Francesco Violante
Citations
Many of the citations below have been collected in an experimental project, CitEc, where a more detailed citation analysis can be found. These are citations from works listed in RePEc that could be analyzed mechanically. So far, only a minority of all works could be analyzed. See under "Corrections" how you can help improve the citation analysis.Working papers
- A. Fronzetti Colladon & S. Grassi & F. Ravazzolo & F. Violante, 2020.
"Forecasting financial markets with semantic network analysis in the COVID-19 crisis,"
Papers
2009.04975, arXiv.org, revised Jul 2023.
- Andrea Fronzetti Colladon & Stefano Grassi & Francesco Ravazzolo & Francesco Violante, 2021. "Forecasting financial markets with semantic network analysis in the COVID—19 crisis," Working Papers 2021-06, Center for Research in Economics and Statistics.
Cited by:
- Pan, Zhiyuan & Zhong, Hao & Wang, Yudong & Huang, Juan, 2024. "Forecasting oil futures returns with news," Energy Economics, Elsevier, vol. 134(C).
- A. Fronzetti Colladon & F. Grippa & B. Guardabascio & G. Costante & F. Ravazzolo, 2021. "Forecasting consumer confidence through semantic network analysis of online news," Papers 2105.04900, arXiv.org, revised Jul 2023.
- Daniel Felix Ahelegbey & Paola Cerchiello & Roberta Scaramozzino, 2021.
"Network Based Evidence of the Financial Impact of Covid-19 Pandemic,"
DEM Working Papers Series
198, University of Pavia, Department of Economics and Management.
- Ahelegbey, Daniel Felix & Cerchiello, Paola & Scaramozzino, Roberta, 2022. "Network based evidence of the financial impact of Covid-19 pandemic," International Review of Financial Analysis, Elsevier, vol. 81(C).
- Miguel LAMPREIA & Fernando TEIXEIRA & Susana, 2024. "The Predictive Power Of Technical Analysis: Evidence From The Gbp/Usd Exchange Rate," Sustainable Regional Development Scientific Journal, Sustainable Regional Development Scientific Journal, vol. 0(5), pages 91-98, March.
- Andrea Barletta & Paolo Santucci de Magistris & Francesco Violante, 2017.
"A Non-Structural Investigation of VIX Risk Neutral Density,"
CREATES Research Papers
2017-15, Department of Economics and Business Economics, Aarhus University.
- Barletta, Andrea & Santucci de Magistris, Paolo & Violante, Francesco, 2019. "A non-structural investigation of VIX risk neutral density," Journal of Banking & Finance, Elsevier, vol. 99(C), pages 1-20.
Cited by:
- J. Arismendi-Zambrano & R. Azevedo, 2020. "Implicit Entropic Market Risk-Premium from Interest Rate Derivatives," Economics Department Working Paper Series n303-20.pdf, Department of Economics, National University of Ireland - Maynooth.
- Abderrahmen Aloulou & Younes Boujelbene, 2019. "Dynamic analysis of implied risk neutral density," International Journal of Monetary Economics and Finance, Inderscience Enterprises Ltd, vol. 12(1), pages 39-58.
- Andrea Barletta & Paolo Santucci de Magistris, 2018. "Analyzing the Risks Embedded in Option Prices with rndfittool," Risks, MDPI, vol. 6(2), pages 1-15, March.
- Jeroen V.K. Rombouts & Lars Stentoft & Francesco Violante, 2017.
"Variance swap payoffs, risk premia and extreme market conditions,"
CREATES Research Papers
2017-21, Department of Economics and Business Economics, Aarhus University.
- Rombouts, Jeroen V.K. & Stentoft, Lars & Violante, Francesco, 2020. "Variance swap payoffs, risk premia and extreme market conditions," Econometrics and Statistics, Elsevier, vol. 13(C), pages 106-124.
Cited by:
- Wilms, Ines & Rombouts, Jeroen & Croux, Christophe, 2021. "Multivariate volatility forecasts for stock market indices," International Journal of Forecasting, Elsevier, vol. 37(2), pages 484-499.
- Jonathan Dark & Xin Gao & Thijs van der Heijden & Federico Nardari, 2022. "Forecasting variance swap payoffs," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(12), pages 2135-2164, December.
- Christian M. Hafner & Sebastien Laurent & Francesco Violante, 2015.
"Weak diffusion limits of dynamic conditional correlation models,"
CREATES Research Papers
2015-03, Department of Economics and Business Economics, Aarhus University.
- Hafner, Christian M. & Laurent, Sebastien & Violante, Francesco, 2017. "Weak Diffusion Limits Of Dynamic Conditional Correlation Models," Econometric Theory, Cambridge University Press, vol. 33(3), pages 691-716, June.
- Christian M. HAFNER & Sébastien LAURENT & Francesco VIOLANTE, 2017. "Weak diffusion limits of dynamic conditional correlation models," LIDAM Reprints CORE 2866, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Hafner, Christian & Laurent, Sebastien & Violante, Francesco, 2017. "Weak Diffusion Limits of Dynamic Conditional Correlation Models," LIDAM Reprints ISBA 2017014, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- Hafner, C. & Laurent, S. & Violante, F., 2016. "Weak Diffusion Limits of Dynamic Conditional Correlation Models," LIDAM Discussion Papers ISBA 2016034, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- HAFNER, Christian & LAURENT, Sebastien & VIOLANTE, Francesco, 2016. "Weak Diffusion Limits of Dynamic Conditional Correlation Models," LIDAM Discussion Papers CORE 2016009, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Christian M. Hafner & Sébastien Laurent & Francesco Violante, 2017. "Weak Diffusion Limits of Dynamic Conditional Correlation Models," Post-Print hal-01590010, HAL.
Cited by:
- Christian M. Hafner & Sébastien Laurent & Francesco Violante, 2017.
"Weak Diffusion Limits of Dynamic Conditional Correlation Models,"
Post-Print
hal-01590010, HAL.
- Christian M. HAFNER & Sébastien LAURENT & Francesco VIOLANTE, 2017. "Weak diffusion limits of dynamic conditional correlation models," LIDAM Reprints CORE 2866, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Hafner, Christian & Laurent, Sebastien & Violante, Francesco, 2017. "Weak Diffusion Limits of Dynamic Conditional Correlation Models," LIDAM Reprints ISBA 2017014, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- HAFNER, Christian & LAURENT, Sebastien & VIOLANTE, Francesco, 2016. "Weak Diffusion Limits of Dynamic Conditional Correlation Models," LIDAM Discussion Papers CORE 2016009, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Christian M. Hafner & Sebastien Laurent & Francesco Violante, 2015. "Weak diffusion limits of dynamic conditional correlation models," CREATES Research Papers 2015-03, Department of Economics and Business Economics, Aarhus University.
- Hafner, Christian M. & Laurent, Sebastien & Violante, Francesco, 2017. "Weak Diffusion Limits Of Dynamic Conditional Correlation Models," Econometric Theory, Cambridge University Press, vol. 33(3), pages 691-716, June.
- Hafner, C. & Laurent, S. & Violante, F., 2016. "Weak Diffusion Limits of Dynamic Conditional Correlation Models," LIDAM Discussion Papers ISBA 2016034, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- Buccheri, Giuseppe & Corsi, Fulvio & Flandoli, Franco & Livieri, Giulia, 2021. "The continuous-time limit of score-driven volatility models," Journal of Econometrics, Elsevier, vol. 221(2), pages 655-675.
- Ding, Yashuang (Dexter), 2023. "A simple joint model for returns, volatility and volatility of volatility," Journal of Econometrics, Elsevier, vol. 232(2), pages 521-543.
- Ding, Y., 2020. "Diffusion Limits of Real-Time GARCH," Cambridge Working Papers in Economics 20112, Faculty of Economics, University of Cambridge.
- Tao Chen & Yixuan Li & Renfang Tian, 2023. "A Functional Data Approach for Continuous-Time Analysis Subject to Modeling Discrepancy under Infill Asymptotics," Mathematics, MDPI, vol. 11(20), pages 1-27, October.
- Yinhao Wu & Ping He, 2024. "The continuous-time limit of quasi score-driven volatility models," Papers 2409.14734, arXiv.org.
- Maria Eugenia Sanin & Maria Mansanet-Bataller & Francesco Violante, 2015.
"Understanding volatility dynamics in the EU-ETS market,"
CREATES Research Papers
2015-04, Department of Economics and Business Economics, Aarhus University.
- Eugenia Sanin, María & Violante, Francesco & Mansanet-Bataller, María, 2015. "Understanding volatility dynamics in the EU-ETS market," Energy Policy, Elsevier, vol. 82(C), pages 321-331.
- Maria Eugenia Sanin & Francesco Violante & Maria Mansanet-Bataller, 2015. "Understanding volatility dynamics in the EU-ETS market," Post-Print hal-02878047, HAL.
Cited by:
- Zhitao Xu & Adel Elomri & Shaligram Pokharel & Fatih Mutlu, 2019. "The Design of Green Supply Chains under Carbon Policies: A Literature Review of Quantitative Models," Sustainability, MDPI, vol. 11(11), pages 1-20, May.
- Federico Galán-Valdivieso & Elena Villar-Rubio & María-Dolores Huete-Morales, 2018. "The erratic behaviour of the EU ETS on the path towards consolidation and price stability," International Environmental Agreements: Politics, Law and Economics, Springer, vol. 18(5), pages 689-706, October.
- Zhao, Xin-gang & Jiang, Gui-wu & Nie, Dan & Chen, Hao, 2016. "How to improve the market efficiency of carbon trading: A perspective of China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1229-1245.
- Yinpeng Zhang & Zhixin Liu & Yingying Xu, 2018. "Carbon price volatility: The case of China," PLOS ONE, Public Library of Science, vol. 13(10), pages 1-15, October.
- Qinliang Tan & Yihong Ding & Yimei Zhang, 2017. "Optimization Model of an Efficient Collaborative Power Dispatching System for Carbon Emissions Trading in China," Energies, MDPI, vol. 10(9), pages 1-19, September.
- Xie, Qiwei & Hao, Jingjing & Li, Jingyu & Zheng, Xiaolong, 2022. "Carbon price prediction considering climate change: A text-based framework," Economic Analysis and Policy, Elsevier, vol. 74(C), pages 382-401.
- Chen, Jiayuan & Muckley, Cal B. & Bredin, Don, 2017. "Is information assimilated at announcements in the European carbon market?," Energy Economics, Elsevier, vol. 63(C), pages 234-247.
- Aneta Wlodarczyk, 2017. "Regime-dependent Assessment of Risk Concerning the International Aviation Inclusion Into the EU ETS," Dynamic Econometric Models, Uniwersytet Mikolaja Kopernika, vol. 17, pages 129-145.
- Marc Lamphiere & Jonathan Blackledge & Derek Kearney, 2021. "Carbon Futures Trading and Short-Term Price Prediction: An Analysis Using the Fractal Market Hypothesis and Evolutionary Computing," Mathematics, MDPI, vol. 9(9), pages 1-32, April.
- Anna Creti & Marc Joëts, 2017.
"Multiple bubbles in the European Union Emission Trading Scheme,"
Post-Print
hal-01549809, HAL.
- Anna Creti & Marc Joëts, 2014. "Multiple bubbles in European Union Emission Trading Scheme," Post-Print hal-01410681, HAL.
- Anna Creti & Marc Joëts, 2017. "Multiple bubbles in the European Union Emission Trading Scheme," Post-Print hal-02304324, HAL.
- Anna Creti & Marc Joëts, 2014. "Multiple bubbles in European Union Emission Trading Scheme," Post-Print hal-01411636, HAL.
- Cretí, Anna & Joëts, Marc, 2017. "Multiple bubbles in the European Union Emission Trading Scheme," Energy Policy, Elsevier, vol. 107(C), pages 119-130.
- Gazi Salah Uddin & Jose Areola Hernandez & Syed Jawad Hussain Shahzad & Axel Hedström, 2018.
"Multivariate dependence and spillover effects across energy commodities and diversification potentials of carbon assets,"
Post-Print
hal-01996386, HAL.
- Uddin, Gazi Salah & Hernandez, Jose Areola & Shahzad, Syed Jawad Hussain & Hedström, Axel, 2018. "Multivariate dependence and spillover effects across energy commodities and diversification potentials of carbon assets," Energy Economics, Elsevier, vol. 71(C), pages 35-46.
- Po Yun & Chen Zhang & Yaqi Wu & Xianzi Yang & Zulfiqar Ali Wagan, 2020. "A Novel Extended Higher-Order Moment Multi-Factor Framework for Forecasting the Carbon Price: Testing on the Multilayer Long Short-Term Memory Network," Sustainability, MDPI, vol. 12(5), pages 1-16, March.
- Gronwald, Marc, 2019. "Is Bitcoin a Commodity? On price jumps, demand shocks, and certainty of supply," Journal of International Money and Finance, Elsevier, vol. 97(C), pages 86-92.
- Yuqin Zhou & Shan Wu & Zhenhua Liu & Lavinia Rognone, 2023. "The asymmetric effects of climate risk on higher-moment connectedness among carbon, energy and metals markets," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
- Qunli Wu & Hongjie Zhang, 2019. "Research on Optimization Allocation Scheme of Initial Carbon Emission Quota from the Perspective of Welfare Effect," Energies, MDPI, vol. 12(11), pages 1-27, June.
- Tan, Qinliang & Ding, Yihong & Ye, Qi & Mei, Shufan & Zhang, Yimei & Wei, Yongmei, 2019. "Optimization and evaluation of a dispatch model for an integrated wind-photovoltaic-thermal power system based on dynamic carbon emissions trading," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
- Xianzi Yang & Chen Zhang & Yu Yang & Yaqi Wu & Po Yun & Zulfiqar Ali Wagan, 2020. "China’s Carbon Pricing Based on Heterogeneous Tail Distribution," Sustainability, MDPI, vol. 12(7), pages 1-16, April.
- Fan, John Hua & Todorova, Neda, 2017. "Dynamics of China’s carbon prices in the pilot trading phase," Applied Energy, Elsevier, vol. 208(C), pages 1452-1467.
- Li, Wei & Jia, Zhijie, 2016. "The impact of emission trading scheme and the ratio of free quota: A dynamic recursive CGE model in China," Applied Energy, Elsevier, vol. 174(C), pages 1-14.
- Jujie Wang & Shiyao Qiu, 2021. "Improved Multi-Scale Deep Integration Paradigm for Point and Interval Carbon Trading Price Forecasting," Mathematics, MDPI, vol. 9(20), pages 1-20, October.
- Zhu, Bangzhu & Wan, Chunzhuo & Wang, Ping, 2022. "Interval forecasting of carbon price: A novel multiscale ensemble forecasting approach," Energy Economics, Elsevier, vol. 115(C).
- Rui Zhu & Liyu Long & Yinghua Gong, 2022. "Emission Trading System, Carbon Market Efficiency, and Corporate Innovations," IJERPH, MDPI, vol. 19(15), pages 1-22, August.
- Yan, Kai & Zhang, Wei & Shen, Dehua, 2020. "Stylized facts of the carbon emission market in China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 555(C).
- Cristina Sattarhoff & Marc Gronwald, 2018. "How to Measure Financial Market Efficiency? A Multifractality-Based Quantitative Approach with an Application to the European Carbon Market," CESifo Working Paper Series 7102, CESifo.
- Bangzhu Zhu & Shunxin Ye & Ping Wang & Julien Chevallier & Yi‐Ming Wei, 2022. "Forecasting carbon price using a multi‐objective least squares support vector machine with mixture kernels," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(1), pages 100-117, January.
- Jin, Jiayu & Han, Liyan & Wu, Lei & Zeng, Hongchao, 2020. "The hedging effect of green bonds on carbon market risk," International Review of Financial Analysis, Elsevier, vol. 71(C).
- Huang, Zhehao & Dong, Hao & Jia, Shuaishuai, 2022. "Equilibrium pricing for carbon emission in response to the target of carbon emission peaking," Energy Economics, Elsevier, vol. 112(C).
- Ren, Xiaohang & Duan, Kun & Tao, Lizhu & Shi, Yukun & Yan, Cheng, 2022. "Carbon prices forecasting in quantiles," Energy Economics, Elsevier, vol. 108(C).
- Jianfeng Guo & Bin Su & Guang Yang & Lianyong Feng & Yinpeng Liu & Fu Gu, 2018. "How Do Verified Emissions Announcements Affect the Comoves between Trading Behaviors and Carbon Prices? Evidence from EU ETS," Sustainability, MDPI, vol. 10(9), pages 1-17, September.
- Alexander Zeitlberger & Alexander Brauneis, 2016. "Modeling carbon spot and futures price returns with GARCH and Markov switching GARCH models," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 24(1), pages 149-176, March.
- Reckling, Dennis, 2016. "Variance risk premia in CO2 markets: A political perspective," Energy Policy, Elsevier, vol. 94(C), pages 345-354.
- Friedrich, Marina & Mauer, Eva-Maria & Pahle, Michael & Tietjen, Oliver, 2020.
"From fundamentals to financial assets: the evolution of understanding price formation in the EU ETS,"
EconStor Preprints
225210, ZBW - Leibniz Information Centre for Economics.
- Friedrich, Marina & Mauer, Eva-Maria & Pahle, Michael & Tietjen, Oliver, 2020. "From fundamentals to financial assets: the evolution of understanding price formation in the EU ETS," EconStor Preprints 196150, ZBW - Leibniz Information Centre for Economics, revised 2020.
- Peng Chen & Andrew Vivian & Cheng Ye, 2022. "Forecasting carbon futures price: a hybrid method incorporating fuzzy entropy and extreme learning machine," Annals of Operations Research, Springer, vol. 313(1), pages 559-601, June.
- Zhu, Mengrui & Xu, Hua & Wang, Minggang & Tian, Lixin, 2024. "Carbon price interval prediction method based on probability density recurrence network and interval multi-layer perceptron," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 636(C).
- Wu, Rongxin & Tan, Zhizhou & Lin, Boqiang, 2023. "Does carbon emission trading scheme really improve the CO2 emission efficiency? Evidence from China's iron and steel industry," Energy, Elsevier, vol. 277(C).
- Sun, Qingqing & Chen, Hong & Long, Ruyin & Chen, Jiawei, 2024. "Integrated prediction of carbon price in China based on heterogeneous structural information and wall-value constraints," Energy, Elsevier, vol. 306(C).
- Wei, Yigang & Gong, Ping & Zhang, Jianhong & Wang, Li, 2021. "Exploring public opinions on climate change policy in "Big Data Era"—A case study of the European Union Emission Trading System (EU-ETS) based on Twitter," Energy Policy, Elsevier, vol. 158(C).
- Tan, Xueping & Sirichand, Kavita & Vivian, Andrew & Wang, Xinyu, 2022. "Forecasting European carbon returns using dimension reduction techniques: Commodity versus financial fundamentals," International Journal of Forecasting, Elsevier, vol. 38(3), pages 944-969.
- Jianguo Zhou & Xuejing Huo & Xiaolei Xu & Yushuo Li, 2019. "Forecasting the Carbon Price Using Extreme-Point Symmetric Mode Decomposition and Extreme Learning Machine Optimized by the Grey Wolf Optimizer Algorithm," Energies, MDPI, vol. 12(5), pages 1-22, March.
- Tan, Xue-Ping & Wang, Xin-Yu, 2017. "Dependence changes between the carbon price and its fundamentals: A quantile regression approach," Applied Energy, Elsevier, vol. 190(C), pages 306-325.
- Simon Cadez & Albert Czerny & Peter Letmathe, 2019. "Stakeholder pressures and corporate climate change mitigation strategies," Business Strategy and the Environment, Wiley Blackwell, vol. 28(1), pages 1-14, January.
- Balietti, Anca Claudia, 2016. "Trader types and volatility of emission allowance prices. Evidence from EU ETS Phase I," Energy Policy, Elsevier, vol. 98(C), pages 607-620.
- ROMBOUTS, Jeroen V. K. & STENTOFT, Lars & VIOLANTE, Francesco, 2012.
"The value of multivariate model sophistication: an application to pricing Dow Jones Industrial Average options,"
LIDAM Discussion Papers CORE
2012003, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Rombouts, Jeroen & Stentoft, Lars & Violante, Franceso, 2014. "The value of multivariate model sophistication: An application to pricing Dow Jones Industrial Average options," International Journal of Forecasting, Elsevier, vol. 30(1), pages 78-98.
- Jeroen V.K. Rombouts & Lars Stentoft & Francesco Violante, 2012. "The Value of Multivariate Model Sophistication: An Application to pricing Dow Jones Industrial Average options," CREATES Research Papers 2012-04, Department of Economics and Business Economics, Aarhus University.
- Jeroen Rombouts & Lars Stentoft & Francesco Violente, 2012. "The Value of Multivariate Model Sophistication: An Application to pricing Dow Jones Industrial Average Options," CIRANO Working Papers 2012s-05, CIRANO.
Cited by:
- ROMBOUTS, Jeroen V. K. & STENTOFT, Lars, 2010.
"Option pricing with asymmetric heteroskedastic normal mixture models,"
LIDAM Discussion Papers CORE
2010049, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Jeroen Rombouts & Lars Stentoft, 2010. "Option Pricing with Asymmetric Heteroskedastic Normal Mixture Models," CIRANO Working Papers 2010s-38, CIRANO.
- Rombouts, Jeroen V.K. & Stentoft, Lars, 2015. "Option pricing with asymmetric heteroskedastic normal mixture models," International Journal of Forecasting, Elsevier, vol. 31(3), pages 635-650.
- Jeroen V.K. Rombouts & Lars Stentoft, 2010. "Option Pricing with Asymmetric Heteroskedastic Normal Mixture Models," CREATES Research Papers 2010-44, Department of Economics and Business Economics, Aarhus University.
- Carlo Drago & Andrea Scozzari, 2022. "Evaluating conditional covariance estimates via a new targeting approach and a networks-based analysis," Papers 2202.02197, arXiv.org.
- Carlo Drago & Andrea Scozzari, 2023. "A Network-Based Analysis for Evaluating Conditional Covariance Estimates," Mathematics, MDPI, vol. 11(2), pages 1-19, January.
- de Almeida, Daniel & Hotta, Luiz K. & Ruiz, Esther, 2018.
"MGARCH models: Trade-off between feasibility and flexibility,"
International Journal of Forecasting, Elsevier, vol. 34(1), pages 45-63.
- Almeida, Daniel de & Hotta, Luiz, 2015. "MGARCH models: tradeoff between feasibility and flexibility," DES - Working Papers. Statistics and Econometrics. WS ws1516, Universidad Carlos III de Madrid. Departamento de EstadÃstica.
- Geert Dhaene & Piet Sercu & Jianbin Wu, 2022. "Volatility spillovers: A sparse multivariate GARCH approach with an application to commodity markets," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(5), pages 868-887, May.
- Bollerslev, Tim & Patton, Andrew J. & Quaedvlieg, Rogier, 2020. "Multivariate leverage effects and realized semicovariance GARCH models," Journal of Econometrics, Elsevier, vol. 217(2), pages 411-430.
- BAUWENS, Luc & STORTI, Giuseppe & VIOLANTE, Francesco, 2012.
"Dynamic conditional correlation models for realized covariance matrices,"
LIDAM Discussion Papers CORE
2012060, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
Cited by:
- Bauwens, Luc & Xu, Yongdeng, 2023.
"DCC- and DECO-HEAVY: Multivariate GARCH models based on realized variances and correlations,"
International Journal of Forecasting, Elsevier, vol. 39(2), pages 938-955.
- Bauwens, Luc & Xu, Yongdeng, 2019. "DCC and DECO-HEAVY: a multivariate GARCH model based on realized variances and correlations," Cardiff Economics Working Papers E2019/5, Cardiff University, Cardiff Business School, Economics Section, revised Aug 2021.
- Bauwens, Luc & Braione, Manuela & Storti, Giuseppe, 2017.
"A dynamic component model for forecasting high-dimensional realized covariance matrices,"
Econometrics and Statistics, Elsevier, vol. 1(C), pages 40-61.
- Luc Bauwens & Manuela Braione & Giuseppe Storti, 2020. "A Dynamic Component Model for Forecasting High-Dimensional Realized Covariances Matrices," Working Papers 3_234, Dipartimento di Scienze Economiche e Statistiche, Università degli Studi di Salerno, revised Jul 2020.
- Luc BAUWENS, Manuela BRAIONE and Giuseppe STORTI & Luc BAUWENS, Manuela BRAIONE and Giuseppe STORTI & Luc BAUWENS, Manuela BRAIONE and Giuseppe STORTI, 2017. "A dynamic component model for forecasting high-dimensional realized covariance matrices," LIDAM Reprints CORE 2812, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- BAUWENS, Luc & BRAIONE, Manuela & STORTI, Giuseppe, 2016. "A dynamic component model for forecasting high-dimensional realized covariance matrices," LIDAM Discussion Papers CORE 2016001, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Bastian Gribisch, 2018. "A latent dynamic factor approach to forecasting multivariate stock market volatility," Empirical Economics, Springer, vol. 55(2), pages 621-651, September.
- Tobias Hartl & Roland Weigand, 2018.
"Multivariate Fractional Components Analysis,"
Papers
1812.09149, arXiv.org, revised Jan 2019.
- Hartl, Tobias & Weigand, Roland, 2019. "Multivariate Fractional Components Analysis," University of Regensburg Working Papers in Business, Economics and Management Information Systems 38283, University of Regensburg, Department of Economics.
- Kris Boudt & Sébastien Laurent & Asger Lunde & Rogier Quaedvlieg & Orimar Sauri, 2017.
"Positive semidefinite integrated covariance estimation, factorizations and asynchronicity,"
Post-Print
hal-01505775, HAL.
- Kris Boudt & Sébastien Laurent & Asger Lunde & Rogier Quaedvlieg, 2014. "Positive Semidefinite Integrated Covariance Estimation, Factorizations and Asynchronicity," CREATES Research Papers 2014-05, Department of Economics and Business Economics, Aarhus University.
- Boudt, Kris & Laurent, Sébastien & Lunde, Asger & Quaedvlieg, Rogier & Sauri, Orimar, 2017. "Positive semidefinite integrated covariance estimation, factorizations and asynchronicity," Journal of Econometrics, Elsevier, vol. 196(2), pages 347-367.
- Ilya Archakov & Peter Reinhard Hansen, 2020.
"A New Parametrization of Correlation Matrices,"
Papers
2012.02395, arXiv.org.
- Ilya Archakov & Peter Reinhard Hansen, 2021. "A New Parametrization of Correlation Matrices," Econometrica, Econometric Society, vol. 89(4), pages 1699-1715, July.
- Vassallo, Danilo & Buccheri, Giuseppe & Corsi, Fulvio, 2021. "A DCC-type approach for realized covariance modeling with score-driven dynamics," International Journal of Forecasting, Elsevier, vol. 37(2), pages 569-586.
- L. Bauwens & E. Otranto, 2020.
"Modelling Realized Covariance Matrices: a Class of Hadamard Exponential Models,"
Working Paper CRENoS
202007, Centre for North South Economic Research, University of Cagliari and Sassari, Sardinia.
- Bauwens, Luc & Otranto, Edoardo, 2022. "Modeling Realized Covariance Matrices: A Class of Hadamard Exponential Models," LIDAM Reprints CORE 3202, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Luc Bauwens & Edoardo Otranto, 2023. "Modeling Realized Covariance Matrices: A Class of Hadamard Exponential Models," Journal of Financial Econometrics, Oxford University Press, vol. 21(4), pages 1376-1401.
- Bauwens, Luc & Otranto, Edoardo, 2020. "Modelling Realized Covariance Matrices: a Class of Hadamard Exponential Models," LIDAM Discussion Papers CORE 2020034, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Roxana Halbleib & Valeri Voev, 2011.
"Forecasting Covariance Matrices: A Mixed Frequency Approach,"
CREATES Research Papers
2011-03, Department of Economics and Business Economics, Aarhus University.
- Roxana Halbleib & Valeri Voev, 2012. "Forecasting Covariance Matrices: A Mixed Frequency Approach," Working Paper Series of the Department of Economics, University of Konstanz 2012-30, Department of Economics, University of Konstanz.
- Roxana Halbleib & Valerie Voev, 2011. "Forecasting Covariance Matrices: A Mixed Frequency Approach," Working Papers ECARES ECARES 2011-002, ULB -- Universite Libre de Bruxelles.
- Amendola, Alessandra & Braione, Manuela & Candila, Vincenzo & Storti, Giuseppe, 2020. "A Model Confidence Set approach to the combination of multivariate volatility forecasts," International Journal of Forecasting, Elsevier, vol. 36(3), pages 873-891.
- Luc Bauwens & Manuela Braione & Giuseppe Storti, 2016.
"Forecasting comparison of long term component dynamic models for realized covariance matrices,"
LIDAM Reprints CORE
2923, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Luc Bauwens & Manuela Braione & Giuseppe Storti, 2016. "Forecasting Comparison of Long Term Component Dynamic Models for Realized Covariance Matrices," Annals of Economics and Statistics, GENES, issue 123-124, pages 103-134.
- BAUWENS, Luc & BRAIONE, Manuela & STORTI, Giuseppe, 2014. "Forecasting comparison of long term component dynamic models for realized covariance matrices," LIDAM Discussion Papers CORE 2014053, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Bollerslev, Tim & Patton, Andrew J. & Quaedvlieg, Rogier, 2020. "Multivariate leverage effects and realized semicovariance GARCH models," Journal of Econometrics, Elsevier, vol. 217(2), pages 411-430.
- Weigand, Roland, 2014.
"Matrix Box-Cox Models for Multivariate Realized Volatility,"
University of Regensburg Working Papers in Business, Economics and Management Information Systems
478, University of Regensburg, Department of Economics.
- Roland Weigand, 2014. "Matrix Box-Cox Models for Multivariate Realized Volatility," Working Papers 144, Bavarian Graduate Program in Economics (BGPE).
- Ostap Okhrin & Anastasija Tetereva, 2017. "The Realized Hierarchical Archimedean Copula in Risk Modelling," Econometrics, MDPI, vol. 5(2), pages 1-31, June.
- BAUWENS Luc, & XU Yongdeng,, 2019. "DCC-HEAVY: A multivariate GARCH model based on realized variances and correlations," LIDAM Discussion Papers CORE 2019025, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- BAUWENS, Luc & STORTI, Giuseppe, 2013.
"Computationally efficient inference procedures for vast dimensional realized covariance models,"
LIDAM Reprints CORE
2469, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- BAUWENS, Luc & STORTI, Giuseppe, 2012. "Computationally efficient inference procedures for vast dimensional realized covariance models," LIDAM Discussion Papers CORE 2012028, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Gribisch, Bastian & Hartkopf, Jan Patrick & Liesenfeld, Roman, 2020. "Factor state–space models for high-dimensional realized covariance matrices of asset returns," Journal of Empirical Finance, Elsevier, vol. 55(C), pages 1-20.
- Roxana Halbleib & Valeri Voev, 2016. "Forecasting Covariance Matrices: A Mixed Approach," Journal of Financial Econometrics, Oxford University Press, vol. 14(2), pages 383-417.
- Harry Vander Elst & David Veredas, 2017. "Smoothing it Out: Empirical and Simulation Results for Disentangled Realized Covariances," Journal of Financial Econometrics, Oxford University Press, vol. 15(1), pages 106-138.
- Bauwens, Luc & Xu, Yongdeng, 2023.
"DCC- and DECO-HEAVY: Multivariate GARCH models based on realized variances and correlations,"
International Journal of Forecasting, Elsevier, vol. 39(2), pages 938-955.
- LAURENT, Sébastien & VIOLANTE, Francesco, 2012.
"Volatility forecasts evaluation and comparison,"
LIDAM Reprints CORE
2414, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
Cited by:
- Knüppel, Malte & Schultefrankenfeld, Guido, 2018.
"Assessing the uncertainty in central banks' inflation outlooks,"
Discussion Papers
56/2018, Deutsche Bundesbank.
- Knüppel, Malte & Schultefrankenfeld, Guido, 2019. "Assessing the uncertainty in central banks’ inflation outlooks," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1748-1769.
- Bauwens, L. & Hafner C. & Laurent, S., 2011.
"Volatility Models,"
LIDAM Discussion Papers ISBA
2011044, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- BAUWENS, Luc & HAFNER, Christian & LAURENT, Sébastien, 2011. "Volatility models," LIDAM Discussion Papers CORE 2011058, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Bauwens, L. & Hafner, C. & Laurent, S., 2012. "Volatility Models," LIDAM Reprints ISBA 2012028, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- Yam Wing Siu, 2018. "Volatility Forecast by Volatility Index and Its Use as a Risk Management Tool Under a Value-at-Risk Approach," Review of Pacific Basin Financial Markets and Policies (RPBFMP), World Scientific Publishing Co. Pte. Ltd., vol. 21(02), pages 1-48, June.
- Cifter, Atilla, 2012. "Volatility Forecasting with Asymmetric Normal Mixture Garch Model: Evidence from South Africa," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(2), pages 127-142, June.
- Fiszeder, Piotr & Fałdziński, Marcin, 2019. "Improving forecasts with the co-range dynamic conditional correlation model," Journal of Economic Dynamics and Control, Elsevier, vol. 108(C).
- Sucarrat, Genaro, 2020. "Identification of Volatility Proxies as Expectations of Squared Financial Return," MPRA Paper 101953, University Library of Munich, Germany.
- Siliverstovs, Boriss & Wochner, Daniel S., 2018. "Google Trends and reality: Do the proportions match?," Journal of Economic Behavior & Organization, Elsevier, vol. 145(C), pages 1-23.
- Andrea BUCCI, 2017.
"Forecasting Realized Volatility A Review,"
Journal of Advanced Studies in Finance, ASERS Publishing, vol. 8(2), pages 94-138.
- Bucci, Andrea, 2017. "Forecasting realized volatility: a review," MPRA Paper 83232, University Library of Munich, Germany.
- Sucarrat, Genaro, 2021. "Identification of volatility proxies as expectations of squared financial returns," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1677-1690.
- Knüppel, Malte & Schultefrankenfeld, Guido, 2018.
"Assessing the uncertainty in central banks' inflation outlooks,"
Discussion Papers
56/2018, Deutsche Bundesbank.
- Sébastien Laurent & Jeroen V.K. Rombouts & Francesco Violante, 2010.
"On the Forecasting Accuracy of Multivariate GARCH Models,"
Cahiers de recherche
1021, CIRPEE.
- Sébastien Laurent & Jeroen V. K. Rombouts & Francesco Violante, 2012. "On the forecasting accuracy of multivariate GARCH models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 27(6), pages 934-955, September.
- LAURENT, Sébastien & ROMBOUTS, Jeroen V. K. & VIOLANTE, Francesco, 2010. "On the forecasting accuracy of multivariate GARCH models," LIDAM Discussion Papers CORE 2010025, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
Cited by:
- Han, Chulwoo & Park, Frank C., 2022. "A geometric framework for covariance dynamics," Journal of Banking & Finance, Elsevier, vol. 134(C).
- Rasmus Søndergaard Pedersen & Anders Rahbek, 2012.
"Multivariate Variance Targeting in the BEKK-GARCH Model,"
Discussion Papers
12-23, University of Copenhagen. Department of Economics.
- Rasmus Søndergaard Pedersen & Anders Rahbek, 2012. "Multivariate Variance Targeting in the BEKK-GARCH Model," CREATES Research Papers 2012-53, Department of Economics and Business Economics, Aarhus University.
- Rasmus S. Pedersen & Anders Rahbek, 2014. "Multivariate variance targeting in the BEKK–GARCH model," Econometrics Journal, Royal Economic Society, vol. 17(1), pages 24-55, February.
- Chao Liang & Yin Liao & Feng Ma & Bo Zhu, 2022. "United States Oil Fund volatility prediction: the roles of leverage effect and jumps," Empirical Economics, Springer, vol. 62(5), pages 2239-2262, May.
- Bauwens, Luc & Braione, Manuela & Storti, Giuseppe, 2017.
"A dynamic component model for forecasting high-dimensional realized covariance matrices,"
Econometrics and Statistics, Elsevier, vol. 1(C), pages 40-61.
- Luc Bauwens & Manuela Braione & Giuseppe Storti, 2020. "A Dynamic Component Model for Forecasting High-Dimensional Realized Covariances Matrices," Working Papers 3_234, Dipartimento di Scienze Economiche e Statistiche, Università degli Studi di Salerno, revised Jul 2020.
- Luc BAUWENS, Manuela BRAIONE and Giuseppe STORTI & Luc BAUWENS, Manuela BRAIONE and Giuseppe STORTI & Luc BAUWENS, Manuela BRAIONE and Giuseppe STORTI, 2017. "A dynamic component model for forecasting high-dimensional realized covariance matrices," LIDAM Reprints CORE 2812, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- BAUWENS, Luc & BRAIONE, Manuela & STORTI, Giuseppe, 2016. "A dynamic component model for forecasting high-dimensional realized covariance matrices," LIDAM Discussion Papers CORE 2016001, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Rasmus Søndergaard Pedersen, 2014.
"Targeting estimation of CCC-Garch models with infinite fourth moments,"
Discussion Papers
14-04, University of Copenhagen. Department of Economics.
- Pedersen, Rasmus Søndergaard, 2016. "Targeting Estimation Of Ccc-Garch Models With Infinite Fourth Moments," Econometric Theory, Cambridge University Press, vol. 32(2), pages 498-531, April.
- Tobias Fissler & Yannick Hoga, 2024. "How to Compare Copula Forecasts?," Papers 2410.04165, arXiv.org.
- Alexander, Carol & Han, Yang & Meng, Xiaochun, 2023. "Static and dynamic models for multivariate distribution forecasts: Proper scoring rule tests of factor-quantile versus multivariate GARCH models," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1078-1096.
- João F. Caldeira & Guilherme V. Moura & Francisco J. Nogales & André A. P. Santos, 2017. "Combining Multivariate Volatility Forecasts: An Economic-Based Approach," Journal of Financial Econometrics, Oxford University Press, vol. 15(2), pages 247-285.
- Duan, Yinying & Chen, Wang & Zeng, Qing & Liu, Zhicao, 2018. "Leverage effect, economic policy uncertainty and realized volatility with regime switching," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 493(C), pages 148-154.
- Bouteska, Ahmed & Sharif, Taimur & Abedin, Mohammad Zoynul, 2023. "COVID-19 and stock returns: Evidence from the Markov switching dependence approach," Research in International Business and Finance, Elsevier, vol. 64(C).
- Carlos Trucíos & João H. G. Mazzeu & Marc Hallin & Luiz K. Hotta & Pedro L. Valls Pereira & Mauricio Zevallos, 2022.
"Forecasting Conditional Covariance Matrices in High-Dimensional Time Series: A General Dynamic Factor Approach,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 41(1), pages 40-52, December.
- Trucíos Maza, Carlos César & Mazzeu, João H. G. & Hallin, Marc & Hotta, Luiz Koodi & Pereira, Pedro L. Valls & Zevallos, Mauricio, 2019. "Forecasting conditional covariance matrices in high-dimensional time series: a general dynamic factor approach," Textos para discussão 505, FGV EESP - Escola de Economia de São Paulo, Fundação Getulio Vargas (Brazil).
- Marc Hallin & Luis K. Hotta & João H. G Mazzeu & Carlos Cesar Trucios-Maza & Pedro L. Valls Pereira & Mauricio Zevallos, 2019. "Forecasting Conditional Covariance Matrices in High-Dimensional Time Series: a General Dynamic Factor Approach," Working Papers ECARES 2019-14, ULB -- Universite Libre de Bruxelles.
- ROMBOUTS, Jeroen V. K. & STENTOFT, Lars & VIOLANTE, Francesco, 2012.
"The value of multivariate model sophistication: an application to pricing Dow Jones Industrial Average options,"
LIDAM Discussion Papers CORE
2012003, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Rombouts, Jeroen & Stentoft, Lars & Violante, Franceso, 2014. "The value of multivariate model sophistication: An application to pricing Dow Jones Industrial Average options," International Journal of Forecasting, Elsevier, vol. 30(1), pages 78-98.
- Jeroen Rombouts & Lars Stentoft & Francesco Violente, 2012. "The Value of Multivariate Model Sophistication: An Application to pricing Dow Jones Industrial Average Options," CIRANO Working Papers 2012s-05, CIRANO.
- Jeroen V.K. Rombouts & Lars Stentoft & Francesco Violante, 2012. "The Value of Multivariate Model Sophistication: An Application to pricing Dow Jones Industrial Average options," CREATES Research Papers 2012-04, Department of Economics and Business Economics, Aarhus University.
- Ralf Becker & Adam Clements & Robert O'Neill, 2010.
"A Kernel Technique for Forecasting the Variance-Covariance Matrix,"
Centre for Growth and Business Cycle Research Discussion Paper Series
151, Economics, The University of Manchester.
- Ralf Becker & Adam Clements & Robert O'Neill, 2010. "A Kernel Technique for Forecasting the Variance-Covariance Matrix," NCER Working Paper Series 66, National Centre for Econometric Research.
- Helmut Lütkepohl & Thore Schlaak, 2017.
"Choosing between Different Time-Varying Volatility Models for Structural Vector Autoregressive Analysis,"
Discussion Papers of DIW Berlin
1672, DIW Berlin, German Institute for Economic Research.
- Lütkepohl, Helmut & Schlaak, Thore, 2018. "Choosing Between Different Time-Varying Volatility Models for Structural Vector Autoregressive Analysis," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, issue 4, pages 715-735.
- Helmut Lütkepohl & Thore Schlaak, 2018. "Choosing Between Different Time‐Varying Volatility Models for Structural Vector Autoregressive Analysis," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 80(4), pages 715-735, August.
- Christian Francq & Lajos Horváth & Jean-Michel Zakoïan, 2016.
"Variance Targeting Estimation of Multivariate GARCH Models,"
Journal of Financial Econometrics, Oxford University Press, vol. 14(2), pages 353-382.
- Francq, Christian & Horvath, Lajos & Zakoian, Jean-Michel, 2014. "Variance targeting estimation of multivariate GARCH models," MPRA Paper 57794, University Library of Munich, Germany.
- Deniz Erdemlioglu & Sébastien Laurent & Christopher J. Neely, 2013.
"Econometric modeling of exchange rate volatility and jumps,"
Chapters, in: Adrian R. Bell & Chris Brooks & Marcel Prokopczuk (ed.), Handbook of Research Methods and Applications in Empirical Finance, chapter 16, pages 373-427,
Edward Elgar Publishing.
- Deniz Erdemlioglu & Sebastien Laurent & Christopher J. Neely, 2012. "Econometric modeling of exchange rate volatility and jumps," Working Papers 2012-008, Federal Reserve Bank of St. Louis.
- Ahmed, Shamim & Bu, Ziwen & Symeonidis, Lazaros & Tsvetanov, Daniel, 2023. "Which factor model? A systematic return covariation perspective," Journal of International Money and Finance, Elsevier, vol. 136(C).
- Becker, R. & Clements, A.E. & Doolan, M.B. & Hurn, A.S., 2015. "Selecting volatility forecasting models for portfolio allocation purposes," International Journal of Forecasting, Elsevier, vol. 31(3), pages 849-861.
- Wang, Yudong & Wu, Chongfeng & Yang, Li, 2016. "Forecasting crude oil market volatility: A Markov switching multifractal volatility approach," International Journal of Forecasting, Elsevier, vol. 32(1), pages 1-9.
- Jentsch, Carsten & Subba Rao, Suhasini, 2015. "A test for second order stationarity of a multivariate time series," Journal of Econometrics, Elsevier, vol. 185(1), pages 124-161.
- Tobias Hartl & Roland Weigand, 2018.
"Multivariate Fractional Components Analysis,"
Papers
1812.09149, arXiv.org, revised Jan 2019.
- Hartl, Tobias & Weigand, Roland, 2019. "Multivariate Fractional Components Analysis," University of Regensburg Working Papers in Business, Economics and Management Information Systems 38283, University of Regensburg, Department of Economics.
- G. C. Livingston & Darfiana Nur, 2023. "Bayesian inference of multivariate-GARCH-BEKK models," Statistical Papers, Springer, vol. 64(5), pages 1749-1774, October.
- Stanislav Anatolyev & Nikita Kobotaev, 2018.
"Modeling and forecasting realized covariance matrices with accounting for leverage,"
Econometric Reviews, Taylor & Francis Journals, vol. 37(2), pages 114-139, February.
- Stanislav Anatolyev & Nikita Kobotaev, 2015. "Modeling and Forecasting Realized Covariance Matrices with Accounting for Leverage," Working Papers w0213, Center for Economic and Financial Research (CEFIR).
- Stanislav Anatolyev & Nikita Kobotaev, 2015. "Modeling and Forecasting Realized Covariance Matrices with Accounting for Leverage," Working Papers w0213, New Economic School (NES).
- Triki, Mohamed Bilel & Ben Maatoug, Abderrazek, 2021. "The GOLD market as a safe haven against the stock market uncertainty: Evidence from geopolitical risk," Resources Policy, Elsevier, vol. 70(C).
- Manabu Asai & Michael McAleer, 2014.
"Forecasting Co-Volatilities via Factor Models with Asymmetry and Long Memory in Realized Covariance,"
Tinbergen Institute Discussion Papers
14-037/III, Tinbergen Institute.
- Manabu Asai & Michael McAleer, 2014. "Forecasting Co-Volatilities via Factor Models with Asymmetry and Long Memory in Realized Covariance," Working Papers in Economics 14/10, University of Canterbury, Department of Economics and Finance.
- Manabu Asai & Michael McAleer, 2014. "Forecasting Co-Volatilities via Factor Models with Asymmetry and Long Memory in Realized Covariance," Documentos de Trabajo del ICAE 2014-05, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
- Asai, Manabu & McAleer, Michael, 2015. "Forecasting co-volatilities via factor models with asymmetry and long memory in realized covariance," Journal of Econometrics, Elsevier, vol. 189(2), pages 251-262.
- Aslanidis, Nektarios & Casas, Isabel, 2011. "Modelling asset correlations: A nonparametric approach," Working Papers 2011-01, University of Sydney, School of Economics.
- Mei, Dexiang & Zeng, Qing & Cao, Xiang & Diao, Xiaohua, 2019. "Uncertainty and oil volatility: New evidence," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 155-163.
- Erik Kole & Thijs Markwat & Anne Opschoor & Dick van Dijk, 2017.
"Forecasting Value-at-Risk under Temporal and Portfolio Aggregation,"
Journal of Financial Econometrics, Oxford University Press, vol. 15(4), pages 649-677.
- Erik Kole & Thijs Markwat & Anne Opschoor & Dick van Dijk, 2015. "Forecasting Value-at-Risk under Temporal and Portfolio Aggregation," Tinbergen Institute Discussion Papers 15-140/III, Tinbergen Institute, revised 19 Apr 2017.
- Lv, Wendai, 2018. "Does the OVX matter for volatility forecasting? Evidence from the crude oil market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 492(C), pages 916-922.
- Dahiru A. Balaa & Taro Takimotob, 2017. "Stock markets volatility spillovers during financial crises: A DCC-MGARCH with skewed-t density approach," Borsa Istanbul Review, Research and Business Development Department, Borsa Istanbul, vol. 17(1), pages 25-48, March.
- Noori, Mohammad & Hitaj, Asmerilda, 2023. "Dissecting hedge funds' strategies," International Review of Financial Analysis, Elsevier, vol. 85(C).
- Fu, Yang & Zheng, Zeyu, 2020. "Volatility modeling and the asymmetric effect for China’s carbon trading pilot market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 542(C).
- Dark, Jonathan, 2015. "Futures hedging with Markov switching vector error correction FIEGARCH and FIAPARCH," Journal of Banking & Finance, Elsevier, vol. 61(S2), pages 269-285.
- Ralf Becker & Adam Clements & Robert O'Neill, 2018. "A Multivariate Kernel Approach to Forecasting the Variance Covariance of Stock Market Returns," Econometrics, MDPI, vol. 6(1), pages 1-27, February.
- Köchling, Gerrit & Schmidtke, Philipp & Posch, Peter N., 2020. "Volatility forecasting accuracy for Bitcoin," Economics Letters, Elsevier, vol. 191(C).
- Mei, Dexiang & Ma, Feng & Liao, Yin & Wang, Lu, 2020. "Geopolitical risk uncertainty and oil future volatility: Evidence from MIDAS models," Energy Economics, Elsevier, vol. 86(C).
- Caporin, M. & McAleer, M.J., 2012.
"Robust Ranking of Multivariate GARCH Models by Problem Dimension,"
Econometric Institute Research Papers
EI2012-13, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
- Caporin, Massimiliano & McAleer, Michael, 2014. "Robust ranking of multivariate GARCH models by problem dimension," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 172-185.
- Michael McAleer & Massimiliano Caporin, 2012. "Robust Ranking of Multivariate GARCH Models by Problem Dimension," KIER Working Papers 815, Kyoto University, Institute of Economic Research.
- Massimiliano Caporin & Michael McAleer, 2012. "Robust Ranking of Multivariate GARCH Models by Problem Dimension," Working Papers in Economics 12/06, University of Canterbury, Department of Economics and Finance.
- Massimiliano Caporin & Michael McAleer, 2012. "Robust Ranking of Multivariate GARCH Models by Problem Dimension," Documentos de Trabajo del ICAE 2012-06, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico, revised Apr 2012.
- R. Khalfaoui & M. Boutahar, 2012.
"Portfolio Risk Evaluation: An Approach Based on Dynamic Conditional Correlations Models and Wavelet Multi-Resolution Analysis,"
Working Papers
halshs-00793068, HAL.
- Khalfaoui, R & Boutahar, M, 2012. "Portfolio risk evaluation: An approach based on dynamic conditional correlations models and wavelet multiresolution analysis," MPRA Paper 41624, University Library of Munich, Germany.
- Rabeh Khalfaoui & Mohammed Boutahar, 2012. "Portfolio Risk Evaluation An Approach Based on Dynamic Conditional Correlations Models and Wavelet Multi-Resolution Analysis," AMSE Working Papers 1208, Aix-Marseille School of Economics, France.
- Liu, Yue & Sun, Huaping & Zhang, Jijian & Taghizadeh-Hesary, Farhad, 2020. "Detection of volatility regime-switching for crude oil price modeling and forecasting," Resources Policy, Elsevier, vol. 69(C).
- Serge Darolles & Christian Francq & Sébastien Laurent, 2018.
"Asymptotics of Cholesky GARCH models and time-varying conditional betas,"
Post-Print
hal-04590232, HAL.
- Serge Darolles & Christian Francq & Sébastien Laurent, 2018. "Asymptotics of Cholesky GARCH models and time-varying conditional betas," Post-Print hal-04590251, HAL.
- Serge Darolles & Christian Francq & Sébastien Laurent, 2016. "Asymptotics of Cholesky GARCH models and time-varying conditional betas," Post-Print hal-04590533, HAL.
- Serge Darolles & Christian Francq & Sebastien Laurent, 2018. "Asymptotics of Cholesky GARCH models and time-varying conditional betas," Post-Print hal-04590180, HAL.
- Serge Darolles & Christian Francq & Sébastien Laurent, 2018. "Asymptotics of Cholesky GARCH models and time-varying conditional betas," Post-Print hal-01980815, HAL.
- Darolles, Serge & Francq, Christian & Laurent, Sébastien, 2018. "Asymptotics of Cholesky GARCH models and time-varying conditional betas," Journal of Econometrics, Elsevier, vol. 204(2), pages 223-247.
- Serge Darolles & Christian Francq & Sébastien Laurent, 2017. "Asymptotics of Cholesky GARCH models and time-varying conditional betas," Post-Print hal-04590471, HAL.
- Darolles, Serges & Francq, Christian & Laurent, Sébastien, 2018. "Asymptotics of Cholesky GARCH models and time-varying conditional betas," MPRA Paper 83988, University Library of Munich, Germany.
- Serge Darolles & Christian Francq & Sébastien Laurent, 2018. "Asymptotics of Cholesky GARCH Models and Time-Varying Conditional Betas," AMSE Working Papers 1845, Aix-Marseille School of Economics, France.
- Serge Darolles & Christian Francq & Sébastien Laurent, 2018. "Asymptotics of Cholesky GARCH Models and Time-Varying Conditional Betas," Working Papers halshs-01944656, HAL.
- Serge Darolles & Christian Francq & Sébastien Laurent, 2017. "Asymptotics of Cholesky GARCH models and time-varying conditional betas," Post-Print hal-04590522, HAL.
- Carroll, Rachael & Conlon, Thomas & Cotter, John & Salvador, Enrique, 2017. "Asset allocation with correlation: A composite trade-off," European Journal of Operational Research, Elsevier, vol. 262(3), pages 1164-1180.
- Tan, Jinghua & Li, Zhixi & Zhang, Chuanhui & Shi, Long & Jiang, Yuansheng, 2024. "A multiscale time-series decomposition learning for crude oil price forecasting," Energy Economics, Elsevier, vol. 136(C).
- Yannick Hoga, 2023. "The Estimation Risk in Extreme Systemic Risk Forecasts," Papers 2304.10349, arXiv.org.
- Dimitris P. Louzis, 2014. "Macroeconomic and credit forecasts in a small economy during crisis: A large Bayesian VAR approach," Working Papers 184, Bank of Greece.
- Hautsch, Nikolaus & Kyj, Lada. M. & Malec, Peter, 2013.
"Do high-frequency data improve high-dimensional portfolio allocations?,"
SFB 649 Discussion Papers
2013-014, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
- Nikolaus Hautsch & Lada M. Kyj & Peter Malec, 2015. "Do High‐Frequency Data Improve High‐Dimensional Portfolio Allocations?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 30(2), pages 263-290, March.
- Laurent, Sébastien & Lecourt, Christelle & Palm, Franz C., 2016.
"Testing for jumps in conditionally Gaussian ARMA–GARCH models, a robust approach,"
Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 383-400.
- Sébastien Laurent & Christelle Lecourt & Franz C. Palm, 2016. "Testing for jumps in conditionally Gaussian ARMA-GARCH models, a robust approach," Post-Print hal-01447861, HAL.
- Varneskov, Rasmus & Voev, Valeri, 2013.
"The role of realized ex-post covariance measures and dynamic model choice on the quality of covariance forecasts,"
Journal of Empirical Finance, Elsevier, vol. 20(C), pages 83-95.
- Rasmus Tangsgaard Varneskov & Valeri Voev, 2010. "The Role of Realized Ex-post Covariance Measures and Dynamic Model Choice on the Quality of Covariance Forecasts," CREATES Research Papers 2010-45, Department of Economics and Business Economics, Aarhus University.
- de Almeida, Daniel & Hotta, Luiz K. & Ruiz, Esther, 2018.
"MGARCH models: Trade-off between feasibility and flexibility,"
International Journal of Forecasting, Elsevier, vol. 34(1), pages 45-63.
- Almeida, Daniel de & Hotta, Luiz, 2015. "MGARCH models: tradeoff between feasibility and flexibility," DES - Working Papers. Statistics and Econometrics. WS ws1516, Universidad Carlos III de Madrid. Departamento de EstadÃstica.
- Yu‐Sheng Lai, 2019. "Flexible covariance dynamics, high‐frequency data, and optimal futures hedging," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 39(12), pages 1529-1548, December.
- Lu, Xinjie & Ma, Feng & Li, Haibo & Wang, Jianqiong, 2023. "INE oil futures volatility prediction: Exchange rates or international oil futures volatility?," Energy Economics, Elsevier, vol. 126(C).
- Marc Hallin & Carlos Trucíos, 2020. "Forecasting Value-at-Risk and Expected Shortfall in Large Portfolios: a General Dynamic Factor Approach," Working Papers ECARES 2020-50, ULB -- Universite Libre de Bruxelles.
- Manabu Asai & Chia-Lin Chang & Michael McAleer & Laurent Pauwels, 2018.
"Asymptotic Theory for Rotated Multivariate GARCH Models,"
Documentos de Trabajo del ICAE
2018-27, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
- Asai, Manabu & Chang, Chia-Lin & McAleer, Michael & Pauwels, Laurent, 2019. "Asymptotic Theory for Rotated Multivariate GARCH Models," Working Papers BAWP-2019-03, University of Sydney Business School, Discipline of Business Analytics.
- Asai, M. & Chang, C-L. & McAleer, M.J. & Pauwels, L., 2018. "Asymptotic Theory for Rotated Multivariate GARCH Models," Econometric Institute Research Papers EI2018-38, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
- Yu, Miao & Song, Jinguo, 2018. "Volatility forecasting: Global economic policy uncertainty and regime switching," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 511(C), pages 316-323.
- Feng Ma & M. I. M. Wahab & Julien Chevallier & Ziyang Li, 2023. "A tug of war of forecasting the US stock market volatility: Oil futures overnight versus intraday information," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(1), pages 60-75, January.
- Zhu, Jiaji & Han, Wei & Zhang, Junchao, 2023. "Does climate risk matter for gold price volatility?," Finance Research Letters, Elsevier, vol. 58(PC).
- Jiqian Wang & Feng Ma & Chao Liang & Zhonglu Chen, 2022. "Volatility forecasting revisited using Markov‐switching with time‐varying probability transition," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(1), pages 1387-1400, January.
- Ma, Feng & Li, Yu & Liu, Li & Zhang, Yaojie, 2018. "Are low-frequency data really uninformative? A forecasting combination perspective," The North American Journal of Economics and Finance, Elsevier, vol. 44(C), pages 92-108.
- Monica Billio & Massimiliano Caporin & Lorenzo Frattarolo & Loriana Pelizzon, 2016.
"Networks in risk spillovers: a multivariate GARCH perspective,"
Working Papers
2016:03, Department of Economics, University of Venice "Ca' Foscari".
- Monica Billio & Massimiliano Caporin & Lorenzo Frattarolo & Loriana Pelizzon, 2020. "Networks in risk spillovers: A multivariate GARCH perspective," Working Papers 2020:16, Department of Economics, University of Venice "Ca' Foscari".
- Billio, Monica & Caporin, Massimiliano & Frattarolo, Lorenzo & Pelizzon, Loriana, 2023. "Networks in risk spillovers: A multivariate GARCH perspective," Econometrics and Statistics, Elsevier, vol. 28(C), pages 1-29.
- Billio, Monica & Caporin, Massimiliano & Frattarolo, Lorenzo & Pelizzon, Loriana, 2018. "Networks in risk spillovers: A multivariate GARCH perspective," SAFE Working Paper Series 225, Leibniz Institute for Financial Research SAFE.
- Feng Ma & Chao Liang & Yuanhui Ma & M.I.M. Wahab, 2020. "Cryptocurrency volatility forecasting: A Markov regime‐switching MIDAS approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(8), pages 1277-1290, December.
- Ye, Wuyi & Xia, Wenjing & Wu, Bin & Chen, Pengzhan, 2022. "Using implied volatility jumps for realized volatility forecasting: Evidence from the Chinese market," International Review of Financial Analysis, Elsevier, vol. 83(C).
- Moura, Guilherme V. & Santos, André A. P., 2019. "Comparing Forecasts of Extremely Large Conditional Covariance Matrices," DES - Working Papers. Statistics and Econometrics. WS 29291, Universidad Carlos III de Madrid. Departamento de EstadÃstica.
- Tran, Thuy Nhung, 2022. "The Volatility of the Stock Market and Financial Cycle: GARCH Family Models," Jurnal Ekonomi Malaysia, Faculty of Economics and Business, Universiti Kebangsaan Malaysia, vol. 56(1), pages 151-168.
- Adam E Clements & Ayesha Scott & Annastiina Silvennoinen, 2012. "Forecasting multivariate volatility in larger dimensions: some practical issues," NCER Working Paper Series 80, National Centre for Econometric Research.
- Fiszeder, Piotr & Fałdziński, Marcin, 2019. "Improving forecasts with the co-range dynamic conditional correlation model," Journal of Economic Dynamics and Control, Elsevier, vol. 108(C).
- Massimiliano Caporin & Michael McAleer, 2011.
"Ranking Multivariate GARCH Models by Problem Dimension: An Empirical Evaluation,"
Working Papers in Economics
11/23, University of Canterbury, Department of Economics and Finance.
- Massimiliano Caporin & Michael McAleer, 2011. "Ranking Multivariate GARCH Models by Problem Dimension: An Empirical Evaluation," Documentos de Trabajo del ICAE 2011-20, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
- Michael McAleer & Massimiliano Caporin, 2011. "Ranking Multivariate GARCH Models by Problem Dimension:An Empirical Evaluation," KIER Working Papers 778, Kyoto University, Institute of Economic Research.
- Caporin, M. & McAleer, M.J., 2011. "Ranking Multivariate GARCH Models by Problem Dimension: An Empirical Evaluation," Econometric Institute Research Papers EI 2011-18, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
- Conrad, Christian & Loch, Karin & Rittler, Daniel, 2014. "On the macroeconomic determinants of long-term volatilities and correlations in U.S. stock and crude oil markets," Journal of Empirical Finance, Elsevier, vol. 29(C), pages 26-40.
- Manabu Asai & Michael McAleer, 2018.
"Bayesian Analysis of Realized Matrix-Exponential GARCH Models,"
Tinbergen Institute Discussion Papers
18-005/III, Tinbergen Institute.
- Manabu Asai & Michael McAleer, 2018. "Bayesian analysis of realized matrix-exponential GARCH models," Documentos de Trabajo del ICAE 2018-04, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
- Asai, M. & McAleer, M.J., 2018. "Bayesian Analysis of Realized Matrix-Exponential GARCH Models," Econometric Institute Research Papers 2018-005/III, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
- Manabu Asai & Michael McAleer, 2022. "Bayesian Analysis of Realized Matrix-Exponential GARCH Models," Computational Economics, Springer;Society for Computational Economics, vol. 59(1), pages 103-123, January.
- Xie, Nan & Wang, Zongrun & Chen, Sicen & Gong, Xu, 2019. "Forecasting downside risk in China’s stock market based on high-frequency data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 517(C), pages 530-541.
- Li, Tao & Ma, Feng & Zhang, Xuehua & Zhang, Yaojie, 2020. "Economic policy uncertainty and the Chinese stock market volatility: Novel evidence," Economic Modelling, Elsevier, vol. 87(C), pages 24-33.
- Hecq, A.W. & Palm, F.C. & Laurent, S.F.J.A., 2011.
"Common intraday periodicity,"
Research Memorandum
010, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
- Alain Hecq & Sébastien Laurent & Franz C. Palm, 2011. "Common Intraday Periodicity," Journal of Financial Econometrics, Oxford University Press, vol. 10(2), pages 325-353, 2012 20 1.
- Carlos Trucíos & Mauricio Zevallos & Luiz K. Hotta & André A. P. Santos, 2019. "Covariance Prediction in Large Portfolio Allocation," Econometrics, MDPI, vol. 7(2), pages 1-24, May.
- Hallin, Marc & Trucíos, Carlos, 2023. "Forecasting value-at-risk and expected shortfall in large portfolios: A general dynamic factor model approach," Econometrics and Statistics, Elsevier, vol. 27(C), pages 1-15.
- Xiaoning Kang & Xinwei Deng & Kam‐Wah Tsui & Mohsen Pourahmadi, 2020. "On variable ordination of modified Cholesky decomposition for estimating time‐varying covariance matrices," International Statistical Review, International Statistical Institute, vol. 88(3), pages 616-641, December.
- Manabu Asai & Chia-Lin Chang & Michael McAleer & Laurent Pauwels, 2021. "Asymptotic and Finite Sample Properties for Multivariate Rotated GARCH Models," Econometrics, MDPI, vol. 9(2), pages 1-21, May.
- Qianjie Geng & Xianfeng Hao & Yudong Wang, 2024. "Forecasting the volatility of crude oil futures: A time‐dependent weighted least squares with regularization constraint," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(2), pages 309-325, March.
- Weigand, Roland, 2014.
"Matrix Box-Cox Models for Multivariate Realized Volatility,"
University of Regensburg Working Papers in Business, Economics and Management Information Systems
478, University of Regensburg, Department of Economics.
- Roland Weigand, 2014. "Matrix Box-Cox Models for Multivariate Realized Volatility," Working Papers 144, Bavarian Graduate Program in Economics (BGPE).
- Adam Clements & Ayesha Scott & Annastiina Silvennoinen, 2013. "On the Benefits of Equicorrelation for Portfolio Allocation," NCER Working Paper Series 99, National Centre for Econometric Research.
- Audrino, Francesco, 2014.
"Forecasting correlations during the late-2000s financial crisis: The short-run component, the long-run component, and structural breaks,"
Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 43-60.
- Audrino, Francesco, 2011. "Forecasting correlations during the late-2000s financial crisis: short-run component, long-run component, and structural breaks," Economics Working Paper Series 1112, University of St. Gallen, School of Economics and Political Science.
- Wang Pu & Yixiang Chen & Feng Ma, 2016. "Forecasting the realized volatility in the Chinese stock market: further evidence," Applied Economics, Taylor & Francis Journals, vol. 48(33), pages 3116-3130, July.
- Yudong Wang & Chongfeng Wu & Li Yang, 2015. "Hedging with Futures: Does Anything Beat the Naïve Hedging Strategy?," Management Science, INFORMS, vol. 61(12), pages 2870-2889, December.
- Karl Oton Rudolf & Samer Ajour El Zein & Nicola Jackman Lansdowne, 2021. "Bitcoin as an Investment and Hedge Alternative. A DCC MGARCH Model Analysis," Risks, MDPI, vol. 9(9), pages 1-22, August.
- Mohammad Alomari & David. M. Power & Nongnuch Tantisantiwong, 2018. "Determinants of equity return correlations: a case study of the Amman Stock Exchange," Review of Quantitative Finance and Accounting, Springer, vol. 50(1), pages 33-66, January.
- Fresoli, Diego Eduardo, 2014.
"The uncertainty of conditional returns, volatilities and correlations in DCC models,"
DES - Working Papers. Statistics and Econometrics. WS
ws140202, Universidad Carlos III de Madrid. Departamento de EstadÃstica.
- Fresoli, Diego E. & Ruiz, Esther, 2016. "The uncertainty of conditional returns, volatilities and correlations in DCC models," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 170-185.
- Dhaene, Geert & Wu, Jianbin, 2020. "Incorporating overnight and intraday returns into multivariate GARCH volatility models," Journal of Econometrics, Elsevier, vol. 217(2), pages 471-495.
- Ma, Feng & Wahab, M.I.M. & Zhang, Yaojie, 2019. "Forecasting the U.S. stock volatility: An aligned jump index from G7 stock markets," Pacific-Basin Finance Journal, Elsevier, vol. 54(C), pages 132-146.
- Zhang, Lixia & Bai, Jiancheng & Zhang, Yueyan & Cui, Can, 2023. "Global economic uncertainty and the Chinese stock market: Assessing the impacts of global indicators," Research in International Business and Finance, Elsevier, vol. 65(C).
- Aielli, Gian Piero & Caporin, Massimiliano, 2014.
"Variance clustering improved dynamic conditional correlation MGARCH estimators,"
Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 556-576.
- Gian Piero Aielli & Massimiliano Caporin, 2011. "Variance Clustering Improved Dynamic Conditional Correlation MGARCH Estimators," "Marco Fanno" Working Papers 0133, Dipartimento di Scienze Economiche "Marco Fanno".
- Christian Francq & Jean-Michel Zakoïan, 2016. "Estimating multivariate volatility models equation by equation," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(3), pages 613-635, June.
- Dimitrios P. Louzis, 2015. "The economic value of flexible dynamic correlation models," Economics Bulletin, AccessEcon, vol. 35(1), pages 774-782.
- Dark, Jonathan, 2018. "Multivariate models with long memory dependence in conditional correlation and volatility," Journal of Empirical Finance, Elsevier, vol. 48(C), pages 162-180.
- Inoue, Atsushi & Jin, Lu & Rossi, Barbara, 2017.
"Rolling window selection for out-of-sample forecasting with time-varying parameters,"
Journal of Econometrics, Elsevier, vol. 196(1), pages 55-67.
- Atsushi Inoue & Lu Jin & Barbara Rossi, 2014. "Rolling window selection for out-of-sample forecasting with time-varying parameters," Economics Working Papers 1435, Department of Economics and Business, Universitat Pompeu Fabra, revised Apr 2016.
- Atsushi Inoue & Lu Jin & Barbara Rossi, 2014. "Rolling Window Selection for Out-of-Sample Forecasting with Time-Varying Parameters," Working Papers 768, Barcelona School of Economics.
- Jacobs, Michael & Karagozoglu, Ahmet K., 2014. "On the characteristics of dynamic correlations between asset pairs," Research in International Business and Finance, Elsevier, vol. 32(C), pages 60-82.
- Feng Ma & Yu Wei & Wang Chen & Feng He, 2018. "Forecasting the volatility of crude oil futures using high-frequency data: further evidence," Empirical Economics, Springer, vol. 55(2), pages 653-678, September.
- Peng, Huan & Chen, Ruoxun & Mei, Dexiang & Diao, Xiaohua, 2018. "Forecasting the realized volatility of the Chinese stock market: Do the G7 stock markets help?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 501(C), pages 78-85.
- Adam E Clements & Mark Doolan & Stan Hurn & Ralf Becker, 2012. "Selecting forecasting models for portfolio allocation," NCER Working Paper Series 85, National Centre for Econometric Research.
- Adam Clements & Ayesha Scott & Annastiina Silvennoinen, 2019. "Volatility-dependent correlations: further evidence of when, where and how," Empirical Economics, Springer, vol. 57(2), pages 505-540, August.
- Timo Dimitriadis & Yannick Hoga, 2022. "Dynamic CoVaR Modeling," Papers 2206.14275, arXiv.org, revised Feb 2024.
- Sylvain Barde, 2015. "A fast algorithm for finding the confidence set of large collections of models," Studies in Economics 1519, School of Economics, University of Kent.
- Adam Clements & Ayesha Scott & Annastiina Silvennoinen, 2016. "Volatility Dependent Dynamic Equicorrelation," NCER Working Paper Series 111, National Centre for Econometric Research.
- Fei Su, 2018. "Essays on Price Discovery and Volatility Dynamics in the Foreign Exchange Market," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 2-2018, January-A.
- Al Mamun, Md & Uddin, Gazi Salah & Suleman, Muhammad Tahir & Kang, Sang Hoon, 2020. "Geopolitical risk, uncertainty and Bitcoin investment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
- Yuqing Feng & Yaojie Zhang & Yudong Wang, 2024. "Out‐of‐sample volatility prediction: Rolling window, expanding window, or both?," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(3), pages 567-582, April.
- Marchese, Malvina & Kyriakou, Ioannis & Tamvakis, Michael & Di Iorio, Francesca, 2020. "Forecasting crude oil and refined products volatilities and correlations: New evidence from fractionally integrated multivariate GARCH models," Energy Economics, Elsevier, vol. 88(C).
- Szymon Lis & Marcin Chlebus, 2021. "Comparison of the accuracy in VaR forecasting for commodities using different methods of combining forecasts," Working Papers 2021-11, Faculty of Economic Sciences, University of Warsaw.
- Chao Liang & Yu Wei & Likun Lei & Feng Ma, 2022. "Global equity market volatility forecasting: New evidence," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(1), pages 594-609, January.
- Radovan Parrák, 2013. "The Economic Valuation of Variance Forecasts: An Artificial Option Market Approach," Working Papers IES 2013/09, Charles University Prague, Faculty of Social Sciences, Institute of Economic Studies, revised Aug 2013.
- Wang, Yizhi & Lucey, Brian M. & Vigne, Samuel A. & Yarovaya, Larisa, 2022. "The Effects of Central Bank Digital Currencies News on Financial Markets," Technological Forecasting and Social Change, Elsevier, vol. 180(C).
- Stavroula P. Fameliti & Vasiliki D. Skintzi, 2020. "Predictive ability and economic gains from volatility forecast combinations," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(2), pages 200-219, March.
- Lakshina, Valeriya, 2014. "Is it possible to break the «curse of dimensionality»? Spatial specifications of multivariate volatility models," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 36(4), pages 61-78.
- Ma, Feng & Wahab, M.I.M. & Huang, Dengshi & Xu, Weiju, 2017. "Forecasting the realized volatility of the oil futures market: A regime switching approach," Energy Economics, Elsevier, vol. 67(C), pages 136-145.
- Symitsi, Efthymia & Symeonidis, Lazaros & Kourtis, Apostolos & Markellos, Raphael, 2018. "Covariance forecasting in equity markets," Journal of Banking & Finance, Elsevier, vol. 96(C), pages 153-168.
- Kim, Myeong Hyeon & Sun, Lingxia, 2017. "Dynamic conditional correlations between Chinese sector returns and the S&P 500 index: An interpretation based on investment shocks," International Review of Economics & Finance, Elsevier, vol. 48(C), pages 309-325.
- Roberto Savona & Cesare Orsini, 2019. "Taking the right course navigating the ERC universe," Journal of Asset Management, Palgrave Macmillan, vol. 20(3), pages 157-174, May.
- Ma, Feng & Zhang, Yaojie & Huang, Dengshi & Lai, Xiaodong, 2018. "Forecasting oil futures price volatility: New evidence from realized range-based volatility," Energy Economics, Elsevier, vol. 75(C), pages 400-409.
- Chen, Yixiang & Ma, Feng & Zhang, Yaojie, 2019. "Good, bad cojumps and volatility forecasting: New evidence from crude oil and the U.S. stock markets," Energy Economics, Elsevier, vol. 81(C), pages 52-62.
- LAURENT, Sebastien & ROMBOUTS, Jeroen V.K. & VIOLANTE, FRANCESCO, 2009.
"Consistent ranking of multivariate volatility models,"
LIDAM Discussion Papers CORE
2009002, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
Cited by:
- Rasmus Tangsgaard Varneskov, 2011. "Flat-Top Realized Kernel Estimation of Quadratic Covariation with Non-Synchronous and Noisy Asset Prices," CREATES Research Papers 2011-35, Department of Economics and Business Economics, Aarhus University.
- Denisa Banulescu-Radu & Christophe Hurlin & Bertrand Candelon & Sébastien Laurent, 2016.
"Do We Need High Frequency Data to Forecast Variances?,"
Post-Print
hal-01448237, HAL.
- Denisa Banulescu-Radu & Christophe Hurlin & Bertrand Candelon & Sébastien Laurent, 2016. "Do We Need High Frequency Data to Forecast Variances?," Annals of Economics and Statistics, GENES, issue 123-124, pages 135-174.
- Varneskov, Rasmus & Voev, Valeri, 2013.
"The role of realized ex-post covariance measures and dynamic model choice on the quality of covariance forecasts,"
Journal of Empirical Finance, Elsevier, vol. 20(C), pages 83-95.
- Rasmus Tangsgaard Varneskov & Valeri Voev, 2010. "The Role of Realized Ex-post Covariance Measures and Dynamic Model Choice on the Quality of Covariance Forecasts," CREATES Research Papers 2010-45, Department of Economics and Business Economics, Aarhus University.
- Kevin Sheppard & Wen Xu, 2014. "Factor High-Frequency Based Volatility (HEAVY) Models," Economics Series Working Papers 710, University of Oxford, Department of Economics.
- Manner, Hans & Reznikova, Olga, 2010. "Forecasting international stock market correlations: does anything beat a CCC?," Discussion Papers in Econometrics and Statistics 7/10, University of Cologne, Institute of Econometrics and Statistics.
- Georgiana-Denisa Banulescu & Bertrand Candelon & Christophe Hurlin & Sébastien Laurent, 2014. "Do We Need Ultra-High Frequency Data to Forecast Variances?," Working Papers halshs-01078158, HAL.
- Nicholas Taylor, 2014. "The Economic Value of Volatility Forecasts: A Conditional Approach," Journal of Financial Econometrics, Oxford University Press, vol. 12(3), pages 433-478.
- Audrino, Francesco, 2014.
"Forecasting correlations during the late-2000s financial crisis: The short-run component, the long-run component, and structural breaks,"
Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 43-60.
- Audrino, Francesco, 2011. "Forecasting correlations during the late-2000s financial crisis: short-run component, long-run component, and structural breaks," Economics Working Paper Series 1112, University of St. Gallen, School of Economics and Political Science.
- Valeri Voev, 2009. "On the Economic Evaluation of Volatility Forecasts," CREATES Research Papers 2009-56, Department of Economics and Business Economics, Aarhus University.
- Sébastien Laurent & Jeroen V.K. Rombouts & Francesco Violante, 2009.
"On Loss Functions and Ranking Forecasting Performances of Multivariate Volatility Models,"
Cahiers de recherche
0948, CIRPEE.
- Laurent, Sébastien & Rombouts, Jeroen V.K. & Violante, Francesco, 2013. "On loss functions and ranking forecasting performances of multivariate volatility models," Journal of Econometrics, Elsevier, vol. 173(1), pages 1-10.
- Sébastien Laurent & Jeroen Rombouts & Francesco Violente, 2009. "On Loss Functions and Ranking Forecasting Performances of Multivariate Volatility Models," CIRANO Working Papers 2009s-45, CIRANO.
Cited by:
- Gong, Xu & Lin, Boqiang, 2018. "The incremental information content of investor fear gauge for volatility forecasting in the crude oil futures market," Energy Economics, Elsevier, vol. 74(C), pages 370-386.
- Emilio Zanetti Chini, 2018.
"Forecaster’s utility and forecasts coherence,"
CREATES Research Papers
2018-01, Department of Economics and Business Economics, Aarhus University.
- Emilio Zanetti Chini, 2018. "Forecaster’s utility and forecasts coherence," DEM Working Papers Series 145, University of Pavia, Department of Economics and Management.
- Emilio Zanetti Chini, 2018. "Forecasters’ utility and forecast coherence," CREATES Research Papers 2018-23, Department of Economics and Business Economics, Aarhus University.
- Pawel Janus & Siem Jan Koopman & André Lucas, 2011.
"Long Memory Dynamics for Multivariate Dependence under Heavy Tails,"
Tinbergen Institute Discussion Papers
11-175/2/DSF28, Tinbergen Institute.
- Janus, Paweł & Koopman, Siem Jan & Lucas, André, 2014. "Long memory dynamics for multivariate dependence under heavy tails," Journal of Empirical Finance, Elsevier, vol. 29(C), pages 187-206.
- Bauwens, Luc & Xu, Yongdeng, 2023.
"DCC- and DECO-HEAVY: Multivariate GARCH models based on realized variances and correlations,"
International Journal of Forecasting, Elsevier, vol. 39(2), pages 938-955.
- Bauwens, Luc & Xu, Yongdeng, 2019. "DCC and DECO-HEAVY: a multivariate GARCH model based on realized variances and correlations," Cardiff Economics Working Papers E2019/5, Cardiff University, Cardiff Business School, Economics Section, revised Aug 2021.
- Jérémy Leymarie & Christophe Hurlin & Antoine Patin, 2018.
"Loss Functions for LGD Models Comparison,"
Post-Print
hal-01923050, HAL.
- Christophe Hurlin & Jérémy Leymarie & Antoine Patin, 2018. "Loss functions for LGD model comparison," Working Papers halshs-01516147, HAL.
- Bauwens, Luc & Braione, Manuela & Storti, Giuseppe, 2017.
"A dynamic component model for forecasting high-dimensional realized covariance matrices,"
Econometrics and Statistics, Elsevier, vol. 1(C), pages 40-61.
- Luc Bauwens & Manuela Braione & Giuseppe Storti, 2020. "A Dynamic Component Model for Forecasting High-Dimensional Realized Covariances Matrices," Working Papers 3_234, Dipartimento di Scienze Economiche e Statistiche, Università degli Studi di Salerno, revised Jul 2020.
- Luc BAUWENS, Manuela BRAIONE and Giuseppe STORTI & Luc BAUWENS, Manuela BRAIONE and Giuseppe STORTI & Luc BAUWENS, Manuela BRAIONE and Giuseppe STORTI, 2017. "A dynamic component model for forecasting high-dimensional realized covariance matrices," LIDAM Reprints CORE 2812, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- BAUWENS, Luc & BRAIONE, Manuela & STORTI, Giuseppe, 2016. "A dynamic component model for forecasting high-dimensional realized covariance matrices," LIDAM Discussion Papers CORE 2016001, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Asai, Manabu & Gupta, Rangan & McAleer, Michael, 2020.
"Forecasting volatility and co-volatility of crude oil and gold futures: Effects of leverage, jumps, spillovers, and geopolitical risks,"
International Journal of Forecasting, Elsevier, vol. 36(3), pages 933-948.
- Manabu Asai & Rangan Gupta & Michael McAleer, 2019. "Forecasting Volatility and Co-volatility of Crude Oil and Gold Futures: Effects of Leverage, Jumps, Spillovers, and Geopolitical Risks," Working Papers 201951, University of Pretoria, Department of Economics.
- Tobias Fissler & Yannick Hoga, 2024. "How to Compare Copula Forecasts?," Papers 2410.04165, arXiv.org.
- Kawakatsu Hiroyuki, 2021. "Simple Multivariate Conditional Covariance Dynamics Using Hyperbolically Weighted Moving Averages," Journal of Econometric Methods, De Gruyter, vol. 10(1), pages 33-52, January.
- Andrea Bucci & Michele Palma & Chao Zhang, 2024. "Geometric Deep Learning for Realized Covariance Matrix Forecasting," Papers 2412.09517, arXiv.org.
- Tim Bollerslev & Andrew J. Patton & Rogier Quaedvlieg, 2016.
"Modeling and Forecasting (Un)Reliable Realized Covariances for More Reliable Financial Decisions,"
CREATES Research Papers
2016-10, Department of Economics and Business Economics, Aarhus University.
- Bollerslev, Tim & Patton, Andrew J. & Quaedvlieg, Rogier, 2018. "Modeling and forecasting (un)reliable realized covariances for more reliable financial decisions," Journal of Econometrics, Elsevier, vol. 207(1), pages 71-91.
- João F. Caldeira & Guilherme V. Moura & Francisco J. Nogales & André A. P. Santos, 2017. "Combining Multivariate Volatility Forecasts: An Economic-Based Approach," Journal of Financial Econometrics, Oxford University Press, vol. 15(2), pages 247-285.
- E. Ngounda & K. C. Patidar & E. Pindza, 2014. "A Robust Spectral Method for Solving Heston’s Model," Journal of Optimization Theory and Applications, Springer, vol. 161(1), pages 164-178, April.
- Boudt, Kris & Daníelsson, Jón & Laurent, Sébastien, 2013. "Robust forecasting of dynamic conditional correlation GARCH models," International Journal of Forecasting, Elsevier, vol. 29(2), pages 244-257.
- ROMBOUTS, Jeroen V. K. & STENTOFT, Lars & VIOLANTE, Francesco, 2012.
"The value of multivariate model sophistication: an application to pricing Dow Jones Industrial Average options,"
LIDAM Discussion Papers CORE
2012003, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Rombouts, Jeroen & Stentoft, Lars & Violante, Franceso, 2014. "The value of multivariate model sophistication: An application to pricing Dow Jones Industrial Average options," International Journal of Forecasting, Elsevier, vol. 30(1), pages 78-98.
- Jeroen Rombouts & Lars Stentoft & Francesco Violente, 2012. "The Value of Multivariate Model Sophistication: An Application to pricing Dow Jones Industrial Average Options," CIRANO Working Papers 2012s-05, CIRANO.
- Jeroen V.K. Rombouts & Lars Stentoft & Francesco Violante, 2012. "The Value of Multivariate Model Sophistication: An Application to pricing Dow Jones Industrial Average options," CREATES Research Papers 2012-04, Department of Economics and Business Economics, Aarhus University.
- Bonato, Mateo & Caporin, Massimiliano & Ranaldo, Angelo, 2012.
"Risk Spillovers in International Equity Portfolios,"
Working Papers on Finance
1214, University of St. Gallen, School of Finance.
- Matteo Bonato & Massimiliano Caporin & Angelo Ranaldo, 2012. "Risk spillovers in international equity portfolios," Working Papers 2012-03, Swiss National Bank.
- Bonato, Matteo & Caporin, Massimiliano & Ranaldo, Angelo, 2013. "Risk spillovers in international equity portfolios," Journal of Empirical Finance, Elsevier, vol. 24(C), pages 121-137.
- Ralf Becker & Adam Clements & Robert O'Neill, 2010.
"A Kernel Technique for Forecasting the Variance-Covariance Matrix,"
Centre for Growth and Business Cycle Research Discussion Paper Series
151, Economics, The University of Manchester.
- Ralf Becker & Adam Clements & Robert O'Neill, 2010. "A Kernel Technique for Forecasting the Variance-Covariance Matrix," NCER Working Paper Series 66, National Centre for Econometric Research.
- Massimiliano Caporin & Michael McAleer, 2010.
"Ranking Multivariate GARCH Models by Problem Dimension,"
CARF F-Series
CARF-F-219, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
- Caporin, M. & McAleer, M.J., 2010. "Ranking multivariate GARCH models by problem dimension," Econometric Institute Research Papers EI 2010-34, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
- Massimiliano Caporin & Michael McAleer, 2010. "Ranking Multivariate GARCH Models by Problem Dimension," CIRJE F-Series CIRJE-F-742, CIRJE, Faculty of Economics, University of Tokyo.
- Massimiliano Caporin & Michael McAleer, 2010. "Ranking Multivariate GARCH Models by Problem Dimension," "Marco Fanno" Working Papers 0124, Dipartimento di Scienze Economiche "Marco Fanno".
- Massimiliano Caporin & Michael McAleer, 2010. "Ranking Multivariate GARCH Models by Problem Dimension," Working Papers in Economics 10/34, University of Canterbury, Department of Economics and Finance.
- Becker, R. & Clements, A.E. & Doolan, M.B. & Hurn, A.S., 2015. "Selecting volatility forecasting models for portfolio allocation purposes," International Journal of Forecasting, Elsevier, vol. 31(3), pages 849-861.
- Chini, Emilio Zanetti, 2023. "Can we estimate macroforecasters’ mis-behavior?," Journal of Economic Dynamics and Control, Elsevier, vol. 149(C).
- Tobias Hartl & Roland Weigand, 2018.
"Multivariate Fractional Components Analysis,"
Papers
1812.09149, arXiv.org, revised Jan 2019.
- Hartl, Tobias & Weigand, Roland, 2019. "Multivariate Fractional Components Analysis," University of Regensburg Working Papers in Business, Economics and Management Information Systems 38283, University of Regensburg, Department of Economics.
- Anne Opschoor & André Lucas & István Barra & Dick van Dijk, 2021.
"Closed-Form Multi-Factor Copula Models With Observation-Driven Dynamic Factor Loadings,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(4), pages 1066-1079, October.
- Anne Opschoor & André Lucas & Istvan Barra & Dick van Dijk, 2019. "Closed-Form Multi-Factor Copula Models with Observation-Driven Dynamic Factor Loadings," Tinbergen Institute Discussion Papers 19-013/IV, Tinbergen Institute, revised 23 Oct 2019.
- LAURENT, Sébastien & ROMBOUTS, Jeroen V. K. & VIOLANTE, Francesco, 2010.
"On the forecasting accuracy of multivariate GARCH models,"
LIDAM Discussion Papers CORE
2010025, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Sébastien Laurent & Jeroen V.K. Rombouts & Francesco Violante, 2010. "On the Forecasting Accuracy of Multivariate GARCH Models," Cahiers de recherche 1021, CIRPEE.
- Sébastien Laurent & Jeroen V. K. Rombouts & Francesco Violante, 2012. "On the forecasting accuracy of multivariate GARCH models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 27(6), pages 934-955, September.
- Ralf Becker & Adam Clements & Robert O'Neill, 2018. "A Multivariate Kernel Approach to Forecasting the Variance Covariance of Stock Market Returns," Econometrics, MDPI, vol. 6(1), pages 1-27, February.
- Carlo Drago & Andrea Scozzari, 2022. "Evaluating conditional covariance estimates via a new targeting approach and a networks-based analysis," Papers 2202.02197, arXiv.org.
- Massimiliano Caporin & Michael McAleer, 2010.
"Model Selection and Testing of Conditional and Stochastic Volatility Models,"
KIER Working Papers
724, Kyoto University, Institute of Economic Research.
- Massimiliano Caporin & Michael McAleer, 2010. "Model Selection and Testing of Conditional and Stochastic Volatility Models," Working Papers in Economics 10/58, University of Canterbury, Department of Economics and Finance.
- Caporin, M. & McAleer, M.J., 2010. "Model Selection and Testing of Conditional and Stochastic Volatility Models," Econometric Institute Research Papers EI 2010-57, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
- Denisa BANULESCU-RADU & Elena Ivona DUMITRESCU, 2019.
"Do High-frequency-based Measures Improve Conditional Covariance Forecasts?,"
LEO Working Papers / DR LEO
2709, Orleans Economics Laboratory / Laboratoire d'Economie d'Orleans (LEO), University of Orleans.
- Elena Ivona Dumitrescu & Georgiana-Denisa Banulescu, 2019. "Do High-frequency-based Measures Improve Conditional Covariance Forecasts?," Post-Print hal-03331122, HAL.
- Diaa Noureldin & Neil Shephard & Kevin Sheppard, 2011.
"Multivariate High-Frequency-Based Volatility (HEAVY) Models,"
Economics Papers
2011-W01, Economics Group, Nuffield College, University of Oxford.
- Diaa Noureldin & Neil Shephard & Kevin Sheppard, 2011. "Multivariate High-Frequency-Based Volatility (HEAVY) Models," Economics Series Working Papers 533, University of Oxford, Department of Economics.
- Diaa Noureldin & Neil Shephard & Kevin Sheppard, 2012. "Multivariate high‐frequency‐based volatility (HEAVY) models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 27(6), pages 907-933, September.
- Vincenzo Candila, 2013. "A Comparison of the Forecasting Performances of Multivariate Volatility Models," Working Papers 3_228, Dipartimento di Scienze Economiche e Statistiche, Università degli Studi di Salerno.
- Golosnoy, Vasyl & Gribisch, Bastian & Liesenfeld, Roman, 2010.
"The conditional autoregressive wishart model for multivariate stock market volatility,"
Economics Working Papers
2010-07, Christian-Albrechts-University of Kiel, Department of Economics.
- Golosnoy, Vasyl & Gribisch, Bastian & Liesenfeld, Roman, 2012. "The conditional autoregressive Wishart model for multivariate stock market volatility," Journal of Econometrics, Elsevier, vol. 167(1), pages 211-223.
- Caporin, M. & McAleer, M.J., 2012.
"Robust Ranking of Multivariate GARCH Models by Problem Dimension,"
Econometric Institute Research Papers
EI2012-13, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
- Caporin, Massimiliano & McAleer, Michael, 2014. "Robust ranking of multivariate GARCH models by problem dimension," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 172-185.
- Michael McAleer & Massimiliano Caporin, 2012. "Robust Ranking of Multivariate GARCH Models by Problem Dimension," KIER Working Papers 815, Kyoto University, Institute of Economic Research.
- Massimiliano Caporin & Michael McAleer, 2012. "Robust Ranking of Multivariate GARCH Models by Problem Dimension," Working Papers in Economics 12/06, University of Canterbury, Department of Economics and Finance.
- Massimiliano Caporin & Michael McAleer, 2012. "Robust Ranking of Multivariate GARCH Models by Problem Dimension," Documentos de Trabajo del ICAE 2012-06, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico, revised Apr 2012.
- Bucci, Andrea & Palomba, Giulio & Rossi, Eduardo, 2023. "The role of uncertainty in forecasting volatility comovements across stock markets," Economic Modelling, Elsevier, vol. 125(C).
- L. Bauwens & E. Otranto, 2020.
"Modelling Realized Covariance Matrices: a Class of Hadamard Exponential Models,"
Working Paper CRENoS
202007, Centre for North South Economic Research, University of Cagliari and Sassari, Sardinia.
- Bauwens, Luc & Otranto, Edoardo, 2022. "Modeling Realized Covariance Matrices: A Class of Hadamard Exponential Models," LIDAM Reprints CORE 3202, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Luc Bauwens & Edoardo Otranto, 2023. "Modeling Realized Covariance Matrices: A Class of Hadamard Exponential Models," Journal of Financial Econometrics, Oxford University Press, vol. 21(4), pages 1376-1401.
- Bauwens, Luc & Otranto, Edoardo, 2020. "Modelling Realized Covariance Matrices: a Class of Hadamard Exponential Models," LIDAM Discussion Papers CORE 2020034, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Carroll, Rachael & Conlon, Thomas & Cotter, John & Salvador, Enrique, 2017. "Asset allocation with correlation: A composite trade-off," European Journal of Operational Research, Elsevier, vol. 262(3), pages 1164-1180.
- Amendola, Alessandra & Braione, Manuela & Candila, Vincenzo & Storti, Giuseppe, 2020. "A Model Confidence Set approach to the combination of multivariate volatility forecasts," International Journal of Forecasting, Elsevier, vol. 36(3), pages 873-891.
- Jingwei Pan, 0000. "Evaluating Correlation Forecasts Under Asymmetric Loss," Proceedings of Economics and Finance Conferences 11413234, International Institute of Social and Economic Sciences.
- Hamid, Alain & Heiden, Moritz, 2015. "Forecasting volatility with empirical similarity and Google Trends," Journal of Economic Behavior & Organization, Elsevier, vol. 117(C), pages 62-81.
- Laurent, Sébastien & Lecourt, Christelle & Palm, Franz C., 2016.
"Testing for jumps in conditionally Gaussian ARMA–GARCH models, a robust approach,"
Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 383-400.
- Sébastien Laurent & Christelle Lecourt & Franz C. Palm, 2016. "Testing for jumps in conditionally Gaussian ARMA-GARCH models, a robust approach," Post-Print hal-01447861, HAL.
- Sui, Bo & Chang, Chun-Ping & Jang, Chyi-Lu & Gong, Qiang, 2021. "Analyzing causality between epidemics and oil prices: Role of the stock market," Economic Analysis and Policy, Elsevier, vol. 70(C), pages 148-158.
- de Almeida, Daniel & Hotta, Luiz K. & Ruiz, Esther, 2018.
"MGARCH models: Trade-off between feasibility and flexibility,"
International Journal of Forecasting, Elsevier, vol. 34(1), pages 45-63.
- Almeida, Daniel de & Hotta, Luiz, 2015. "MGARCH models: tradeoff between feasibility and flexibility," DES - Working Papers. Statistics and Econometrics. WS ws1516, Universidad Carlos III de Madrid. Departamento de EstadÃstica.
- Xu Gong & Boqiang Lin, 2018. "Structural breaks and volatility forecasting in the copper futures market," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 38(3), pages 290-339, March.
- Gneiting, Tilmann, 2011. "Making and Evaluating Point Forecasts," Journal of the American Statistical Association, American Statistical Association, vol. 106(494), pages 746-762.
- Luc Bauwens & Manuela Braione & Giuseppe Storti, 2016.
"Forecasting comparison of long term component dynamic models for realized covariance matrices,"
LIDAM Reprints CORE
2923, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Luc Bauwens & Manuela Braione & Giuseppe Storti, 2016. "Forecasting Comparison of Long Term Component Dynamic Models for Realized Covariance Matrices," Annals of Economics and Statistics, GENES, issue 123-124, pages 103-134.
- BAUWENS, Luc & BRAIONE, Manuela & STORTI, Giuseppe, 2014. "Forecasting comparison of long term component dynamic models for realized covariance matrices," LIDAM Discussion Papers CORE 2014053, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Wilms, Ines & Rombouts, Jeroen & Croux, Christophe, 2021. "Multivariate volatility forecasts for stock market indices," International Journal of Forecasting, Elsevier, vol. 37(2), pages 484-499.
- Gian Piero Aielli & Massimiliano Caporin, 2015. "Dynamic Principal Components: a New Class of Multivariate GARCH Models," "Marco Fanno" Working Papers 0193, Dipartimento di Scienze Economiche "Marco Fanno".
- Moura, Guilherme V. & Santos, André A. P., 2019. "Comparing Forecasts of Extremely Large Conditional Covariance Matrices," DES - Working Papers. Statistics and Econometrics. WS 29291, Universidad Carlos III de Madrid. Departamento de EstadÃstica.
- Ralf Becker & Adam Clements & Robert O'Neill, 2010.
"A Cholesky-MIDAS model for predicting stock portfolio volatility,"
Centre for Growth and Business Cycle Research Discussion Paper Series
149, Economics, The University of Manchester.
- Ralf Becker & Adam Clements & Robert O'Neill, 2010. "A Cholesky-MIDAS model for predicting stock portfolio volatility," NCER Working Paper Series 60, National Centre for Econometric Research.
- Kevin Sheppard & Wen Xu, 2019. "Factor High-Frequency-Based Volatility (HEAVY) Models," Journal of Financial Econometrics, Oxford University Press, vol. 17(1), pages 33-65.
- Fiszeder, Piotr & Fałdziński, Marcin, 2019. "Improving forecasts with the co-range dynamic conditional correlation model," Journal of Economic Dynamics and Control, Elsevier, vol. 108(C).
- Massimiliano Caporin & Michael McAleer, 2011.
"Ranking Multivariate GARCH Models by Problem Dimension: An Empirical Evaluation,"
Working Papers in Economics
11/23, University of Canterbury, Department of Economics and Finance.
- Massimiliano Caporin & Michael McAleer, 2011. "Ranking Multivariate GARCH Models by Problem Dimension: An Empirical Evaluation," Documentos de Trabajo del ICAE 2011-20, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
- Michael McAleer & Massimiliano Caporin, 2011. "Ranking Multivariate GARCH Models by Problem Dimension:An Empirical Evaluation," KIER Working Papers 778, Kyoto University, Institute of Economic Research.
- Caporin, M. & McAleer, M.J., 2011. "Ranking Multivariate GARCH Models by Problem Dimension: An Empirical Evaluation," Econometric Institute Research Papers EI 2011-18, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
- Conrad, Christian & Loch, Karin & Rittler, Daniel, 2014. "On the macroeconomic determinants of long-term volatilities and correlations in U.S. stock and crude oil markets," Journal of Empirical Finance, Elsevier, vol. 29(C), pages 26-40.
- Vincenzo Candila, 2021. "Multivariate Analysis of Cryptocurrencies," Econometrics, MDPI, vol. 9(3), pages 1-17, July.
- Gong, Xu & Lin, Boqiang, 2018. "Structural changes and out-of-sample prediction of realized range-based variance in the stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 494(C), pages 27-39.
- Xie, Nan & Wang, Zongrun & Chen, Sicen & Gong, Xu, 2019. "Forecasting downside risk in China’s stock market based on high-frequency data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 517(C), pages 530-541.
- Christian Conrad & Onno Kleen, 2020. "Two are better than one: Volatility forecasting using multiplicative component GARCH‐MIDAS models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(1), pages 19-45, January.
- Asai, Manabu & Chang, Chia-Lin & McAleer, Michael, 2022. "Realized matrix-exponential stochastic volatility with asymmetry, long memory and higher-moment spillovers," Journal of Econometrics, Elsevier, vol. 227(1), pages 285-304.
- Fiszeder, Piotr & Fałdziński, Marcin & Molnár, Peter, 2023. "Modeling and forecasting dynamic conditional correlations with opening, high, low, and closing prices," Journal of Empirical Finance, Elsevier, vol. 70(C), pages 308-321.
- Xiaoning Kang & Xinwei Deng & Kam‐Wah Tsui & Mohsen Pourahmadi, 2020. "On variable ordination of modified Cholesky decomposition for estimating time‐varying covariance matrices," International Statistical Review, International Statistical Institute, vol. 88(3), pages 616-641, December.
- Geert Dhaene & Piet Sercu & Jianbin Wu, 2022. "Volatility spillovers: A sparse multivariate GARCH approach with an application to commodity markets," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(5), pages 868-887, May.
- LAURENT, Sébastien & VIOLANTE, Francesco, 2012. "Volatility forecasts evaluation and comparison," LIDAM Reprints CORE 2414, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Bauwens, Luc & Dzuverovic, Emilija & Hafner, Christian, 2024.
"Asymmetric Models for Realized Covariances,"
LIDAM Discussion Papers ISBA
2024022, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- Bauwens, Luc & Dzuverovic, Emilija & Hafner, Christian, 2024. "Asymmetric Models for Realized Covariances," LIDAM Discussion Papers CORE 2024024, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Xu Gong & Boqiang Lin, 2021. "Effects of structural changes on the prediction of downside volatility in futures markets," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 41(7), pages 1124-1153, July.
- Bollerslev, Tim & Patton, Andrew J. & Quaedvlieg, Rogier, 2020. "Multivariate leverage effects and realized semicovariance GARCH models," Journal of Econometrics, Elsevier, vol. 217(2), pages 411-430.
- Weigand, Roland, 2014.
"Matrix Box-Cox Models for Multivariate Realized Volatility,"
University of Regensburg Working Papers in Business, Economics and Management Information Systems
478, University of Regensburg, Department of Economics.
- Roland Weigand, 2014. "Matrix Box-Cox Models for Multivariate Realized Volatility," Working Papers 144, Bavarian Graduate Program in Economics (BGPE).
- Audrino, Francesco, 2014.
"Forecasting correlations during the late-2000s financial crisis: The short-run component, the long-run component, and structural breaks,"
Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 43-60.
- Audrino, Francesco, 2011. "Forecasting correlations during the late-2000s financial crisis: short-run component, long-run component, and structural breaks," Economics Working Paper Series 1112, University of St. Gallen, School of Economics and Political Science.
- Jian, Zhihong & Deng, Pingjun & Zhu, Zhican, 2018. "High-dimensional covariance forecasting based on principal component analysis of high-frequency data," Economic Modelling, Elsevier, vol. 75(C), pages 422-431.
- Emilija Dzuverovic & Matteo Barigozzi, 2023. "Hierarchical DCC-HEAVY Model for High-Dimensional Covariance Matrices," Papers 2305.08488, arXiv.org, revised Jul 2024.
- D. Schneller & S. Heiden & M. Heiden & A. Hamid, 2018. "Home is Where You Know Your Volatility – Local Investor Sentiment and Stock Market Volatility," German Economic Review, Verein für Socialpolitik, vol. 19(2), pages 209-236, May.
- Qu, Hui & Zhang, Yi, 2022. "Asymmetric multivariate HAR models for realized covariance matrix: A study based on volatility timing strategies," Economic Modelling, Elsevier, vol. 106(C).
- Fiszeder, Piotr & Fałdziński, Marcin & Molnár, Peter, 2023. "Attention to oil prices and its impact on the oil, gold and stock markets and their covariance," Energy Economics, Elsevier, vol. 120(C).
- Andrea BUCCI, 2017.
"Forecasting Realized Volatility A Review,"
Journal of Advanced Studies in Finance, ASERS Publishing, vol. 8(2), pages 94-138.
- Bucci, Andrea, 2017. "Forecasting realized volatility: a review," MPRA Paper 83232, University Library of Munich, Germany.
- Wenjing Wang & Minjing Tao, 2020. "Forecasting Realized Volatility Matrix With Copula-Based Models," Papers 2002.08849, arXiv.org.
- Mohammad Ahsan Uddin & ASM Maksud Kamal & Shamsuddin Shahid & Eun-Sung Chung, 2020. "Volatility in Rainfall and Predictability of Droughts in Northwest Bangladesh," Sustainability, MDPI, vol. 12(23), pages 1-20, November.
- Jan Patrick Hartkopf, 2023. "Composite forecasting of vast-dimensional realized covariance matrices using factor state-space models," Empirical Economics, Springer, vol. 64(1), pages 393-436, January.
- Dhaene, Geert & Wu, Jianbin, 2020. "Incorporating overnight and intraday returns into multivariate GARCH volatility models," Journal of Econometrics, Elsevier, vol. 217(2), pages 471-495.
- Aielli, Gian Piero & Caporin, Massimiliano, 2014.
"Variance clustering improved dynamic conditional correlation MGARCH estimators,"
Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 556-576.
- Gian Piero Aielli & Massimiliano Caporin, 2011. "Variance Clustering Improved Dynamic Conditional Correlation MGARCH Estimators," "Marco Fanno" Working Papers 0133, Dipartimento di Scienze Economiche "Marco Fanno".
- Xu, Yongdeng, 2024. "Extended multivariate EGARCH model: A model for zero†return and negative spillovers," Cardiff Economics Working Papers E2024/24, Cardiff University, Cardiff Business School, Economics Section.
- BAUWENS Luc, & XU Yongdeng,, 2019. "DCC-HEAVY: A multivariate GARCH model based on realized variances and correlations," LIDAM Discussion Papers CORE 2019025, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Jacobs, Michael & Karagozoglu, Ahmet K., 2014. "On the characteristics of dynamic correlations between asset pairs," Research in International Business and Finance, Elsevier, vol. 32(C), pages 60-82.
- Yu‐Sheng Lai, 2022. "Use of high‐frequency data to evaluate the performance of dynamic hedging strategies," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(1), pages 104-124, January.
- Adam E Clements & Mark Doolan & Stan Hurn & Ralf Becker, 2012. "Selecting forecasting models for portfolio allocation," NCER Working Paper Series 85, National Centre for Econometric Research.
- Denisa BANULESCU-RADU & Laurent FERRARA & Clément MARSILLI, 2019.
"Prévoir la volatilité d’un actif financier à l’aide d’un modèle à mélange de fréquences,"
LEO Working Papers / DR LEO
2710, Orleans Economics Laboratory / Laboratoire d'Economie d'Orleans (LEO), University of Orleans.
- Denisa Georgiana Banulescu & Ferrara Laurent & Marsilli Clément, 2019. "Prévoir la volatilité d’un actif financier à l’aide d’un modèle à mélange de fréquences," Working Papers hal-03563168, HAL.
- Wang, Weichen & An, Ran & Zhu, Ziwei, 2024. "Volatility prediction comparison via robust volatility proxies: An empirical deviation perspective," Journal of Econometrics, Elsevier, vol. 239(2).
- Marchese, Malvina & Kyriakou, Ioannis & Tamvakis, Michael & Di Iorio, Francesca, 2020. "Forecasting crude oil and refined products volatilities and correlations: New evidence from fractionally integrated multivariate GARCH models," Energy Economics, Elsevier, vol. 88(C).
- Liu, Min & Lee, Chien-Chiang, 2021. "Capturing the dynamics of the China crude oil futures: Markov switching, co-movement, and volatility forecasting," Energy Economics, Elsevier, vol. 103(C).
- Radovan Parrák, 2013. "The Economic Valuation of Variance Forecasts: An Artificial Option Market Approach," Working Papers IES 2013/09, Charles University Prague, Faculty of Social Sciences, Institute of Economic Studies, revised Aug 2013.
- Alessandra Amendola & Vincenzo Candila & Antonio Naimoli & Giuseppe Storti, 2024. "Adaptive combinations of tail-risk forecasts," Papers 2406.06235, arXiv.org.
- Yan, Han & Liu, Bin & Zhu, Xingting & Wu, Yan, 2024. "Systemic risk monitoring model from the perspective of public information arrival," The North American Journal of Economics and Finance, Elsevier, vol. 72(C).
- Gribisch, Bastian & Hartkopf, Jan Patrick & Liesenfeld, Roman, 2020. "Factor state–space models for high-dimensional realized covariance matrices of asset returns," Journal of Empirical Finance, Elsevier, vol. 55(C), pages 1-20.
- Symitsi, Efthymia & Symeonidis, Lazaros & Kourtis, Apostolos & Markellos, Raphael, 2018. "Covariance forecasting in equity markets," Journal of Banking & Finance, Elsevier, vol. 96(C), pages 153-168.
- Yu‐Sheng Lai, 2023. "Optimal futures hedging by using realized semicovariances: The information contained in signed high‐frequency returns," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 43(5), pages 677-701, May.
- SANIN, Maria Eugenia & VIOLANTE, Francesco, 2009.
"Understanding volatility dynamics in the EU-ETS market: lessons from the future,"
LIDAM Discussion Papers CORE
2009024, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
Cited by:
- Sklavos, Konstantinos & Dam, Lammertjan & Scholtens, Bert, 2013. "The liquidity of energy stocks," Energy Economics, Elsevier, vol. 38(C), pages 168-175.
- Marc Gronwald & Janina Ketterer, 2009. "Zur Bewertung von Emissionshandel als Politikinstrument," ifo Schnelldienst, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 62(11), pages 22-25, June.
- Boersen, Arieke & Scholtens, Bert, 2014. "The relationship between European electricity markets and emission allowance futures prices in phase II of the EU (European Union) emission trading scheme," Energy, Elsevier, vol. 74(C), pages 585-594.
- Marc Gronwald & Janina Ketterer & Stefan Trück, 2011. "The Dependence Structure between Carbon Emission Allowances and Financial Markets - A Copula Analysis," CESifo Working Paper Series 3418, CESifo.
- Alexander Zeitlberger & Alexander Brauneis, 2016. "Modeling carbon spot and futures price returns with GARCH and Markov switching GARCH models," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 24(1), pages 149-176, March.
- Marc Gronwald & Janina Ketterer, 2009. "Evaluating Emission Trading as a Policy Tool - Evidence from Conditional Jump Models," CESifo Working Paper Series 2682, CESifo.
Articles
- Rombouts, Jeroen V.K. & Stentoft, Lars & Violante, Francesco, 2020.
"Pricing individual stock options using both stock and market index information,"
Journal of Banking & Finance, Elsevier, vol. 111(C).
Cited by:
- Escobar-Anel, Marcos & Rastegari, Javad & Stentoft, Lars, 2020. "Affine multivariate GARCH models," Journal of Banking & Finance, Elsevier, vol. 118(C).
- Escobar-Anel, Marcos & Rastegari, Javad & Stentoft, Lars, 2023. "Covariance dependent kernels, a Q-affine GARCH for multi-asset option pricing," International Review of Financial Analysis, Elsevier, vol. 87(C).
- Rombouts, Jeroen V.K. & Stentoft, Lars & Violante, Francesco, 2020.
"Dynamics of variance risk premia: A new model for disentangling the price of risk,"
Journal of Econometrics, Elsevier, vol. 217(2), pages 312-334.
Cited by:
- Matthew Greenwood-Nimmo & Daan Steenkamp & Rossouw van Jaarsveld, 2022. "CaninformationonthedistributionofZARreturnsbeusedtoimproveSARBsZARforecasts," Working Papers 11035, South African Reserve Bank.
- Gordon Schulze, 2021. "Carry Trade Returns and Segmented Risk Pricing," Atlantic Economic Journal, Springer;International Atlantic Economic Society, vol. 49(1), pages 23-40, March.
- Rombouts, Jeroen V.K. & Stentoft, Lars & Violante, Francesco, 2020.
"Variance swap payoffs, risk premia and extreme market conditions,"
Econometrics and Statistics, Elsevier, vol. 13(C), pages 106-124.
See citations under working paper version above.
- Jeroen V.K. Rombouts & Lars Stentoft & Francesco Violante, 2017. "Variance swap payoffs, risk premia and extreme market conditions," CREATES Research Papers 2017-21, Department of Economics and Business Economics, Aarhus University.
- Barletta, Andrea & Santucci de Magistris, Paolo & Violante, Francesco, 2019.
"A non-structural investigation of VIX risk neutral density,"
Journal of Banking & Finance, Elsevier, vol. 99(C), pages 1-20.
See citations under working paper version above.
- Andrea Barletta & Paolo Santucci de Magistris & Francesco Violante, 2017. "A Non-Structural Investigation of VIX Risk Neutral Density," CREATES Research Papers 2017-15, Department of Economics and Business Economics, Aarhus University.
- Hafner, Christian M. & Laurent, Sebastien & Violante, Francesco, 2017.
"Weak Diffusion Limits Of Dynamic Conditional Correlation Models,"
Econometric Theory, Cambridge University Press, vol. 33(3), pages 691-716, June.
See citations under working paper version above.
- Christian M. HAFNER & Sébastien LAURENT & Francesco VIOLANTE, 2017. "Weak diffusion limits of dynamic conditional correlation models," LIDAM Reprints CORE 2866, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Hafner, Christian & Laurent, Sebastien & Violante, Francesco, 2017. "Weak Diffusion Limits of Dynamic Conditional Correlation Models," LIDAM Reprints ISBA 2017014, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- Hafner, C. & Laurent, S. & Violante, F., 2016. "Weak Diffusion Limits of Dynamic Conditional Correlation Models," LIDAM Discussion Papers ISBA 2016034, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- HAFNER, Christian & LAURENT, Sebastien & VIOLANTE, Francesco, 2016. "Weak Diffusion Limits of Dynamic Conditional Correlation Models," LIDAM Discussion Papers CORE 2016009, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Christian M. Hafner & Sebastien Laurent & Francesco Violante, 2015. "Weak diffusion limits of dynamic conditional correlation models," CREATES Research Papers 2015-03, Department of Economics and Business Economics, Aarhus University.
- Christian M. Hafner & Sébastien Laurent & Francesco Violante, 2017. "Weak Diffusion Limits of Dynamic Conditional Correlation Models," Post-Print hal-01590010, HAL.
- Eugenia Sanin, María & Violante, Francesco & Mansanet-Bataller, María, 2015.
"Understanding volatility dynamics in the EU-ETS market,"
Energy Policy, Elsevier, vol. 82(C), pages 321-331.
See citations under working paper version above.
- Maria Eugenia Sanin & Maria Mansanet-Bataller & Francesco Violante, 2015. "Understanding volatility dynamics in the EU-ETS market," CREATES Research Papers 2015-04, Department of Economics and Business Economics, Aarhus University.
- Maria Eugenia Sanin & Francesco Violante & Maria Mansanet-Bataller, 2015. "Understanding volatility dynamics in the EU-ETS market," Post-Print hal-02878047, HAL.
- Rombouts, Jeroen & Stentoft, Lars & Violante, Franceso, 2014.
"The value of multivariate model sophistication: An application to pricing Dow Jones Industrial Average options,"
International Journal of Forecasting, Elsevier, vol. 30(1), pages 78-98.
See citations under working paper version above.
- ROMBOUTS, Jeroen V. K. & STENTOFT, Lars & VIOLANTE, Francesco, 2012. "The value of multivariate model sophistication: an application to pricing Dow Jones Industrial Average options," LIDAM Discussion Papers CORE 2012003, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Jeroen V.K. Rombouts & Lars Stentoft & Francesco Violante, 2012. "The Value of Multivariate Model Sophistication: An Application to pricing Dow Jones Industrial Average options," CREATES Research Papers 2012-04, Department of Economics and Business Economics, Aarhus University.
- Jeroen Rombouts & Lars Stentoft & Francesco Violente, 2012. "The Value of Multivariate Model Sophistication: An Application to pricing Dow Jones Industrial Average Options," CIRANO Working Papers 2012s-05, CIRANO.
- Laurent, Sébastien & Rombouts, Jeroen V.K. & Violante, Francesco, 2013.
"On loss functions and ranking forecasting performances of multivariate volatility models,"
Journal of Econometrics, Elsevier, vol. 173(1), pages 1-10.
See citations under working paper version above.
- Sébastien Laurent & Jeroen Rombouts & Francesco Violente, 2009. "On Loss Functions and Ranking Forecasting Performances of Multivariate Volatility Models," CIRANO Working Papers 2009s-45, CIRANO.
- Sébastien Laurent & Jeroen V.K. Rombouts & Francesco Violante, 2009. "On Loss Functions and Ranking Forecasting Performances of Multivariate Volatility Models," Cahiers de recherche 0948, CIRPEE.
- Sébastien Laurent & Jeroen V. K. Rombouts & Francesco Violante, 2012.
"On the forecasting accuracy of multivariate GARCH models,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 27(6), pages 934-955, September.
See citations under working paper version above.
- Sébastien Laurent & Jeroen V.K. Rombouts & Francesco Violante, 2010. "On the Forecasting Accuracy of Multivariate GARCH Models," Cahiers de recherche 1021, CIRPEE.
- LAURENT, Sébastien & ROMBOUTS, Jeroen V. K. & VIOLANTE, Francesco, 2010. "On the forecasting accuracy of multivariate GARCH models," LIDAM Discussion Papers CORE 2010025, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).