. "Flat-Top Realized Kernel Estimation of Quadratic Covariation with Non-Synchronous and Noisy Asset Prices," CREATES Research Papers 2011-35, Department of Economics and Business Economics, Aarhus University.
    2. Denisa Banulescu-Radu & Christophe Hurlin & Bertrand Candelon & Sébastien Laurent, 2016. "Do We Need High Frequency Data to Forecast Variances?," Post-Print hal-01448237, HAL.
    3. Varneskov, Rasmus & Voev, Valeri, 2013. "The role of realized ex-post covariance measures and dynamic model choice on the quality of covariance forecasts," Journal of Empirical Finance, Elsevier, vol. 20(C), pages 83-95.
    4. Kevin Sheppard & Wen Xu, 2014. "Factor High-Frequency Based Volatility (HEAVY) Models," Economics Series Working Papers 710, University of Oxford, Department of Economics.
    5. Manner, Hans & Reznikova, Olga, 2010. "Forecasting international stock market correlations: does anything beat a CCC?," Discussion Papers in Econometrics and Statistics 7/10, University of Cologne, Institute of Econometrics and Statistics.
    6. Georgiana-Denisa Banulescu & Bertrand Candelon & Christophe Hurlin & Sébastien Laurent, 2014. "Do We Need Ultra-High Frequency Data to Forecast Variances?," Working Papers halshs-01078158, HAL.
    7. Nicholas Taylor, 2014. "The Economic Value of Volatility Forecasts: A Conditional Approach," Journal of Financial Econometrics, Oxford University Press, vol. 12(3), pages 433-478.
    8. Audrino, Francesco, 2014. "Forecasting correlations during the late-2000s financial crisis: The short-run component, the long-run component, and structural breaks," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 43-60.
    9. Valeri Voev, 2009. "On the Economic Evaluation of Volatility Forecasts," CREATES Research Papers 2009-56, Department of Economics and Business Economics, Aarhus University.

  11. Sébastien Laurent & Jeroen V.K. Rombouts & Francesco Violante, 2009. "On Loss Functions and Ranking Forecasting Performances of Multivariate Volatility Models," Cahiers de recherche 0948, CIRPEE.

    Cited by:

    1. Gong, Xu & Lin, Boqiang, 2018. "The incremental information content of investor fear gauge for volatility forecasting in the crude oil futures market," Energy Economics, Elsevier, vol. 74(C), pages 370-386.
    2. Emilio Zanetti Chini, 2018. "Forecaster’s utility and forecasts coherence," CREATES Research Papers 2018-01, Department of Economics and Business Economics, Aarhus University.
    3. Pawel Janus & Siem Jan Koopman & André Lucas, 2011. "Long Memory Dynamics for Multivariate Dependence under Heavy Tails," Tinbergen Institute Discussion Papers 11-175/2/DSF28, Tinbergen Institute.
    4. Bauwens, Luc & Xu, Yongdeng, 2023. "DCC- and DECO-HEAVY: Multivariate GARCH models based on realized variances and correlations," International Journal of Forecasting, Elsevier, vol. 39(2), pages 938-955.
    5. Jérémy Leymarie & Christophe Hurlin & Antoine Patin, 2018. "Loss Functions for LGD Models Comparison," Post-Print hal-01923050, HAL.
    6. Bauwens, Luc & Braione, Manuela & Storti, Giuseppe, 2017. "A dynamic component model for forecasting high-dimensional realized covariance matrices," Econometrics and Statistics, Elsevier, vol. 1(C), pages 40-61.
    7. Asai, Manabu & Gupta, Rangan & McAleer, Michael, 2020. "Forecasting volatility and co-volatility of crude oil and gold futures: Effects of leverage, jumps, spillovers, and geopolitical risks," International Journal of Forecasting, Elsevier, vol. 36(3), pages 933-948.
    8. Tobias Fissler & Yannick Hoga, 2024. "How to Compare Copula Forecasts?," Papers 2410.04165, arXiv.org.
    9. Kawakatsu Hiroyuki, 2021. "Simple Multivariate Conditional Covariance Dynamics Using Hyperbolically Weighted Moving Averages," Journal of Econometric Methods, De Gruyter, vol. 10(1), pages 33-52, January.
    10. Andrea Bucci & Michele Palma & Chao Zhang, 2024. "Geometric Deep Learning for Realized Covariance Matrix Forecasting," Papers 2412.09517, arXiv.org.
    11. Tim Bollerslev & Andrew J. Patton & Rogier Quaedvlieg, 2016. "Modeling and Forecasting (Un)Reliable Realized Covariances for More Reliable Financial Decisions," CREATES Research Papers 2016-10, Department of Economics and Business Economics, Aarhus University.
    12. João F. Caldeira & Guilherme V. Moura & Francisco J. Nogales & André A. P. Santos, 2017. "Combining Multivariate Volatility Forecasts: An Economic-Based Approach," Journal of Financial Econometrics, Oxford University Press, vol. 15(2), pages 247-285.
    13. E. Ngounda & K. C. Patidar & E. Pindza, 2014. "A Robust Spectral Method for Solving Heston’s Model," Journal of Optimization Theory and Applications, Springer, vol. 161(1), pages 164-178, April.
    14. Boudt, Kris & Daníelsson, Jón & Laurent, Sébastien, 2013. "Robust forecasting of dynamic conditional correlation GARCH models," International Journal of Forecasting, Elsevier, vol. 29(2), pages 244-257.
    15. ROMBOUTS, Jeroen V. K. & STENTOFT, Lars & VIOLANTE, Francesco, 2012. "The value of multivariate model sophistication: an application to pricing Dow Jones Industrial Average options," LIDAM Discussion Papers CORE 2012003, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    16. Bonato, Mateo & Caporin, Massimiliano & Ranaldo, Angelo, 2012. "Risk Spillovers in International Equity Portfolios," Working Papers on Finance 1214, University of St. Gallen, School of Finance.
    17. Ralf Becker & Adam Clements & Robert O'Neill, 2010. "A Kernel Technique for Forecasting the Variance-Covariance Matrix," Centre for Growth and Business Cycle Research Discussion Paper Series 151, Economics, The University of Manchester.
    18. Massimiliano Caporin & Michael McAleer, 2010. "Ranking Multivariate GARCH Models by Problem Dimension," CARF F-Series CARF-F-219, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    19. Becker, R. & Clements, A.E. & Doolan, M.B. & Hurn, A.S., 2015. "Selecting volatility forecasting models for portfolio allocation purposes," International Journal of Forecasting, Elsevier, vol. 31(3), pages 849-861.
    20. Chini, Emilio Zanetti, 2023. "Can we estimate macroforecasters’ mis-behavior?," Journal of Economic Dynamics and Control, Elsevier, vol. 149(C).
    21. Tobias Hartl & Roland Weigand, 2018. "Multivariate Fractional Components Analysis," Papers 1812.09149, arXiv.org, revised Jan 2019.
    22. Anne Opschoor & André Lucas & István Barra & Dick van Dijk, 2021. "Closed-Form Multi-Factor Copula Models With Observation-Driven Dynamic Factor Loadings," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(4), pages 1066-1079, October.
    23. LAURENT, Sébastien & ROMBOUTS, Jeroen V. K. & VIOLANTE, Francesco, 2010. "On the forecasting accuracy of multivariate GARCH models," LIDAM Discussion Papers CORE 2010025, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    24. Ralf Becker & Adam Clements & Robert O'Neill, 2018. "A Multivariate Kernel Approach to Forecasting the Variance Covariance of Stock Market Returns," Econometrics, MDPI, vol. 6(1), pages 1-27, February.
    25. Carlo Drago & Andrea Scozzari, 2022. "Evaluating conditional covariance estimates via a new targeting approach and a networks-based analysis," Papers 2202.02197, arXiv.org.
    26. Massimiliano Caporin & Michael McAleer, 2010. "Model Selection and Testing of Conditional and Stochastic Volatility Models," KIER Working Papers 724, Kyoto University, Institute of Economic Research.
    27. Denisa BANULESCU-RADU & Elena Ivona DUMITRESCU, 2019. "Do High-frequency-based Measures Improve Conditional Covariance Forecasts?," LEO Working Papers / DR LEO 2709, Orleans Economics Laboratory / Laboratoire d'Economie d'Orleans (LEO), University of Orleans.
    28. Diaa Noureldin & Neil Shephard & Kevin Sheppard, 2011. "Multivariate High-Frequency-Based Volatility (HEAVY) Models," Economics Papers 2011-W01, Economics Group, Nuffield College, University of Oxford.
    29. Vincenzo Candila, 2013. "A Comparison of the Forecasting Performances of Multivariate Volatility Models," Working Papers 3_228, Dipartimento di Scienze Economiche e Statistiche, Università degli Studi di Salerno.
    30. Golosnoy, Vasyl & Gribisch, Bastian & Liesenfeld, Roman, 2010. "The conditional autoregressive wishart model for multivariate stock market volatility," Economics Working Papers 2010-07, Christian-Albrechts-University of Kiel, Department of Economics.
    31. Caporin, M. & McAleer, M.J., 2012. "Robust Ranking of Multivariate GARCH Models by Problem Dimension," Econometric Institute Research Papers EI2012-13, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    32. Bucci, Andrea & Palomba, Giulio & Rossi, Eduardo, 2023. "The role of uncertainty in forecasting volatility comovements across stock markets," Economic Modelling, Elsevier, vol. 125(C).
    33. L. Bauwens & E. Otranto, 2020. "Modelling Realized Covariance Matrices: a Class of Hadamard Exponential Models," Working Paper CRENoS 202007, Centre for North South Economic Research, University of Cagliari and Sassari, Sardinia.
    34. Carroll, Rachael & Conlon, Thomas & Cotter, John & Salvador, Enrique, 2017. "Asset allocation with correlation: A composite trade-off," European Journal of Operational Research, Elsevier, vol. 262(3), pages 1164-1180.
    35. Amendola, Alessandra & Braione, Manuela & Candila, Vincenzo & Storti, Giuseppe, 2020. "A Model Confidence Set approach to the combination of multivariate volatility forecasts," International Journal of Forecasting, Elsevier, vol. 36(3), pages 873-891.
    36. Jingwei Pan, 0000. "Evaluating Correlation Forecasts Under Asymmetric Loss," Proceedings of Economics and Finance Conferences 11413234, International Institute of Social and Economic Sciences.
    37. Hamid, Alain & Heiden, Moritz, 2015. "Forecasting volatility with empirical similarity and Google Trends," Journal of Economic Behavior & Organization, Elsevier, vol. 117(C), pages 62-81.
    38. Laurent, Sébastien & Lecourt, Christelle & Palm, Franz C., 2016. "Testing for jumps in conditionally Gaussian ARMA–GARCH models, a robust approach," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 383-400.
    39. Sui, Bo & Chang, Chun-Ping & Jang, Chyi-Lu & Gong, Qiang, 2021. "Analyzing causality between epidemics and oil prices: Role of the stock market," Economic Analysis and Policy, Elsevier, vol. 70(C), pages 148-158.
    40. de Almeida, Daniel & Hotta, Luiz K. & Ruiz, Esther, 2018. "MGARCH models: Trade-off between feasibility and flexibility," International Journal of Forecasting, Elsevier, vol. 34(1), pages 45-63.
    41. Xu Gong & Boqiang Lin, 2018. "Structural breaks and volatility forecasting in the copper futures market," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 38(3), pages 290-339, March.
    42. Gneiting, Tilmann, 2011. "Making and Evaluating Point Forecasts," Journal of the American Statistical Association, American Statistical Association, vol. 106(494), pages 746-762.
    43. Luc Bauwens & Manuela Braione & Giuseppe Storti, 2016. "Forecasting comparison of long term component dynamic models for realized covariance matrices," LIDAM Reprints CORE 2923, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    44. Wilms, Ines & Rombouts, Jeroen & Croux, Christophe, 2021. "Multivariate volatility forecasts for stock market indices," International Journal of Forecasting, Elsevier, vol. 37(2), pages 484-499.
    45. Gian Piero Aielli & Massimiliano Caporin, 2015. "Dynamic Principal Components: a New Class of Multivariate GARCH Models," "Marco Fanno" Working Papers 0193, Dipartimento di Scienze Economiche "Marco Fanno".
    46. Moura, Guilherme V. & Santos, André A. P., 2019. "Comparing Forecasts of Extremely Large Conditional Covariance Matrices," DES - Working Papers. Statistics and Econometrics. WS 29291, Universidad Carlos III de Madrid. Departamento de Estadística.
    47. Ralf Becker & Adam Clements & Robert O'Neill, 2010. "A Cholesky-MIDAS model for predicting stock portfolio volatility," Centre for Growth and Business Cycle Research Discussion Paper Series 149, Economics, The University of Manchester.
    48. Kevin Sheppard & Wen Xu, 2019. "Factor High-Frequency-Based Volatility (HEAVY) Models," Journal of Financial Econometrics, Oxford University Press, vol. 17(1), pages 33-65.
    49. Fiszeder, Piotr & Fałdziński, Marcin, 2019. "Improving forecasts with the co-range dynamic conditional correlation model," Journal of Economic Dynamics and Control, Elsevier, vol. 108(C).
    50. Massimiliano Caporin & Michael McAleer, 2011. "Ranking Multivariate GARCH Models by Problem Dimension: An Empirical Evaluation," Working Papers in Economics 11/23, University of Canterbury, Department of Economics and Finance.
    51. Conrad, Christian & Loch, Karin & Rittler, Daniel, 2014. "On the macroeconomic determinants of long-term volatilities and correlations in U.S. stock and crude oil markets," Journal of Empirical Finance, Elsevier, vol. 29(C), pages 26-40.
    52. Vincenzo Candila, 2021. "Multivariate Analysis of Cryptocurrencies," Econometrics, MDPI, vol. 9(3), pages 1-17, July.
    53. Gong, Xu & Lin, Boqiang, 2018. "Structural changes and out-of-sample prediction of realized range-based variance in the stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 494(C), pages 27-39.
    54. Xie, Nan & Wang, Zongrun & Chen, Sicen & Gong, Xu, 2019. "Forecasting downside risk in China’s stock market based on high-frequency data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 517(C), pages 530-541.
    55. Christian Conrad & Onno Kleen, 2020. "Two are better than one: Volatility forecasting using multiplicative component GARCH‐MIDAS models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(1), pages 19-45, January.
    56. Asai, Manabu & Chang, Chia-Lin & McAleer, Michael, 2022. "Realized matrix-exponential stochastic volatility with asymmetry, long memory and higher-moment spillovers," Journal of Econometrics, Elsevier, vol. 227(1), pages 285-304.
    57. Fiszeder, Piotr & Fałdziński, Marcin & Molnár, Peter, 2023. "Modeling and forecasting dynamic conditional correlations with opening, high, low, and closing prices," Journal of Empirical Finance, Elsevier, vol. 70(C), pages 308-321.
    58. Xiaoning Kang & Xinwei Deng & Kam‐Wah Tsui & Mohsen Pourahmadi, 2020. "On variable ordination of modified Cholesky decomposition for estimating time‐varying covariance matrices," International Statistical Review, International Statistical Institute, vol. 88(3), pages 616-641, December.
    59. Geert Dhaene & Piet Sercu & Jianbin Wu, 2022. "Volatility spillovers: A sparse multivariate GARCH approach with an application to commodity markets," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(5), pages 868-887, May.
    60. LAURENT, Sébastien & VIOLANTE, Francesco, 2012. "Volatility forecasts evaluation and comparison," LIDAM Reprints CORE 2414, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    61. Bauwens, Luc & Dzuverovic, Emilija & Hafner, Christian, 2024. "Asymmetric Models for Realized Covariances," LIDAM Discussion Papers ISBA 2024022, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    62. Xu Gong & Boqiang Lin, 2021. "Effects of structural changes on the prediction of downside volatility in futures markets," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 41(7), pages 1124-1153, July.
    63. Bollerslev, Tim & Patton, Andrew J. & Quaedvlieg, Rogier, 2020. "Multivariate leverage effects and realized semicovariance GARCH models," Journal of Econometrics, Elsevier, vol. 217(2), pages 411-430.
    64. Weigand, Roland, 2014. "Matrix Box-Cox Models for Multivariate Realized Volatility," University of Regensburg Working Papers in Business, Economics and Management Information Systems 478, University of Regensburg, Department of Economics.
    65. Audrino, Francesco, 2014. "Forecasting correlations during the late-2000s financial crisis: The short-run component, the long-run component, and structural breaks," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 43-60.
    66. Jian, Zhihong & Deng, Pingjun & Zhu, Zhican, 2018. "High-dimensional covariance forecasting based on principal component analysis of high-frequency data," Economic Modelling, Elsevier, vol. 75(C), pages 422-431.
    67. Emilija Dzuverovic & Matteo Barigozzi, 2023. "Hierarchical DCC-HEAVY Model for High-Dimensional Covariance Matrices," Papers 2305.08488, arXiv.org, revised Jul 2024.
    68. D. Schneller & S. Heiden & M. Heiden & A. Hamid, 2018. "Home is Where You Know Your Volatility – Local Investor Sentiment and Stock Market Volatility," German Economic Review, Verein für Socialpolitik, vol. 19(2), pages 209-236, May.
    69. Qu, Hui & Zhang, Yi, 2022. "Asymmetric multivariate HAR models for realized covariance matrix: A study based on volatility timing strategies," Economic Modelling, Elsevier, vol. 106(C).
    70. Fiszeder, Piotr & Fałdziński, Marcin & Molnár, Peter, 2023. "Attention to oil prices and its impact on the oil, gold and stock markets and their covariance," Energy Economics, Elsevier, vol. 120(C).
    71. Andrea BUCCI, 2017. "Forecasting Realized Volatility A Review," Journal of Advanced Studies in Finance, ASERS Publishing, vol. 8(2), pages 94-138.
    72. Wenjing Wang & Minjing Tao, 2020. "Forecasting Realized Volatility Matrix With Copula-Based Models," Papers 2002.08849, arXiv.org.
    73. Mohammad Ahsan Uddin & ASM Maksud Kamal & Shamsuddin Shahid & Eun-Sung Chung, 2020. "Volatility in Rainfall and Predictability of Droughts in Northwest Bangladesh," Sustainability, MDPI, vol. 12(23), pages 1-20, November.
    74. Jan Patrick Hartkopf, 2023. "Composite forecasting of vast-dimensional realized covariance matrices using factor state-space models," Empirical Economics, Springer, vol. 64(1), pages 393-436, January.
    75. Dhaene, Geert & Wu, Jianbin, 2020. "Incorporating overnight and intraday returns into multivariate GARCH volatility models," Journal of Econometrics, Elsevier, vol. 217(2), pages 471-495.
    76. Aielli, Gian Piero & Caporin, Massimiliano, 2014. "Variance clustering improved dynamic conditional correlation MGARCH estimators," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 556-576.
    77. Xu, Yongdeng, 2024. "Extended multivariate EGARCH model: A model for zero†return and negative spillovers," Cardiff Economics Working Papers E2024/24, Cardiff University, Cardiff Business School, Economics Section.
    78. BAUWENS Luc, & XU Yongdeng,, 2019. "DCC-HEAVY: A multivariate GARCH model based on realized variances and correlations," LIDAM Discussion Papers CORE 2019025, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    79. Jacobs, Michael & Karagozoglu, Ahmet K., 2014. "On the characteristics of dynamic correlations between asset pairs," Research in International Business and Finance, Elsevier, vol. 32(C), pages 60-82.
    80. Yu‐Sheng Lai, 2022. "Use of high‐frequency data to evaluate the performance of dynamic hedging strategies," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(1), pages 104-124, January.
    81. Adam E Clements & Mark Doolan & Stan Hurn & Ralf Becker, 2012. "Selecting forecasting models for portfolio allocation," NCER Working Paper Series 85, National Centre for Econometric Research.
    82. Denisa BANULESCU-RADU & Laurent FERRARA & Clément MARSILLI, 2019. "Prévoir la volatilité d’un actif financier à l’aide d’un modèle à mélange de fréquences," LEO Working Papers / DR LEO 2710, Orleans Economics Laboratory / Laboratoire d'Economie d'Orleans (LEO), University of Orleans.
    83. Wang, Weichen & An, Ran & Zhu, Ziwei, 2024. "Volatility prediction comparison via robust volatility proxies: An empirical deviation perspective," Journal of Econometrics, Elsevier, vol. 239(2).
    84. Marchese, Malvina & Kyriakou, Ioannis & Tamvakis, Michael & Di Iorio, Francesca, 2020. "Forecasting crude oil and refined products volatilities and correlations: New evidence from fractionally integrated multivariate GARCH models," Energy Economics, Elsevier, vol. 88(C).
    85. Liu, Min & Lee, Chien-Chiang, 2021. "Capturing the dynamics of the China crude oil futures: Markov switching, co-movement, and volatility forecasting," Energy Economics, Elsevier, vol. 103(C).
    86. Radovan Parrák, 2013. "The Economic Valuation of Variance Forecasts: An Artificial Option Market Approach," Working Papers IES 2013/09, Charles University Prague, Faculty of Social Sciences, Institute of Economic Studies, revised Aug 2013.
    87. Alessandra Amendola & Vincenzo Candila & Antonio Naimoli & Giuseppe Storti, 2024. "Adaptive combinations of tail-risk forecasts," Papers 2406.06235, arXiv.org.
    88. Yan, Han & Liu, Bin & Zhu, Xingting & Wu, Yan, 2024. "Systemic risk monitoring model from the perspective of public information arrival," The North American Journal of Economics and Finance, Elsevier, vol. 72(C).
    89. Gribisch, Bastian & Hartkopf, Jan Patrick & Liesenfeld, Roman, 2020. "Factor state–space models for high-dimensional realized covariance matrices of asset returns," Journal of Empirical Finance, Elsevier, vol. 55(C), pages 1-20.
    90. Symitsi, Efthymia & Symeonidis, Lazaros & Kourtis, Apostolos & Markellos, Raphael, 2018. "Covariance forecasting in equity markets," Journal of Banking & Finance, Elsevier, vol. 96(C), pages 153-168.
    91. Yu‐Sheng Lai, 2023. "Optimal futures hedging by using realized semicovariances: The information contained in signed high‐frequency returns," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 43(5), pages 677-701, May.

  12. SANIN, Maria Eugenia & VIOLANTE, Francesco, 2009. "Understanding volatility dynamics in the EU-ETS market: lessons from the future," LIDAM Discussion Papers CORE 2009024, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).

    Cited by:

    1. Sklavos, Konstantinos & Dam, Lammertjan & Scholtens, Bert, 2013. "The liquidity of energy stocks," Energy Economics, Elsevier, vol. 38(C), pages 168-175.
    2. Marc Gronwald & Janina Ketterer, 2009. "Zur Bewertung von Emissionshandel als Politikinstrument," ifo Schnelldienst, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 62(11), pages 22-25, June.
    3. Boersen, Arieke & Scholtens, Bert, 2014. "The relationship between European electricity markets and emission allowance futures prices in phase II of the EU (European Union) emission trading scheme," Energy, Elsevier, vol. 74(C), pages 585-594.
    4. Marc Gronwald & Janina Ketterer & Stefan Trück, 2011. "The Dependence Structure between Carbon Emission Allowances and Financial Markets - A Copula Analysis," CESifo Working Paper Series 3418, CESifo.
    5. Alexander Zeitlberger & Alexander Brauneis, 2016. "Modeling carbon spot and futures price returns with GARCH and Markov switching GARCH models," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 24(1), pages 149-176, March.
    6. Marc Gronwald & Janina Ketterer, 2009. "Evaluating Emission Trading as a Policy Tool - Evidence from Conditional Jump Models," CESifo Working Paper Series 2682, CESifo.

Articles

  1. Rombouts, Jeroen V.K. & Stentoft, Lars & Violante, Francesco, 2020. "Pricing individual stock options using both stock and market index information," Journal of Banking & Finance, Elsevier, vol. 111(C).

    Cited by:

    1. Escobar-Anel, Marcos & Rastegari, Javad & Stentoft, Lars, 2020. "Affine multivariate GARCH models," Journal of Banking & Finance, Elsevier, vol. 118(C).
    2. Escobar-Anel, Marcos & Rastegari, Javad & Stentoft, Lars, 2023. "Covariance dependent kernels, a Q-affine GARCH for multi-asset option pricing," International Review of Financial Analysis, Elsevier, vol. 87(C).

  2. Rombouts, Jeroen V.K. & Stentoft, Lars & Violante, Francesco, 2020. "Dynamics of variance risk premia: A new model for disentangling the price of risk," Journal of Econometrics, Elsevier, vol. 217(2), pages 312-334.

    Cited by:

    1. Matthew Greenwood-Nimmo & Daan Steenkamp & Rossouw van Jaarsveld, 2022. "CaninformationonthedistributionofZARreturnsbeusedtoimproveSARBsZARforecasts," Working Papers 11035, South African Reserve Bank.
    2. Gordon Schulze, 2021. "Carry Trade Returns and Segmented Risk Pricing," Atlantic Economic Journal, Springer;International Atlantic Economic Society, vol. 49(1), pages 23-40, March.

  3. Rombouts, Jeroen V.K. & Stentoft, Lars & Violante, Francesco, 2020. "Variance swap payoffs, risk premia and extreme market conditions," Econometrics and Statistics, Elsevier, vol. 13(C), pages 106-124.
    See citations under working paper version above.
  4. Barletta, Andrea & Santucci de Magistris, Paolo & Violante, Francesco, 2019. "A non-structural investigation of VIX risk neutral density," Journal of Banking & Finance, Elsevier, vol. 99(C), pages 1-20.
    See citations under working paper version above.
  5. Hafner, Christian M. & Laurent, Sebastien & Violante, Francesco, 2017. "Weak Diffusion Limits Of Dynamic Conditional Correlation Models," Econometric Theory, Cambridge University Press, vol. 33(3), pages 691-716, June.
    See citations under working paper version above.
  6. Eugenia Sanin, María & Violante, Francesco & Mansanet-Bataller, María, 2015. "Understanding volatility dynamics in the EU-ETS market," Energy Policy, Elsevier, vol. 82(C), pages 321-331.
    See citations under working paper version above.
  7. Rombouts, Jeroen & Stentoft, Lars & Violante, Franceso, 2014. "The value of multivariate model sophistication: An application to pricing Dow Jones Industrial Average options," International Journal of Forecasting, Elsevier, vol. 30(1), pages 78-98.
    See citations under working paper version above.
  8. Laurent, Sébastien & Rombouts, Jeroen V.K. & Violante, Francesco, 2013. "On loss functions and ranking forecasting performances of multivariate volatility models," Journal of Econometrics, Elsevier, vol. 173(1), pages 1-10.
    See citations under working paper version above.
  9. Sébastien Laurent & Jeroen V. K. Rombouts & Francesco Violante, 2012. "On the forecasting accuracy of multivariate GARCH models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 27(6), pages 934-955, September.
    See citations under working paper version above.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.